xref: /openbmc/linux/mm/swap_state.c (revision c33c7948)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migrate_folio	= migrate_folio,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 
49 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52 
53 #define SWAP_RA_VAL(addr, win, hits)				\
54 	(((addr) & PAGE_MASK) |					\
55 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56 	 ((hits) & SWAP_RA_HITS_MASK))
57 
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)					\
60 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63 
64 void show_swap_cache_info(void)
65 {
66 	printk("%lu pages in swap cache\n", total_swapcache_pages());
67 	printk("Free swap  = %ldkB\n",
68 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
70 }
71 
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
73 {
74 	struct address_space *address_space = swap_address_space(entry);
75 	pgoff_t idx = swp_offset(entry);
76 	struct page *page;
77 
78 	page = xa_load(&address_space->i_pages, idx);
79 	if (xa_is_value(page))
80 		return page;
81 	return NULL;
82 }
83 
84 /*
85  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86  * but sets SwapCache flag and private instead of mapping and index.
87  */
88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
89 			gfp_t gfp, void **shadowp)
90 {
91 	struct address_space *address_space = swap_address_space(entry);
92 	pgoff_t idx = swp_offset(entry);
93 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
94 	unsigned long i, nr = folio_nr_pages(folio);
95 	void *old;
96 
97 	xas_set_update(&xas, workingset_update_node);
98 
99 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
102 
103 	folio_ref_add(folio, nr);
104 	folio_set_swapcache(folio);
105 
106 	do {
107 		xas_lock_irq(&xas);
108 		xas_create_range(&xas);
109 		if (xas_error(&xas))
110 			goto unlock;
111 		for (i = 0; i < nr; i++) {
112 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113 			old = xas_load(&xas);
114 			if (xa_is_value(old)) {
115 				if (shadowp)
116 					*shadowp = old;
117 			}
118 			set_page_private(folio_page(folio, i), entry.val + i);
119 			xas_store(&xas, folio);
120 			xas_next(&xas);
121 		}
122 		address_space->nrpages += nr;
123 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
125 unlock:
126 		xas_unlock_irq(&xas);
127 	} while (xas_nomem(&xas, gfp));
128 
129 	if (!xas_error(&xas))
130 		return 0;
131 
132 	folio_clear_swapcache(folio);
133 	folio_ref_sub(folio, nr);
134 	return xas_error(&xas);
135 }
136 
137 /*
138  * This must be called only on folios that have
139  * been verified to be in the swap cache.
140  */
141 void __delete_from_swap_cache(struct folio *folio,
142 			swp_entry_t entry, void *shadow)
143 {
144 	struct address_space *address_space = swap_address_space(entry);
145 	int i;
146 	long nr = folio_nr_pages(folio);
147 	pgoff_t idx = swp_offset(entry);
148 	XA_STATE(xas, &address_space->i_pages, idx);
149 
150 	xas_set_update(&xas, workingset_update_node);
151 
152 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
155 
156 	for (i = 0; i < nr; i++) {
157 		void *entry = xas_store(&xas, shadow);
158 		VM_BUG_ON_PAGE(entry != folio, entry);
159 		set_page_private(folio_page(folio, i), 0);
160 		xas_next(&xas);
161 	}
162 	folio_clear_swapcache(folio);
163 	address_space->nrpages -= nr;
164 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
166 }
167 
168 /**
169  * add_to_swap - allocate swap space for a folio
170  * @folio: folio we want to move to swap
171  *
172  * Allocate swap space for the folio and add the folio to the
173  * swap cache.
174  *
175  * Context: Caller needs to hold the folio lock.
176  * Return: Whether the folio was added to the swap cache.
177  */
178 bool add_to_swap(struct folio *folio)
179 {
180 	swp_entry_t entry;
181 	int err;
182 
183 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
184 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
185 
186 	entry = folio_alloc_swap(folio);
187 	if (!entry.val)
188 		return false;
189 
190 	/*
191 	 * XArray node allocations from PF_MEMALLOC contexts could
192 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
193 	 * stops emergency reserves from being allocated.
194 	 *
195 	 * TODO: this could cause a theoretical memory reclaim
196 	 * deadlock in the swap out path.
197 	 */
198 	/*
199 	 * Add it to the swap cache.
200 	 */
201 	err = add_to_swap_cache(folio, entry,
202 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
203 	if (err)
204 		/*
205 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 		 * clear SWAP_HAS_CACHE flag.
207 		 */
208 		goto fail;
209 	/*
210 	 * Normally the folio will be dirtied in unmap because its
211 	 * pte should be dirty. A special case is MADV_FREE page. The
212 	 * page's pte could have dirty bit cleared but the folio's
213 	 * SwapBacked flag is still set because clearing the dirty bit
214 	 * and SwapBacked flag has no lock protected. For such folio,
215 	 * unmap will not set dirty bit for it, so folio reclaim will
216 	 * not write the folio out. This can cause data corruption when
217 	 * the folio is swapped in later. Always setting the dirty flag
218 	 * for the folio solves the problem.
219 	 */
220 	folio_mark_dirty(folio);
221 
222 	return true;
223 
224 fail:
225 	put_swap_folio(folio, entry);
226 	return false;
227 }
228 
229 /*
230  * This must be called only on folios that have
231  * been verified to be in the swap cache and locked.
232  * It will never put the folio into the free list,
233  * the caller has a reference on the folio.
234  */
235 void delete_from_swap_cache(struct folio *folio)
236 {
237 	swp_entry_t entry = folio_swap_entry(folio);
238 	struct address_space *address_space = swap_address_space(entry);
239 
240 	xa_lock_irq(&address_space->i_pages);
241 	__delete_from_swap_cache(folio, entry, NULL);
242 	xa_unlock_irq(&address_space->i_pages);
243 
244 	put_swap_folio(folio, entry);
245 	folio_ref_sub(folio, folio_nr_pages(folio));
246 }
247 
248 void clear_shadow_from_swap_cache(int type, unsigned long begin,
249 				unsigned long end)
250 {
251 	unsigned long curr = begin;
252 	void *old;
253 
254 	for (;;) {
255 		swp_entry_t entry = swp_entry(type, curr);
256 		struct address_space *address_space = swap_address_space(entry);
257 		XA_STATE(xas, &address_space->i_pages, curr);
258 
259 		xas_set_update(&xas, workingset_update_node);
260 
261 		xa_lock_irq(&address_space->i_pages);
262 		xas_for_each(&xas, old, end) {
263 			if (!xa_is_value(old))
264 				continue;
265 			xas_store(&xas, NULL);
266 		}
267 		xa_unlock_irq(&address_space->i_pages);
268 
269 		/* search the next swapcache until we meet end */
270 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
271 		curr++;
272 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
273 		if (curr > end)
274 			break;
275 	}
276 }
277 
278 /*
279  * If we are the only user, then try to free up the swap cache.
280  *
281  * Its ok to check the swapcache flag without the folio lock
282  * here because we are going to recheck again inside
283  * folio_free_swap() _with_ the lock.
284  * 					- Marcelo
285  */
286 void free_swap_cache(struct page *page)
287 {
288 	struct folio *folio = page_folio(page);
289 
290 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
291 	    folio_trylock(folio)) {
292 		folio_free_swap(folio);
293 		folio_unlock(folio);
294 	}
295 }
296 
297 /*
298  * Perform a free_page(), also freeing any swap cache associated with
299  * this page if it is the last user of the page.
300  */
301 void free_page_and_swap_cache(struct page *page)
302 {
303 	free_swap_cache(page);
304 	if (!is_huge_zero_page(page))
305 		put_page(page);
306 }
307 
308 /*
309  * Passed an array of pages, drop them all from swapcache and then release
310  * them.  They are removed from the LRU and freed if this is their last use.
311  */
312 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
313 {
314 	lru_add_drain();
315 	for (int i = 0; i < nr; i++)
316 		free_swap_cache(encoded_page_ptr(pages[i]));
317 	release_pages(pages, nr);
318 }
319 
320 static inline bool swap_use_vma_readahead(void)
321 {
322 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
323 }
324 
325 /*
326  * Lookup a swap entry in the swap cache. A found folio will be returned
327  * unlocked and with its refcount incremented - we rely on the kernel
328  * lock getting page table operations atomic even if we drop the folio
329  * lock before returning.
330  *
331  * Caller must lock the swap device or hold a reference to keep it valid.
332  */
333 struct folio *swap_cache_get_folio(swp_entry_t entry,
334 		struct vm_area_struct *vma, unsigned long addr)
335 {
336 	struct folio *folio;
337 
338 	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
339 	if (!IS_ERR(folio)) {
340 		bool vma_ra = swap_use_vma_readahead();
341 		bool readahead;
342 
343 		/*
344 		 * At the moment, we don't support PG_readahead for anon THP
345 		 * so let's bail out rather than confusing the readahead stat.
346 		 */
347 		if (unlikely(folio_test_large(folio)))
348 			return folio;
349 
350 		readahead = folio_test_clear_readahead(folio);
351 		if (vma && vma_ra) {
352 			unsigned long ra_val;
353 			int win, hits;
354 
355 			ra_val = GET_SWAP_RA_VAL(vma);
356 			win = SWAP_RA_WIN(ra_val);
357 			hits = SWAP_RA_HITS(ra_val);
358 			if (readahead)
359 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
360 			atomic_long_set(&vma->swap_readahead_info,
361 					SWAP_RA_VAL(addr, win, hits));
362 		}
363 
364 		if (readahead) {
365 			count_vm_event(SWAP_RA_HIT);
366 			if (!vma || !vma_ra)
367 				atomic_inc(&swapin_readahead_hits);
368 		}
369 	} else {
370 		folio = NULL;
371 	}
372 
373 	return folio;
374 }
375 
376 /**
377  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
378  * @mapping: The address_space to search.
379  * @index: The page cache index.
380  *
381  * This differs from filemap_get_folio() in that it will also look for the
382  * folio in the swap cache.
383  *
384  * Return: The found folio or %NULL.
385  */
386 struct folio *filemap_get_incore_folio(struct address_space *mapping,
387 		pgoff_t index)
388 {
389 	swp_entry_t swp;
390 	struct swap_info_struct *si;
391 	struct folio *folio = filemap_get_entry(mapping, index);
392 
393 	if (!folio)
394 		return ERR_PTR(-ENOENT);
395 	if (!xa_is_value(folio))
396 		return folio;
397 	if (!shmem_mapping(mapping))
398 		return ERR_PTR(-ENOENT);
399 
400 	swp = radix_to_swp_entry(folio);
401 	/* There might be swapin error entries in shmem mapping. */
402 	if (non_swap_entry(swp))
403 		return ERR_PTR(-ENOENT);
404 	/* Prevent swapoff from happening to us */
405 	si = get_swap_device(swp);
406 	if (!si)
407 		return ERR_PTR(-ENOENT);
408 	index = swp_offset(swp);
409 	folio = filemap_get_folio(swap_address_space(swp), index);
410 	put_swap_device(si);
411 	return folio;
412 }
413 
414 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
415 			struct vm_area_struct *vma, unsigned long addr,
416 			bool *new_page_allocated)
417 {
418 	struct swap_info_struct *si;
419 	struct folio *folio;
420 	struct page *page;
421 	void *shadow = NULL;
422 
423 	*new_page_allocated = false;
424 	si = get_swap_device(entry);
425 	if (!si)
426 		return NULL;
427 
428 	for (;;) {
429 		int err;
430 		/*
431 		 * First check the swap cache.  Since this is normally
432 		 * called after swap_cache_get_folio() failed, re-calling
433 		 * that would confuse statistics.
434 		 */
435 		folio = filemap_get_folio(swap_address_space(entry),
436 						swp_offset(entry));
437 		if (!IS_ERR(folio)) {
438 			page = folio_file_page(folio, swp_offset(entry));
439 			goto got_page;
440 		}
441 
442 		/*
443 		 * Just skip read ahead for unused swap slot.
444 		 * During swap_off when swap_slot_cache is disabled,
445 		 * we have to handle the race between putting
446 		 * swap entry in swap cache and marking swap slot
447 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
448 		 * else swap_off will be aborted if we return NULL.
449 		 */
450 		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
451 			goto fail_put_swap;
452 
453 		/*
454 		 * Get a new page to read into from swap.  Allocate it now,
455 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
456 		 * cause any racers to loop around until we add it to cache.
457 		 */
458 		folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
459 		if (!folio)
460                         goto fail_put_swap;
461 
462 		/*
463 		 * Swap entry may have been freed since our caller observed it.
464 		 */
465 		err = swapcache_prepare(entry);
466 		if (!err)
467 			break;
468 
469 		folio_put(folio);
470 		if (err != -EEXIST)
471 			goto fail_put_swap;
472 
473 		/*
474 		 * We might race against __delete_from_swap_cache(), and
475 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
476 		 * has not yet been cleared.  Or race against another
477 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
478 		 * in swap_map, but not yet added its page to swap cache.
479 		 */
480 		schedule_timeout_uninterruptible(1);
481 	}
482 
483 	/*
484 	 * The swap entry is ours to swap in. Prepare the new page.
485 	 */
486 
487 	__folio_set_locked(folio);
488 	__folio_set_swapbacked(folio);
489 
490 	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
491 		goto fail_unlock;
492 
493 	/* May fail (-ENOMEM) if XArray node allocation failed. */
494 	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
495 		goto fail_unlock;
496 
497 	mem_cgroup_swapin_uncharge_swap(entry);
498 
499 	if (shadow)
500 		workingset_refault(folio, shadow);
501 
502 	/* Caller will initiate read into locked folio */
503 	folio_add_lru(folio);
504 	*new_page_allocated = true;
505 	page = &folio->page;
506 got_page:
507 	put_swap_device(si);
508 	return page;
509 
510 fail_unlock:
511 	put_swap_folio(folio, entry);
512 	folio_unlock(folio);
513 	folio_put(folio);
514 fail_put_swap:
515 	put_swap_device(si);
516 	return NULL;
517 }
518 
519 /*
520  * Locate a page of swap in physical memory, reserving swap cache space
521  * and reading the disk if it is not already cached.
522  * A failure return means that either the page allocation failed or that
523  * the swap entry is no longer in use.
524  *
525  * get/put_swap_device() aren't needed to call this function, because
526  * __read_swap_cache_async() call them and swap_readpage() holds the
527  * swap cache folio lock.
528  */
529 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
530 				   struct vm_area_struct *vma,
531 				   unsigned long addr, bool do_poll,
532 				   struct swap_iocb **plug)
533 {
534 	bool page_was_allocated;
535 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
536 			vma, addr, &page_was_allocated);
537 
538 	if (page_was_allocated)
539 		swap_readpage(retpage, do_poll, plug);
540 
541 	return retpage;
542 }
543 
544 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
545 				      unsigned long offset,
546 				      int hits,
547 				      int max_pages,
548 				      int prev_win)
549 {
550 	unsigned int pages, last_ra;
551 
552 	/*
553 	 * This heuristic has been found to work well on both sequential and
554 	 * random loads, swapping to hard disk or to SSD: please don't ask
555 	 * what the "+ 2" means, it just happens to work well, that's all.
556 	 */
557 	pages = hits + 2;
558 	if (pages == 2) {
559 		/*
560 		 * We can have no readahead hits to judge by: but must not get
561 		 * stuck here forever, so check for an adjacent offset instead
562 		 * (and don't even bother to check whether swap type is same).
563 		 */
564 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
565 			pages = 1;
566 	} else {
567 		unsigned int roundup = 4;
568 		while (roundup < pages)
569 			roundup <<= 1;
570 		pages = roundup;
571 	}
572 
573 	if (pages > max_pages)
574 		pages = max_pages;
575 
576 	/* Don't shrink readahead too fast */
577 	last_ra = prev_win / 2;
578 	if (pages < last_ra)
579 		pages = last_ra;
580 
581 	return pages;
582 }
583 
584 static unsigned long swapin_nr_pages(unsigned long offset)
585 {
586 	static unsigned long prev_offset;
587 	unsigned int hits, pages, max_pages;
588 	static atomic_t last_readahead_pages;
589 
590 	max_pages = 1 << READ_ONCE(page_cluster);
591 	if (max_pages <= 1)
592 		return 1;
593 
594 	hits = atomic_xchg(&swapin_readahead_hits, 0);
595 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
596 				  max_pages,
597 				  atomic_read(&last_readahead_pages));
598 	if (!hits)
599 		WRITE_ONCE(prev_offset, offset);
600 	atomic_set(&last_readahead_pages, pages);
601 
602 	return pages;
603 }
604 
605 /**
606  * swap_cluster_readahead - swap in pages in hope we need them soon
607  * @entry: swap entry of this memory
608  * @gfp_mask: memory allocation flags
609  * @vmf: fault information
610  *
611  * Returns the struct page for entry and addr, after queueing swapin.
612  *
613  * Primitive swap readahead code. We simply read an aligned block of
614  * (1 << page_cluster) entries in the swap area. This method is chosen
615  * because it doesn't cost us any seek time.  We also make sure to queue
616  * the 'original' request together with the readahead ones...
617  *
618  * This has been extended to use the NUMA policies from the mm triggering
619  * the readahead.
620  *
621  * Caller must hold read mmap_lock if vmf->vma is not NULL.
622  */
623 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
624 				struct vm_fault *vmf)
625 {
626 	struct page *page;
627 	unsigned long entry_offset = swp_offset(entry);
628 	unsigned long offset = entry_offset;
629 	unsigned long start_offset, end_offset;
630 	unsigned long mask;
631 	struct swap_info_struct *si = swp_swap_info(entry);
632 	struct blk_plug plug;
633 	struct swap_iocb *splug = NULL;
634 	bool do_poll = true, page_allocated;
635 	struct vm_area_struct *vma = vmf->vma;
636 	unsigned long addr = vmf->address;
637 
638 	mask = swapin_nr_pages(offset) - 1;
639 	if (!mask)
640 		goto skip;
641 
642 	do_poll = false;
643 	/* Read a page_cluster sized and aligned cluster around offset. */
644 	start_offset = offset & ~mask;
645 	end_offset = offset | mask;
646 	if (!start_offset)	/* First page is swap header. */
647 		start_offset++;
648 	if (end_offset >= si->max)
649 		end_offset = si->max - 1;
650 
651 	blk_start_plug(&plug);
652 	for (offset = start_offset; offset <= end_offset ; offset++) {
653 		/* Ok, do the async read-ahead now */
654 		page = __read_swap_cache_async(
655 			swp_entry(swp_type(entry), offset),
656 			gfp_mask, vma, addr, &page_allocated);
657 		if (!page)
658 			continue;
659 		if (page_allocated) {
660 			swap_readpage(page, false, &splug);
661 			if (offset != entry_offset) {
662 				SetPageReadahead(page);
663 				count_vm_event(SWAP_RA);
664 			}
665 		}
666 		put_page(page);
667 	}
668 	blk_finish_plug(&plug);
669 	swap_read_unplug(splug);
670 
671 	lru_add_drain();	/* Push any new pages onto the LRU now */
672 skip:
673 	/* The page was likely read above, so no need for plugging here */
674 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
675 }
676 
677 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
678 {
679 	struct address_space *spaces, *space;
680 	unsigned int i, nr;
681 
682 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
683 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
684 	if (!spaces)
685 		return -ENOMEM;
686 	for (i = 0; i < nr; i++) {
687 		space = spaces + i;
688 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
689 		atomic_set(&space->i_mmap_writable, 0);
690 		space->a_ops = &swap_aops;
691 		/* swap cache doesn't use writeback related tags */
692 		mapping_set_no_writeback_tags(space);
693 	}
694 	nr_swapper_spaces[type] = nr;
695 	swapper_spaces[type] = spaces;
696 
697 	return 0;
698 }
699 
700 void exit_swap_address_space(unsigned int type)
701 {
702 	int i;
703 	struct address_space *spaces = swapper_spaces[type];
704 
705 	for (i = 0; i < nr_swapper_spaces[type]; i++)
706 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
707 	kvfree(spaces);
708 	nr_swapper_spaces[type] = 0;
709 	swapper_spaces[type] = NULL;
710 }
711 
712 #define SWAP_RA_ORDER_CEILING	5
713 
714 struct vma_swap_readahead {
715 	unsigned short win;
716 	unsigned short offset;
717 	unsigned short nr_pte;
718 };
719 
720 static void swap_ra_info(struct vm_fault *vmf,
721 			 struct vma_swap_readahead *ra_info)
722 {
723 	struct vm_area_struct *vma = vmf->vma;
724 	unsigned long ra_val;
725 	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
726 	unsigned long start, end;
727 	unsigned int max_win, hits, prev_win, win;
728 
729 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
730 			     SWAP_RA_ORDER_CEILING);
731 	if (max_win == 1) {
732 		ra_info->win = 1;
733 		return;
734 	}
735 
736 	faddr = vmf->address;
737 	fpfn = PFN_DOWN(faddr);
738 	ra_val = GET_SWAP_RA_VAL(vma);
739 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
740 	prev_win = SWAP_RA_WIN(ra_val);
741 	hits = SWAP_RA_HITS(ra_val);
742 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
743 					       max_win, prev_win);
744 	atomic_long_set(&vma->swap_readahead_info,
745 			SWAP_RA_VAL(faddr, win, 0));
746 	if (win == 1)
747 		return;
748 
749 	if (fpfn == pfn + 1) {
750 		lpfn = fpfn;
751 		rpfn = fpfn + win;
752 	} else if (pfn == fpfn + 1) {
753 		lpfn = fpfn - win + 1;
754 		rpfn = fpfn + 1;
755 	} else {
756 		unsigned int left = (win - 1) / 2;
757 
758 		lpfn = fpfn - left;
759 		rpfn = fpfn + win - left;
760 	}
761 	start = max3(lpfn, PFN_DOWN(vma->vm_start),
762 		     PFN_DOWN(faddr & PMD_MASK));
763 	end = min3(rpfn, PFN_DOWN(vma->vm_end),
764 		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
765 
766 	ra_info->nr_pte = end - start;
767 	ra_info->offset = fpfn - start;
768 }
769 
770 /**
771  * swap_vma_readahead - swap in pages in hope we need them soon
772  * @fentry: swap entry of this memory
773  * @gfp_mask: memory allocation flags
774  * @vmf: fault information
775  *
776  * Returns the struct page for entry and addr, after queueing swapin.
777  *
778  * Primitive swap readahead code. We simply read in a few pages whose
779  * virtual addresses are around the fault address in the same vma.
780  *
781  * Caller must hold read mmap_lock if vmf->vma is not NULL.
782  *
783  */
784 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
785 				       struct vm_fault *vmf)
786 {
787 	struct blk_plug plug;
788 	struct swap_iocb *splug = NULL;
789 	struct vm_area_struct *vma = vmf->vma;
790 	struct page *page;
791 	pte_t *pte = NULL, pentry;
792 	unsigned long addr;
793 	swp_entry_t entry;
794 	unsigned int i;
795 	bool page_allocated;
796 	struct vma_swap_readahead ra_info = {
797 		.win = 1,
798 	};
799 
800 	swap_ra_info(vmf, &ra_info);
801 	if (ra_info.win == 1)
802 		goto skip;
803 
804 	addr = vmf->address - (ra_info.offset * PAGE_SIZE);
805 
806 	blk_start_plug(&plug);
807 	for (i = 0; i < ra_info.nr_pte; i++, addr += PAGE_SIZE) {
808 		if (!pte++) {
809 			pte = pte_offset_map(vmf->pmd, addr);
810 			if (!pte)
811 				break;
812 		}
813 		pentry = ptep_get_lockless(pte);
814 		if (!is_swap_pte(pentry))
815 			continue;
816 		entry = pte_to_swp_entry(pentry);
817 		if (unlikely(non_swap_entry(entry)))
818 			continue;
819 		pte_unmap(pte);
820 		pte = NULL;
821 		page = __read_swap_cache_async(entry, gfp_mask, vma,
822 					       addr, &page_allocated);
823 		if (!page)
824 			continue;
825 		if (page_allocated) {
826 			swap_readpage(page, false, &splug);
827 			if (i != ra_info.offset) {
828 				SetPageReadahead(page);
829 				count_vm_event(SWAP_RA);
830 			}
831 		}
832 		put_page(page);
833 	}
834 	if (pte)
835 		pte_unmap(pte);
836 	blk_finish_plug(&plug);
837 	swap_read_unplug(splug);
838 	lru_add_drain();
839 skip:
840 	/* The page was likely read above, so no need for plugging here */
841 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
842 				     ra_info.win == 1, NULL);
843 }
844 
845 /**
846  * swapin_readahead - swap in pages in hope we need them soon
847  * @entry: swap entry of this memory
848  * @gfp_mask: memory allocation flags
849  * @vmf: fault information
850  *
851  * Returns the struct page for entry and addr, after queueing swapin.
852  *
853  * It's a main entry function for swap readahead. By the configuration,
854  * it will read ahead blocks by cluster-based(ie, physical disk based)
855  * or vma-based(ie, virtual address based on faulty address) readahead.
856  */
857 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
858 				struct vm_fault *vmf)
859 {
860 	return swap_use_vma_readahead() ?
861 			swap_vma_readahead(entry, gfp_mask, vmf) :
862 			swap_cluster_readahead(entry, gfp_mask, vmf);
863 }
864 
865 #ifdef CONFIG_SYSFS
866 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
867 				     struct kobj_attribute *attr, char *buf)
868 {
869 	return sysfs_emit(buf, "%s\n",
870 			  enable_vma_readahead ? "true" : "false");
871 }
872 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
873 				      struct kobj_attribute *attr,
874 				      const char *buf, size_t count)
875 {
876 	ssize_t ret;
877 
878 	ret = kstrtobool(buf, &enable_vma_readahead);
879 	if (ret)
880 		return ret;
881 
882 	return count;
883 }
884 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
885 
886 static struct attribute *swap_attrs[] = {
887 	&vma_ra_enabled_attr.attr,
888 	NULL,
889 };
890 
891 static const struct attribute_group swap_attr_group = {
892 	.attrs = swap_attrs,
893 };
894 
895 static int __init swap_init_sysfs(void)
896 {
897 	int err;
898 	struct kobject *swap_kobj;
899 
900 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
901 	if (!swap_kobj) {
902 		pr_err("failed to create swap kobject\n");
903 		return -ENOMEM;
904 	}
905 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
906 	if (err) {
907 		pr_err("failed to register swap group\n");
908 		goto delete_obj;
909 	}
910 	return 0;
911 
912 delete_obj:
913 	kobject_put(swap_kobj);
914 	return err;
915 }
916 subsys_initcall(swap_init_sysfs);
917 #endif
918