xref: /openbmc/linux/mm/swap_state.c (revision c1f51218)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32 	.writepage	= swap_writepage,
33 	.set_page_dirty	= swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 	.migratepage	= migrate_page,
36 #endif
37 };
38 
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42 
43 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 
48 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51 
52 #define SWAP_RA_VAL(addr, win, hits)				\
53 	(((addr) & PAGE_MASK) |					\
54 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55 	 ((hits) & SWAP_RA_HITS_MASK))
56 
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)					\
59 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 
61 #define INC_CACHE_INFO(x)	data_race(swap_cache_info.x++)
62 #define ADD_CACHE_INFO(x, nr)	data_race(swap_cache_info.x += (nr))
63 
64 static struct {
65 	unsigned long add_total;
66 	unsigned long del_total;
67 	unsigned long find_success;
68 	unsigned long find_total;
69 } swap_cache_info;
70 
71 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
72 
73 void show_swap_cache_info(void)
74 {
75 	printk("%lu pages in swap cache\n", total_swapcache_pages());
76 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
77 		swap_cache_info.add_total, swap_cache_info.del_total,
78 		swap_cache_info.find_success, swap_cache_info.find_total);
79 	printk("Free swap  = %ldkB\n",
80 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
81 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82 }
83 
84 void *get_shadow_from_swap_cache(swp_entry_t entry)
85 {
86 	struct address_space *address_space = swap_address_space(entry);
87 	pgoff_t idx = swp_offset(entry);
88 	struct page *page;
89 
90 	page = xa_load(&address_space->i_pages, idx);
91 	if (xa_is_value(page))
92 		return page;
93 	return NULL;
94 }
95 
96 /*
97  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
98  * but sets SwapCache flag and private instead of mapping and index.
99  */
100 int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 			gfp_t gfp, void **shadowp)
102 {
103 	struct address_space *address_space = swap_address_space(entry);
104 	pgoff_t idx = swp_offset(entry);
105 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
106 	unsigned long i, nr = thp_nr_pages(page);
107 	void *old;
108 
109 	VM_BUG_ON_PAGE(!PageLocked(page), page);
110 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
112 
113 	page_ref_add(page, nr);
114 	SetPageSwapCache(page);
115 
116 	do {
117 		unsigned long nr_shadows = 0;
118 
119 		xas_lock_irq(&xas);
120 		xas_create_range(&xas);
121 		if (xas_error(&xas))
122 			goto unlock;
123 		for (i = 0; i < nr; i++) {
124 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
125 			old = xas_load(&xas);
126 			if (xa_is_value(old)) {
127 				nr_shadows++;
128 				if (shadowp)
129 					*shadowp = old;
130 			}
131 			set_page_private(page + i, entry.val + i);
132 			xas_store(&xas, page);
133 			xas_next(&xas);
134 		}
135 		address_space->nrpages += nr;
136 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
137 		__mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
138 		ADD_CACHE_INFO(add_total, nr);
139 unlock:
140 		xas_unlock_irq(&xas);
141 	} while (xas_nomem(&xas, gfp));
142 
143 	if (!xas_error(&xas))
144 		return 0;
145 
146 	ClearPageSwapCache(page);
147 	page_ref_sub(page, nr);
148 	return xas_error(&xas);
149 }
150 
151 /*
152  * This must be called only on pages that have
153  * been verified to be in the swap cache.
154  */
155 void __delete_from_swap_cache(struct page *page,
156 			swp_entry_t entry, void *shadow)
157 {
158 	struct address_space *address_space = swap_address_space(entry);
159 	int i, nr = thp_nr_pages(page);
160 	pgoff_t idx = swp_offset(entry);
161 	XA_STATE(xas, &address_space->i_pages, idx);
162 
163 	VM_BUG_ON_PAGE(!PageLocked(page), page);
164 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
165 	VM_BUG_ON_PAGE(PageWriteback(page), page);
166 
167 	for (i = 0; i < nr; i++) {
168 		void *entry = xas_store(&xas, shadow);
169 		VM_BUG_ON_PAGE(entry != page, entry);
170 		set_page_private(page + i, 0);
171 		xas_next(&xas);
172 	}
173 	ClearPageSwapCache(page);
174 	address_space->nrpages -= nr;
175 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
176 	__mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
177 	ADD_CACHE_INFO(del_total, nr);
178 }
179 
180 /**
181  * add_to_swap - allocate swap space for a page
182  * @page: page we want to move to swap
183  *
184  * Allocate swap space for the page and add the page to the
185  * swap cache.  Caller needs to hold the page lock.
186  */
187 int add_to_swap(struct page *page)
188 {
189 	swp_entry_t entry;
190 	int err;
191 
192 	VM_BUG_ON_PAGE(!PageLocked(page), page);
193 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
194 
195 	entry = get_swap_page(page);
196 	if (!entry.val)
197 		return 0;
198 
199 	/*
200 	 * XArray node allocations from PF_MEMALLOC contexts could
201 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
202 	 * stops emergency reserves from being allocated.
203 	 *
204 	 * TODO: this could cause a theoretical memory reclaim
205 	 * deadlock in the swap out path.
206 	 */
207 	/*
208 	 * Add it to the swap cache.
209 	 */
210 	err = add_to_swap_cache(page, entry,
211 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
212 	if (err)
213 		/*
214 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 		 * clear SWAP_HAS_CACHE flag.
216 		 */
217 		goto fail;
218 	/*
219 	 * Normally the page will be dirtied in unmap because its pte should be
220 	 * dirty. A special case is MADV_FREE page. The page's pte could have
221 	 * dirty bit cleared but the page's SwapBacked bit is still set because
222 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
223 	 * such page, unmap will not set dirty bit for it, so page reclaim will
224 	 * not write the page out. This can cause data corruption when the page
225 	 * is swap in later. Always setting the dirty bit for the page solves
226 	 * the problem.
227 	 */
228 	set_page_dirty(page);
229 
230 	return 1;
231 
232 fail:
233 	put_swap_page(page, entry);
234 	return 0;
235 }
236 
237 /*
238  * This must be called only on pages that have
239  * been verified to be in the swap cache and locked.
240  * It will never put the page into the free list,
241  * the caller has a reference on the page.
242  */
243 void delete_from_swap_cache(struct page *page)
244 {
245 	swp_entry_t entry = { .val = page_private(page) };
246 	struct address_space *address_space = swap_address_space(entry);
247 
248 	xa_lock_irq(&address_space->i_pages);
249 	__delete_from_swap_cache(page, entry, NULL);
250 	xa_unlock_irq(&address_space->i_pages);
251 
252 	put_swap_page(page, entry);
253 	page_ref_sub(page, thp_nr_pages(page));
254 }
255 
256 void clear_shadow_from_swap_cache(int type, unsigned long begin,
257 				unsigned long end)
258 {
259 	unsigned long curr = begin;
260 	void *old;
261 
262 	for (;;) {
263 		unsigned long nr_shadows = 0;
264 		swp_entry_t entry = swp_entry(type, curr);
265 		struct address_space *address_space = swap_address_space(entry);
266 		XA_STATE(xas, &address_space->i_pages, curr);
267 
268 		xa_lock_irq(&address_space->i_pages);
269 		xas_for_each(&xas, old, end) {
270 			if (!xa_is_value(old))
271 				continue;
272 			xas_store(&xas, NULL);
273 			nr_shadows++;
274 		}
275 		xa_unlock_irq(&address_space->i_pages);
276 
277 		/* search the next swapcache until we meet end */
278 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
279 		curr++;
280 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
281 		if (curr > end)
282 			break;
283 	}
284 }
285 
286 /*
287  * If we are the only user, then try to free up the swap cache.
288  *
289  * Its ok to check for PageSwapCache without the page lock
290  * here because we are going to recheck again inside
291  * try_to_free_swap() _with_ the lock.
292  * 					- Marcelo
293  */
294 static inline void free_swap_cache(struct page *page)
295 {
296 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
297 		try_to_free_swap(page);
298 		unlock_page(page);
299 	}
300 }
301 
302 /*
303  * Perform a free_page(), also freeing any swap cache associated with
304  * this page if it is the last user of the page.
305  */
306 void free_page_and_swap_cache(struct page *page)
307 {
308 	free_swap_cache(page);
309 	if (!is_huge_zero_page(page))
310 		put_page(page);
311 }
312 
313 /*
314  * Passed an array of pages, drop them all from swapcache and then release
315  * them.  They are removed from the LRU and freed if this is their last use.
316  */
317 void free_pages_and_swap_cache(struct page **pages, int nr)
318 {
319 	struct page **pagep = pages;
320 	int i;
321 
322 	lru_add_drain();
323 	for (i = 0; i < nr; i++)
324 		free_swap_cache(pagep[i]);
325 	release_pages(pagep, nr);
326 }
327 
328 static inline bool swap_use_vma_readahead(void)
329 {
330 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
331 }
332 
333 /*
334  * Lookup a swap entry in the swap cache. A found page will be returned
335  * unlocked and with its refcount incremented - we rely on the kernel
336  * lock getting page table operations atomic even if we drop the page
337  * lock before returning.
338  */
339 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
340 			       unsigned long addr)
341 {
342 	struct page *page;
343 	struct swap_info_struct *si;
344 
345 	si = get_swap_device(entry);
346 	if (!si)
347 		return NULL;
348 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
349 	put_swap_device(si);
350 
351 	INC_CACHE_INFO(find_total);
352 	if (page) {
353 		bool vma_ra = swap_use_vma_readahead();
354 		bool readahead;
355 
356 		INC_CACHE_INFO(find_success);
357 		/*
358 		 * At the moment, we don't support PG_readahead for anon THP
359 		 * so let's bail out rather than confusing the readahead stat.
360 		 */
361 		if (unlikely(PageTransCompound(page)))
362 			return page;
363 
364 		readahead = TestClearPageReadahead(page);
365 		if (vma && vma_ra) {
366 			unsigned long ra_val;
367 			int win, hits;
368 
369 			ra_val = GET_SWAP_RA_VAL(vma);
370 			win = SWAP_RA_WIN(ra_val);
371 			hits = SWAP_RA_HITS(ra_val);
372 			if (readahead)
373 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
374 			atomic_long_set(&vma->swap_readahead_info,
375 					SWAP_RA_VAL(addr, win, hits));
376 		}
377 
378 		if (readahead) {
379 			count_vm_event(SWAP_RA_HIT);
380 			if (!vma || !vma_ra)
381 				atomic_inc(&swapin_readahead_hits);
382 		}
383 	}
384 
385 	return page;
386 }
387 
388 /**
389  * find_get_incore_page - Find and get a page from the page or swap caches.
390  * @mapping: The address_space to search.
391  * @index: The page cache index.
392  *
393  * This differs from find_get_page() in that it will also look for the
394  * page in the swap cache.
395  *
396  * Return: The found page or %NULL.
397  */
398 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
399 {
400 	swp_entry_t swp;
401 	struct swap_info_struct *si;
402 	struct page *page = pagecache_get_page(mapping, index,
403 						FGP_ENTRY | FGP_HEAD, 0);
404 
405 	if (!page)
406 		return page;
407 	if (!xa_is_value(page))
408 		return find_subpage(page, index);
409 	if (!shmem_mapping(mapping))
410 		return NULL;
411 
412 	swp = radix_to_swp_entry(page);
413 	/* Prevent swapoff from happening to us */
414 	si = get_swap_device(swp);
415 	if (!si)
416 		return NULL;
417 	page = find_get_page(swap_address_space(swp), swp_offset(swp));
418 	put_swap_device(si);
419 	return page;
420 }
421 
422 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
423 			struct vm_area_struct *vma, unsigned long addr,
424 			bool *new_page_allocated)
425 {
426 	struct swap_info_struct *si;
427 	struct page *page;
428 	void *shadow = NULL;
429 
430 	*new_page_allocated = false;
431 
432 	for (;;) {
433 		int err;
434 		/*
435 		 * First check the swap cache.  Since this is normally
436 		 * called after lookup_swap_cache() failed, re-calling
437 		 * that would confuse statistics.
438 		 */
439 		si = get_swap_device(entry);
440 		if (!si)
441 			return NULL;
442 		page = find_get_page(swap_address_space(entry),
443 				     swp_offset(entry));
444 		put_swap_device(si);
445 		if (page)
446 			return page;
447 
448 		/*
449 		 * Just skip read ahead for unused swap slot.
450 		 * During swap_off when swap_slot_cache is disabled,
451 		 * we have to handle the race between putting
452 		 * swap entry in swap cache and marking swap slot
453 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
454 		 * else swap_off will be aborted if we return NULL.
455 		 */
456 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
457 			return NULL;
458 
459 		/*
460 		 * Get a new page to read into from swap.  Allocate it now,
461 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
462 		 * cause any racers to loop around until we add it to cache.
463 		 */
464 		page = alloc_page_vma(gfp_mask, vma, addr);
465 		if (!page)
466 			return NULL;
467 
468 		/*
469 		 * Swap entry may have been freed since our caller observed it.
470 		 */
471 		err = swapcache_prepare(entry);
472 		if (!err)
473 			break;
474 
475 		put_page(page);
476 		if (err != -EEXIST)
477 			return NULL;
478 
479 		/*
480 		 * We might race against __delete_from_swap_cache(), and
481 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
482 		 * has not yet been cleared.  Or race against another
483 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
484 		 * in swap_map, but not yet added its page to swap cache.
485 		 */
486 		cond_resched();
487 	}
488 
489 	/*
490 	 * The swap entry is ours to swap in. Prepare the new page.
491 	 */
492 
493 	__SetPageLocked(page);
494 	__SetPageSwapBacked(page);
495 
496 	if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
497 		goto fail_unlock;
498 
499 	/* May fail (-ENOMEM) if XArray node allocation failed. */
500 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
501 		goto fail_unlock;
502 
503 	mem_cgroup_swapin_uncharge_swap(entry);
504 
505 	if (shadow)
506 		workingset_refault(page, shadow);
507 
508 	/* Caller will initiate read into locked page */
509 	lru_cache_add(page);
510 	*new_page_allocated = true;
511 	return page;
512 
513 fail_unlock:
514 	put_swap_page(page, entry);
515 	unlock_page(page);
516 	put_page(page);
517 	return NULL;
518 }
519 
520 /*
521  * Locate a page of swap in physical memory, reserving swap cache space
522  * and reading the disk if it is not already cached.
523  * A failure return means that either the page allocation failed or that
524  * the swap entry is no longer in use.
525  */
526 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
527 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
528 {
529 	bool page_was_allocated;
530 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
531 			vma, addr, &page_was_allocated);
532 
533 	if (page_was_allocated)
534 		swap_readpage(retpage, do_poll);
535 
536 	return retpage;
537 }
538 
539 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
540 				      unsigned long offset,
541 				      int hits,
542 				      int max_pages,
543 				      int prev_win)
544 {
545 	unsigned int pages, last_ra;
546 
547 	/*
548 	 * This heuristic has been found to work well on both sequential and
549 	 * random loads, swapping to hard disk or to SSD: please don't ask
550 	 * what the "+ 2" means, it just happens to work well, that's all.
551 	 */
552 	pages = hits + 2;
553 	if (pages == 2) {
554 		/*
555 		 * We can have no readahead hits to judge by: but must not get
556 		 * stuck here forever, so check for an adjacent offset instead
557 		 * (and don't even bother to check whether swap type is same).
558 		 */
559 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
560 			pages = 1;
561 	} else {
562 		unsigned int roundup = 4;
563 		while (roundup < pages)
564 			roundup <<= 1;
565 		pages = roundup;
566 	}
567 
568 	if (pages > max_pages)
569 		pages = max_pages;
570 
571 	/* Don't shrink readahead too fast */
572 	last_ra = prev_win / 2;
573 	if (pages < last_ra)
574 		pages = last_ra;
575 
576 	return pages;
577 }
578 
579 static unsigned long swapin_nr_pages(unsigned long offset)
580 {
581 	static unsigned long prev_offset;
582 	unsigned int hits, pages, max_pages;
583 	static atomic_t last_readahead_pages;
584 
585 	max_pages = 1 << READ_ONCE(page_cluster);
586 	if (max_pages <= 1)
587 		return 1;
588 
589 	hits = atomic_xchg(&swapin_readahead_hits, 0);
590 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
591 				  max_pages,
592 				  atomic_read(&last_readahead_pages));
593 	if (!hits)
594 		WRITE_ONCE(prev_offset, offset);
595 	atomic_set(&last_readahead_pages, pages);
596 
597 	return pages;
598 }
599 
600 /**
601  * swap_cluster_readahead - swap in pages in hope we need them soon
602  * @entry: swap entry of this memory
603  * @gfp_mask: memory allocation flags
604  * @vmf: fault information
605  *
606  * Returns the struct page for entry and addr, after queueing swapin.
607  *
608  * Primitive swap readahead code. We simply read an aligned block of
609  * (1 << page_cluster) entries in the swap area. This method is chosen
610  * because it doesn't cost us any seek time.  We also make sure to queue
611  * the 'original' request together with the readahead ones...
612  *
613  * This has been extended to use the NUMA policies from the mm triggering
614  * the readahead.
615  *
616  * Caller must hold read mmap_lock if vmf->vma is not NULL.
617  */
618 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
619 				struct vm_fault *vmf)
620 {
621 	struct page *page;
622 	unsigned long entry_offset = swp_offset(entry);
623 	unsigned long offset = entry_offset;
624 	unsigned long start_offset, end_offset;
625 	unsigned long mask;
626 	struct swap_info_struct *si = swp_swap_info(entry);
627 	struct blk_plug plug;
628 	bool do_poll = true, page_allocated;
629 	struct vm_area_struct *vma = vmf->vma;
630 	unsigned long addr = vmf->address;
631 
632 	mask = swapin_nr_pages(offset) - 1;
633 	if (!mask)
634 		goto skip;
635 
636 	/* Test swap type to make sure the dereference is safe */
637 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
638 		struct inode *inode = si->swap_file->f_mapping->host;
639 		if (inode_read_congested(inode))
640 			goto skip;
641 	}
642 
643 	do_poll = false;
644 	/* Read a page_cluster sized and aligned cluster around offset. */
645 	start_offset = offset & ~mask;
646 	end_offset = offset | mask;
647 	if (!start_offset)	/* First page is swap header. */
648 		start_offset++;
649 	if (end_offset >= si->max)
650 		end_offset = si->max - 1;
651 
652 	blk_start_plug(&plug);
653 	for (offset = start_offset; offset <= end_offset ; offset++) {
654 		/* Ok, do the async read-ahead now */
655 		page = __read_swap_cache_async(
656 			swp_entry(swp_type(entry), offset),
657 			gfp_mask, vma, addr, &page_allocated);
658 		if (!page)
659 			continue;
660 		if (page_allocated) {
661 			swap_readpage(page, false);
662 			if (offset != entry_offset) {
663 				SetPageReadahead(page);
664 				count_vm_event(SWAP_RA);
665 			}
666 		}
667 		put_page(page);
668 	}
669 	blk_finish_plug(&plug);
670 
671 	lru_add_drain();	/* Push any new pages onto the LRU now */
672 skip:
673 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
674 }
675 
676 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
677 {
678 	struct address_space *spaces, *space;
679 	unsigned int i, nr;
680 
681 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
682 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
683 	if (!spaces)
684 		return -ENOMEM;
685 	for (i = 0; i < nr; i++) {
686 		space = spaces + i;
687 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
688 		atomic_set(&space->i_mmap_writable, 0);
689 		space->a_ops = &swap_aops;
690 		/* swap cache doesn't use writeback related tags */
691 		mapping_set_no_writeback_tags(space);
692 	}
693 	nr_swapper_spaces[type] = nr;
694 	swapper_spaces[type] = spaces;
695 
696 	return 0;
697 }
698 
699 void exit_swap_address_space(unsigned int type)
700 {
701 	kvfree(swapper_spaces[type]);
702 	nr_swapper_spaces[type] = 0;
703 	swapper_spaces[type] = NULL;
704 }
705 
706 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
707 				     unsigned long faddr,
708 				     unsigned long lpfn,
709 				     unsigned long rpfn,
710 				     unsigned long *start,
711 				     unsigned long *end)
712 {
713 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
714 		      PFN_DOWN(faddr & PMD_MASK));
715 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
716 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
717 }
718 
719 static void swap_ra_info(struct vm_fault *vmf,
720 			struct vma_swap_readahead *ra_info)
721 {
722 	struct vm_area_struct *vma = vmf->vma;
723 	unsigned long ra_val;
724 	swp_entry_t entry;
725 	unsigned long faddr, pfn, fpfn;
726 	unsigned long start, end;
727 	pte_t *pte, *orig_pte;
728 	unsigned int max_win, hits, prev_win, win, left;
729 #ifndef CONFIG_64BIT
730 	pte_t *tpte;
731 #endif
732 
733 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
734 			     SWAP_RA_ORDER_CEILING);
735 	if (max_win == 1) {
736 		ra_info->win = 1;
737 		return;
738 	}
739 
740 	faddr = vmf->address;
741 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
742 	entry = pte_to_swp_entry(*pte);
743 	if ((unlikely(non_swap_entry(entry)))) {
744 		pte_unmap(orig_pte);
745 		return;
746 	}
747 
748 	fpfn = PFN_DOWN(faddr);
749 	ra_val = GET_SWAP_RA_VAL(vma);
750 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
751 	prev_win = SWAP_RA_WIN(ra_val);
752 	hits = SWAP_RA_HITS(ra_val);
753 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
754 					       max_win, prev_win);
755 	atomic_long_set(&vma->swap_readahead_info,
756 			SWAP_RA_VAL(faddr, win, 0));
757 
758 	if (win == 1) {
759 		pte_unmap(orig_pte);
760 		return;
761 	}
762 
763 	/* Copy the PTEs because the page table may be unmapped */
764 	if (fpfn == pfn + 1)
765 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
766 	else if (pfn == fpfn + 1)
767 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
768 				  &start, &end);
769 	else {
770 		left = (win - 1) / 2;
771 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
772 				  &start, &end);
773 	}
774 	ra_info->nr_pte = end - start;
775 	ra_info->offset = fpfn - start;
776 	pte -= ra_info->offset;
777 #ifdef CONFIG_64BIT
778 	ra_info->ptes = pte;
779 #else
780 	tpte = ra_info->ptes;
781 	for (pfn = start; pfn != end; pfn++)
782 		*tpte++ = *pte++;
783 #endif
784 	pte_unmap(orig_pte);
785 }
786 
787 /**
788  * swap_vma_readahead - swap in pages in hope we need them soon
789  * @fentry: swap entry of this memory
790  * @gfp_mask: memory allocation flags
791  * @vmf: fault information
792  *
793  * Returns the struct page for entry and addr, after queueing swapin.
794  *
795  * Primitive swap readahead code. We simply read in a few pages whose
796  * virtual addresses are around the fault address in the same vma.
797  *
798  * Caller must hold read mmap_lock if vmf->vma is not NULL.
799  *
800  */
801 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
802 				       struct vm_fault *vmf)
803 {
804 	struct blk_plug plug;
805 	struct vm_area_struct *vma = vmf->vma;
806 	struct page *page;
807 	pte_t *pte, pentry;
808 	swp_entry_t entry;
809 	unsigned int i;
810 	bool page_allocated;
811 	struct vma_swap_readahead ra_info = {
812 		.win = 1,
813 	};
814 
815 	swap_ra_info(vmf, &ra_info);
816 	if (ra_info.win == 1)
817 		goto skip;
818 
819 	blk_start_plug(&plug);
820 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
821 	     i++, pte++) {
822 		pentry = *pte;
823 		if (pte_none(pentry))
824 			continue;
825 		if (pte_present(pentry))
826 			continue;
827 		entry = pte_to_swp_entry(pentry);
828 		if (unlikely(non_swap_entry(entry)))
829 			continue;
830 		page = __read_swap_cache_async(entry, gfp_mask, vma,
831 					       vmf->address, &page_allocated);
832 		if (!page)
833 			continue;
834 		if (page_allocated) {
835 			swap_readpage(page, false);
836 			if (i != ra_info.offset) {
837 				SetPageReadahead(page);
838 				count_vm_event(SWAP_RA);
839 			}
840 		}
841 		put_page(page);
842 	}
843 	blk_finish_plug(&plug);
844 	lru_add_drain();
845 skip:
846 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
847 				     ra_info.win == 1);
848 }
849 
850 /**
851  * swapin_readahead - swap in pages in hope we need them soon
852  * @entry: swap entry of this memory
853  * @gfp_mask: memory allocation flags
854  * @vmf: fault information
855  *
856  * Returns the struct page for entry and addr, after queueing swapin.
857  *
858  * It's a main entry function for swap readahead. By the configuration,
859  * it will read ahead blocks by cluster-based(ie, physical disk based)
860  * or vma-based(ie, virtual address based on faulty address) readahead.
861  */
862 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
863 				struct vm_fault *vmf)
864 {
865 	return swap_use_vma_readahead() ?
866 			swap_vma_readahead(entry, gfp_mask, vmf) :
867 			swap_cluster_readahead(entry, gfp_mask, vmf);
868 }
869 
870 #ifdef CONFIG_SYSFS
871 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
872 				     struct kobj_attribute *attr, char *buf)
873 {
874 	return sysfs_emit(buf, "%s\n",
875 			  enable_vma_readahead ? "true" : "false");
876 }
877 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
878 				      struct kobj_attribute *attr,
879 				      const char *buf, size_t count)
880 {
881 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
882 		enable_vma_readahead = true;
883 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
884 		enable_vma_readahead = false;
885 	else
886 		return -EINVAL;
887 
888 	return count;
889 }
890 static struct kobj_attribute vma_ra_enabled_attr =
891 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
892 	       vma_ra_enabled_store);
893 
894 static struct attribute *swap_attrs[] = {
895 	&vma_ra_enabled_attr.attr,
896 	NULL,
897 };
898 
899 static const struct attribute_group swap_attr_group = {
900 	.attrs = swap_attrs,
901 };
902 
903 static int __init swap_init_sysfs(void)
904 {
905 	int err;
906 	struct kobject *swap_kobj;
907 
908 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
909 	if (!swap_kobj) {
910 		pr_err("failed to create swap kobject\n");
911 		return -ENOMEM;
912 	}
913 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
914 	if (err) {
915 		pr_err("failed to register swap group\n");
916 		goto delete_obj;
917 	}
918 	return 0;
919 
920 delete_obj:
921 	kobject_put(swap_kobj);
922 	return err;
923 }
924 subsys_initcall(swap_init_sysfs);
925 #endif
926