xref: /openbmc/linux/mm/swap_state.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migrate_folio	= migrate_folio,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 
49 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52 
53 #define SWAP_RA_VAL(addr, win, hits)				\
54 	(((addr) & PAGE_MASK) |					\
55 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56 	 ((hits) & SWAP_RA_HITS_MASK))
57 
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)					\
60 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63 
64 void show_swap_cache_info(void)
65 {
66 	printk("%lu pages in swap cache\n", total_swapcache_pages());
67 	printk("Free swap  = %ldkB\n",
68 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
70 }
71 
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
73 {
74 	struct address_space *address_space = swap_address_space(entry);
75 	pgoff_t idx = swp_offset(entry);
76 	struct page *page;
77 
78 	page = xa_load(&address_space->i_pages, idx);
79 	if (xa_is_value(page))
80 		return page;
81 	return NULL;
82 }
83 
84 /*
85  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86  * but sets SwapCache flag and private instead of mapping and index.
87  */
88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
89 			gfp_t gfp, void **shadowp)
90 {
91 	struct address_space *address_space = swap_address_space(entry);
92 	pgoff_t idx = swp_offset(entry);
93 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
94 	unsigned long i, nr = folio_nr_pages(folio);
95 	void *old;
96 
97 	xas_set_update(&xas, workingset_update_node);
98 
99 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
102 
103 	folio_ref_add(folio, nr);
104 	folio_set_swapcache(folio);
105 
106 	do {
107 		xas_lock_irq(&xas);
108 		xas_create_range(&xas);
109 		if (xas_error(&xas))
110 			goto unlock;
111 		for (i = 0; i < nr; i++) {
112 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113 			old = xas_load(&xas);
114 			if (xa_is_value(old)) {
115 				if (shadowp)
116 					*shadowp = old;
117 			}
118 			set_page_private(folio_page(folio, i), entry.val + i);
119 			xas_store(&xas, folio);
120 			xas_next(&xas);
121 		}
122 		address_space->nrpages += nr;
123 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
125 unlock:
126 		xas_unlock_irq(&xas);
127 	} while (xas_nomem(&xas, gfp));
128 
129 	if (!xas_error(&xas))
130 		return 0;
131 
132 	folio_clear_swapcache(folio);
133 	folio_ref_sub(folio, nr);
134 	return xas_error(&xas);
135 }
136 
137 /*
138  * This must be called only on folios that have
139  * been verified to be in the swap cache.
140  */
141 void __delete_from_swap_cache(struct folio *folio,
142 			swp_entry_t entry, void *shadow)
143 {
144 	struct address_space *address_space = swap_address_space(entry);
145 	int i;
146 	long nr = folio_nr_pages(folio);
147 	pgoff_t idx = swp_offset(entry);
148 	XA_STATE(xas, &address_space->i_pages, idx);
149 
150 	xas_set_update(&xas, workingset_update_node);
151 
152 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
155 
156 	for (i = 0; i < nr; i++) {
157 		void *entry = xas_store(&xas, shadow);
158 		VM_BUG_ON_PAGE(entry != folio, entry);
159 		set_page_private(folio_page(folio, i), 0);
160 		xas_next(&xas);
161 	}
162 	folio_clear_swapcache(folio);
163 	address_space->nrpages -= nr;
164 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
166 }
167 
168 /**
169  * add_to_swap - allocate swap space for a folio
170  * @folio: folio we want to move to swap
171  *
172  * Allocate swap space for the folio and add the folio to the
173  * swap cache.
174  *
175  * Context: Caller needs to hold the folio lock.
176  * Return: Whether the folio was added to the swap cache.
177  */
178 bool add_to_swap(struct folio *folio)
179 {
180 	swp_entry_t entry;
181 	int err;
182 
183 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
184 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
185 
186 	entry = folio_alloc_swap(folio);
187 	if (!entry.val)
188 		return false;
189 
190 	/*
191 	 * XArray node allocations from PF_MEMALLOC contexts could
192 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
193 	 * stops emergency reserves from being allocated.
194 	 *
195 	 * TODO: this could cause a theoretical memory reclaim
196 	 * deadlock in the swap out path.
197 	 */
198 	/*
199 	 * Add it to the swap cache.
200 	 */
201 	err = add_to_swap_cache(folio, entry,
202 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
203 	if (err)
204 		/*
205 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 		 * clear SWAP_HAS_CACHE flag.
207 		 */
208 		goto fail;
209 	/*
210 	 * Normally the folio will be dirtied in unmap because its
211 	 * pte should be dirty. A special case is MADV_FREE page. The
212 	 * page's pte could have dirty bit cleared but the folio's
213 	 * SwapBacked flag is still set because clearing the dirty bit
214 	 * and SwapBacked flag has no lock protected. For such folio,
215 	 * unmap will not set dirty bit for it, so folio reclaim will
216 	 * not write the folio out. This can cause data corruption when
217 	 * the folio is swapped in later. Always setting the dirty flag
218 	 * for the folio solves the problem.
219 	 */
220 	folio_mark_dirty(folio);
221 
222 	return true;
223 
224 fail:
225 	put_swap_folio(folio, entry);
226 	return false;
227 }
228 
229 /*
230  * This must be called only on folios that have
231  * been verified to be in the swap cache and locked.
232  * It will never put the folio into the free list,
233  * the caller has a reference on the folio.
234  */
235 void delete_from_swap_cache(struct folio *folio)
236 {
237 	swp_entry_t entry = folio_swap_entry(folio);
238 	struct address_space *address_space = swap_address_space(entry);
239 
240 	xa_lock_irq(&address_space->i_pages);
241 	__delete_from_swap_cache(folio, entry, NULL);
242 	xa_unlock_irq(&address_space->i_pages);
243 
244 	put_swap_folio(folio, entry);
245 	folio_ref_sub(folio, folio_nr_pages(folio));
246 }
247 
248 void clear_shadow_from_swap_cache(int type, unsigned long begin,
249 				unsigned long end)
250 {
251 	unsigned long curr = begin;
252 	void *old;
253 
254 	for (;;) {
255 		swp_entry_t entry = swp_entry(type, curr);
256 		struct address_space *address_space = swap_address_space(entry);
257 		XA_STATE(xas, &address_space->i_pages, curr);
258 
259 		xas_set_update(&xas, workingset_update_node);
260 
261 		xa_lock_irq(&address_space->i_pages);
262 		xas_for_each(&xas, old, end) {
263 			if (!xa_is_value(old))
264 				continue;
265 			xas_store(&xas, NULL);
266 		}
267 		xa_unlock_irq(&address_space->i_pages);
268 
269 		/* search the next swapcache until we meet end */
270 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
271 		curr++;
272 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
273 		if (curr > end)
274 			break;
275 	}
276 }
277 
278 /*
279  * If we are the only user, then try to free up the swap cache.
280  *
281  * Its ok to check the swapcache flag without the folio lock
282  * here because we are going to recheck again inside
283  * folio_free_swap() _with_ the lock.
284  * 					- Marcelo
285  */
286 void free_swap_cache(struct page *page)
287 {
288 	struct folio *folio = page_folio(page);
289 
290 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
291 	    folio_trylock(folio)) {
292 		folio_free_swap(folio);
293 		folio_unlock(folio);
294 	}
295 }
296 
297 /*
298  * Perform a free_page(), also freeing any swap cache associated with
299  * this page if it is the last user of the page.
300  */
301 void free_page_and_swap_cache(struct page *page)
302 {
303 	free_swap_cache(page);
304 	if (!is_huge_zero_page(page))
305 		put_page(page);
306 }
307 
308 /*
309  * Passed an array of pages, drop them all from swapcache and then release
310  * them.  They are removed from the LRU and freed if this is their last use.
311  */
312 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
313 {
314 	lru_add_drain();
315 	for (int i = 0; i < nr; i++)
316 		free_swap_cache(encoded_page_ptr(pages[i]));
317 	release_pages(pages, nr);
318 }
319 
320 static inline bool swap_use_vma_readahead(void)
321 {
322 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
323 }
324 
325 /*
326  * Lookup a swap entry in the swap cache. A found folio will be returned
327  * unlocked and with its refcount incremented - we rely on the kernel
328  * lock getting page table operations atomic even if we drop the folio
329  * lock before returning.
330  *
331  * Caller must lock the swap device or hold a reference to keep it valid.
332  */
333 struct folio *swap_cache_get_folio(swp_entry_t entry,
334 		struct vm_area_struct *vma, unsigned long addr)
335 {
336 	struct folio *folio;
337 
338 	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
339 	if (folio) {
340 		bool vma_ra = swap_use_vma_readahead();
341 		bool readahead;
342 
343 		/*
344 		 * At the moment, we don't support PG_readahead for anon THP
345 		 * so let's bail out rather than confusing the readahead stat.
346 		 */
347 		if (unlikely(folio_test_large(folio)))
348 			return folio;
349 
350 		readahead = folio_test_clear_readahead(folio);
351 		if (vma && vma_ra) {
352 			unsigned long ra_val;
353 			int win, hits;
354 
355 			ra_val = GET_SWAP_RA_VAL(vma);
356 			win = SWAP_RA_WIN(ra_val);
357 			hits = SWAP_RA_HITS(ra_val);
358 			if (readahead)
359 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
360 			atomic_long_set(&vma->swap_readahead_info,
361 					SWAP_RA_VAL(addr, win, hits));
362 		}
363 
364 		if (readahead) {
365 			count_vm_event(SWAP_RA_HIT);
366 			if (!vma || !vma_ra)
367 				atomic_inc(&swapin_readahead_hits);
368 		}
369 	}
370 
371 	return folio;
372 }
373 
374 /**
375  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
376  * @mapping: The address_space to search.
377  * @index: The page cache index.
378  *
379  * This differs from filemap_get_folio() in that it will also look for the
380  * folio in the swap cache.
381  *
382  * Return: The found folio or %NULL.
383  */
384 struct folio *filemap_get_incore_folio(struct address_space *mapping,
385 		pgoff_t index)
386 {
387 	swp_entry_t swp;
388 	struct swap_info_struct *si;
389 	struct folio *folio = __filemap_get_folio(mapping, index, FGP_ENTRY, 0);
390 
391 	if (!xa_is_value(folio))
392 		goto out;
393 	if (!shmem_mapping(mapping))
394 		return NULL;
395 
396 	swp = radix_to_swp_entry(folio);
397 	/* There might be swapin error entries in shmem mapping. */
398 	if (non_swap_entry(swp))
399 		return NULL;
400 	/* Prevent swapoff from happening to us */
401 	si = get_swap_device(swp);
402 	if (!si)
403 		return NULL;
404 	index = swp_offset(swp);
405 	folio = filemap_get_folio(swap_address_space(swp), index);
406 	put_swap_device(si);
407 out:
408 	return folio;
409 }
410 
411 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
412 			struct vm_area_struct *vma, unsigned long addr,
413 			bool *new_page_allocated)
414 {
415 	struct swap_info_struct *si;
416 	struct folio *folio;
417 	void *shadow = NULL;
418 
419 	*new_page_allocated = false;
420 
421 	for (;;) {
422 		int err;
423 		/*
424 		 * First check the swap cache.  Since this is normally
425 		 * called after swap_cache_get_folio() failed, re-calling
426 		 * that would confuse statistics.
427 		 */
428 		si = get_swap_device(entry);
429 		if (!si)
430 			return NULL;
431 		folio = filemap_get_folio(swap_address_space(entry),
432 						swp_offset(entry));
433 		put_swap_device(si);
434 		if (folio)
435 			return folio_file_page(folio, swp_offset(entry));
436 
437 		/*
438 		 * Just skip read ahead for unused swap slot.
439 		 * During swap_off when swap_slot_cache is disabled,
440 		 * we have to handle the race between putting
441 		 * swap entry in swap cache and marking swap slot
442 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
443 		 * else swap_off will be aborted if we return NULL.
444 		 */
445 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
446 			return NULL;
447 
448 		/*
449 		 * Get a new page to read into from swap.  Allocate it now,
450 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
451 		 * cause any racers to loop around until we add it to cache.
452 		 */
453 		folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
454 		if (!folio)
455 			return NULL;
456 
457 		/*
458 		 * Swap entry may have been freed since our caller observed it.
459 		 */
460 		err = swapcache_prepare(entry);
461 		if (!err)
462 			break;
463 
464 		folio_put(folio);
465 		if (err != -EEXIST)
466 			return NULL;
467 
468 		/*
469 		 * We might race against __delete_from_swap_cache(), and
470 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
471 		 * has not yet been cleared.  Or race against another
472 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
473 		 * in swap_map, but not yet added its page to swap cache.
474 		 */
475 		schedule_timeout_uninterruptible(1);
476 	}
477 
478 	/*
479 	 * The swap entry is ours to swap in. Prepare the new page.
480 	 */
481 
482 	__folio_set_locked(folio);
483 	__folio_set_swapbacked(folio);
484 
485 	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
486 		goto fail_unlock;
487 
488 	/* May fail (-ENOMEM) if XArray node allocation failed. */
489 	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
490 		goto fail_unlock;
491 
492 	mem_cgroup_swapin_uncharge_swap(entry);
493 
494 	if (shadow)
495 		workingset_refault(folio, shadow);
496 
497 	/* Caller will initiate read into locked folio */
498 	folio_add_lru(folio);
499 	*new_page_allocated = true;
500 	return &folio->page;
501 
502 fail_unlock:
503 	put_swap_folio(folio, entry);
504 	folio_unlock(folio);
505 	folio_put(folio);
506 	return NULL;
507 }
508 
509 /*
510  * Locate a page of swap in physical memory, reserving swap cache space
511  * and reading the disk if it is not already cached.
512  * A failure return means that either the page allocation failed or that
513  * the swap entry is no longer in use.
514  */
515 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
516 				   struct vm_area_struct *vma,
517 				   unsigned long addr, bool do_poll,
518 				   struct swap_iocb **plug)
519 {
520 	bool page_was_allocated;
521 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
522 			vma, addr, &page_was_allocated);
523 
524 	if (page_was_allocated)
525 		swap_readpage(retpage, do_poll, plug);
526 
527 	return retpage;
528 }
529 
530 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
531 				      unsigned long offset,
532 				      int hits,
533 				      int max_pages,
534 				      int prev_win)
535 {
536 	unsigned int pages, last_ra;
537 
538 	/*
539 	 * This heuristic has been found to work well on both sequential and
540 	 * random loads, swapping to hard disk or to SSD: please don't ask
541 	 * what the "+ 2" means, it just happens to work well, that's all.
542 	 */
543 	pages = hits + 2;
544 	if (pages == 2) {
545 		/*
546 		 * We can have no readahead hits to judge by: but must not get
547 		 * stuck here forever, so check for an adjacent offset instead
548 		 * (and don't even bother to check whether swap type is same).
549 		 */
550 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
551 			pages = 1;
552 	} else {
553 		unsigned int roundup = 4;
554 		while (roundup < pages)
555 			roundup <<= 1;
556 		pages = roundup;
557 	}
558 
559 	if (pages > max_pages)
560 		pages = max_pages;
561 
562 	/* Don't shrink readahead too fast */
563 	last_ra = prev_win / 2;
564 	if (pages < last_ra)
565 		pages = last_ra;
566 
567 	return pages;
568 }
569 
570 static unsigned long swapin_nr_pages(unsigned long offset)
571 {
572 	static unsigned long prev_offset;
573 	unsigned int hits, pages, max_pages;
574 	static atomic_t last_readahead_pages;
575 
576 	max_pages = 1 << READ_ONCE(page_cluster);
577 	if (max_pages <= 1)
578 		return 1;
579 
580 	hits = atomic_xchg(&swapin_readahead_hits, 0);
581 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
582 				  max_pages,
583 				  atomic_read(&last_readahead_pages));
584 	if (!hits)
585 		WRITE_ONCE(prev_offset, offset);
586 	atomic_set(&last_readahead_pages, pages);
587 
588 	return pages;
589 }
590 
591 /**
592  * swap_cluster_readahead - swap in pages in hope we need them soon
593  * @entry: swap entry of this memory
594  * @gfp_mask: memory allocation flags
595  * @vmf: fault information
596  *
597  * Returns the struct page for entry and addr, after queueing swapin.
598  *
599  * Primitive swap readahead code. We simply read an aligned block of
600  * (1 << page_cluster) entries in the swap area. This method is chosen
601  * because it doesn't cost us any seek time.  We also make sure to queue
602  * the 'original' request together with the readahead ones...
603  *
604  * This has been extended to use the NUMA policies from the mm triggering
605  * the readahead.
606  *
607  * Caller must hold read mmap_lock if vmf->vma is not NULL.
608  */
609 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
610 				struct vm_fault *vmf)
611 {
612 	struct page *page;
613 	unsigned long entry_offset = swp_offset(entry);
614 	unsigned long offset = entry_offset;
615 	unsigned long start_offset, end_offset;
616 	unsigned long mask;
617 	struct swap_info_struct *si = swp_swap_info(entry);
618 	struct blk_plug plug;
619 	struct swap_iocb *splug = NULL;
620 	bool do_poll = true, page_allocated;
621 	struct vm_area_struct *vma = vmf->vma;
622 	unsigned long addr = vmf->address;
623 
624 	mask = swapin_nr_pages(offset) - 1;
625 	if (!mask)
626 		goto skip;
627 
628 	do_poll = false;
629 	/* Read a page_cluster sized and aligned cluster around offset. */
630 	start_offset = offset & ~mask;
631 	end_offset = offset | mask;
632 	if (!start_offset)	/* First page is swap header. */
633 		start_offset++;
634 	if (end_offset >= si->max)
635 		end_offset = si->max - 1;
636 
637 	blk_start_plug(&plug);
638 	for (offset = start_offset; offset <= end_offset ; offset++) {
639 		/* Ok, do the async read-ahead now */
640 		page = __read_swap_cache_async(
641 			swp_entry(swp_type(entry), offset),
642 			gfp_mask, vma, addr, &page_allocated);
643 		if (!page)
644 			continue;
645 		if (page_allocated) {
646 			swap_readpage(page, false, &splug);
647 			if (offset != entry_offset) {
648 				SetPageReadahead(page);
649 				count_vm_event(SWAP_RA);
650 			}
651 		}
652 		put_page(page);
653 	}
654 	blk_finish_plug(&plug);
655 	swap_read_unplug(splug);
656 
657 	lru_add_drain();	/* Push any new pages onto the LRU now */
658 skip:
659 	/* The page was likely read above, so no need for plugging here */
660 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
661 }
662 
663 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
664 {
665 	struct address_space *spaces, *space;
666 	unsigned int i, nr;
667 
668 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
669 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
670 	if (!spaces)
671 		return -ENOMEM;
672 	for (i = 0; i < nr; i++) {
673 		space = spaces + i;
674 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
675 		atomic_set(&space->i_mmap_writable, 0);
676 		space->a_ops = &swap_aops;
677 		/* swap cache doesn't use writeback related tags */
678 		mapping_set_no_writeback_tags(space);
679 	}
680 	nr_swapper_spaces[type] = nr;
681 	swapper_spaces[type] = spaces;
682 
683 	return 0;
684 }
685 
686 void exit_swap_address_space(unsigned int type)
687 {
688 	int i;
689 	struct address_space *spaces = swapper_spaces[type];
690 
691 	for (i = 0; i < nr_swapper_spaces[type]; i++)
692 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
693 	kvfree(spaces);
694 	nr_swapper_spaces[type] = 0;
695 	swapper_spaces[type] = NULL;
696 }
697 
698 static void swap_ra_info(struct vm_fault *vmf,
699 			 struct vma_swap_readahead *ra_info)
700 {
701 	struct vm_area_struct *vma = vmf->vma;
702 	unsigned long ra_val;
703 	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
704 	unsigned long start, end;
705 	pte_t *pte, *orig_pte;
706 	unsigned int max_win, hits, prev_win, win;
707 #ifndef CONFIG_64BIT
708 	pte_t *tpte;
709 #endif
710 
711 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
712 			     SWAP_RA_ORDER_CEILING);
713 	if (max_win == 1) {
714 		ra_info->win = 1;
715 		return;
716 	}
717 
718 	faddr = vmf->address;
719 	fpfn = PFN_DOWN(faddr);
720 	ra_val = GET_SWAP_RA_VAL(vma);
721 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
722 	prev_win = SWAP_RA_WIN(ra_val);
723 	hits = SWAP_RA_HITS(ra_val);
724 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
725 					       max_win, prev_win);
726 	atomic_long_set(&vma->swap_readahead_info,
727 			SWAP_RA_VAL(faddr, win, 0));
728 
729 	if (win == 1)
730 		return;
731 
732 	/* Copy the PTEs because the page table may be unmapped */
733 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
734 	if (fpfn == pfn + 1) {
735 		lpfn = fpfn;
736 		rpfn = fpfn + win;
737 	} else if (pfn == fpfn + 1) {
738 		lpfn = fpfn - win + 1;
739 		rpfn = fpfn + 1;
740 	} else {
741 		unsigned int left = (win - 1) / 2;
742 
743 		lpfn = fpfn - left;
744 		rpfn = fpfn + win - left;
745 	}
746 	start = max3(lpfn, PFN_DOWN(vma->vm_start),
747 		     PFN_DOWN(faddr & PMD_MASK));
748 	end = min3(rpfn, PFN_DOWN(vma->vm_end),
749 		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
750 
751 	ra_info->nr_pte = end - start;
752 	ra_info->offset = fpfn - start;
753 	pte -= ra_info->offset;
754 #ifdef CONFIG_64BIT
755 	ra_info->ptes = pte;
756 #else
757 	tpte = ra_info->ptes;
758 	for (pfn = start; pfn != end; pfn++)
759 		*tpte++ = *pte++;
760 #endif
761 	pte_unmap(orig_pte);
762 }
763 
764 /**
765  * swap_vma_readahead - swap in pages in hope we need them soon
766  * @fentry: swap entry of this memory
767  * @gfp_mask: memory allocation flags
768  * @vmf: fault information
769  *
770  * Returns the struct page for entry and addr, after queueing swapin.
771  *
772  * Primitive swap readahead code. We simply read in a few pages whose
773  * virtual addresses are around the fault address in the same vma.
774  *
775  * Caller must hold read mmap_lock if vmf->vma is not NULL.
776  *
777  */
778 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
779 				       struct vm_fault *vmf)
780 {
781 	struct blk_plug plug;
782 	struct swap_iocb *splug = NULL;
783 	struct vm_area_struct *vma = vmf->vma;
784 	struct page *page;
785 	pte_t *pte, pentry;
786 	swp_entry_t entry;
787 	unsigned int i;
788 	bool page_allocated;
789 	struct vma_swap_readahead ra_info = {
790 		.win = 1,
791 	};
792 
793 	swap_ra_info(vmf, &ra_info);
794 	if (ra_info.win == 1)
795 		goto skip;
796 
797 	blk_start_plug(&plug);
798 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
799 	     i++, pte++) {
800 		pentry = *pte;
801 		if (!is_swap_pte(pentry))
802 			continue;
803 		entry = pte_to_swp_entry(pentry);
804 		if (unlikely(non_swap_entry(entry)))
805 			continue;
806 		page = __read_swap_cache_async(entry, gfp_mask, vma,
807 					       vmf->address, &page_allocated);
808 		if (!page)
809 			continue;
810 		if (page_allocated) {
811 			swap_readpage(page, false, &splug);
812 			if (i != ra_info.offset) {
813 				SetPageReadahead(page);
814 				count_vm_event(SWAP_RA);
815 			}
816 		}
817 		put_page(page);
818 	}
819 	blk_finish_plug(&plug);
820 	swap_read_unplug(splug);
821 	lru_add_drain();
822 skip:
823 	/* The page was likely read above, so no need for plugging here */
824 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
825 				     ra_info.win == 1, NULL);
826 }
827 
828 /**
829  * swapin_readahead - swap in pages in hope we need them soon
830  * @entry: swap entry of this memory
831  * @gfp_mask: memory allocation flags
832  * @vmf: fault information
833  *
834  * Returns the struct page for entry and addr, after queueing swapin.
835  *
836  * It's a main entry function for swap readahead. By the configuration,
837  * it will read ahead blocks by cluster-based(ie, physical disk based)
838  * or vma-based(ie, virtual address based on faulty address) readahead.
839  */
840 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
841 				struct vm_fault *vmf)
842 {
843 	return swap_use_vma_readahead() ?
844 			swap_vma_readahead(entry, gfp_mask, vmf) :
845 			swap_cluster_readahead(entry, gfp_mask, vmf);
846 }
847 
848 #ifdef CONFIG_SYSFS
849 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
850 				     struct kobj_attribute *attr, char *buf)
851 {
852 	return sysfs_emit(buf, "%s\n",
853 			  enable_vma_readahead ? "true" : "false");
854 }
855 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
856 				      struct kobj_attribute *attr,
857 				      const char *buf, size_t count)
858 {
859 	ssize_t ret;
860 
861 	ret = kstrtobool(buf, &enable_vma_readahead);
862 	if (ret)
863 		return ret;
864 
865 	return count;
866 }
867 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
868 
869 static struct attribute *swap_attrs[] = {
870 	&vma_ra_enabled_attr.attr,
871 	NULL,
872 };
873 
874 static const struct attribute_group swap_attr_group = {
875 	.attrs = swap_attrs,
876 };
877 
878 static int __init swap_init_sysfs(void)
879 {
880 	int err;
881 	struct kobject *swap_kobj;
882 
883 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
884 	if (!swap_kobj) {
885 		pr_err("failed to create swap kobject\n");
886 		return -ENOMEM;
887 	}
888 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
889 	if (err) {
890 		pr_err("failed to register swap group\n");
891 		goto delete_obj;
892 	}
893 	return 0;
894 
895 delete_obj:
896 	kobject_put(swap_kobj);
897 	return err;
898 }
899 subsys_initcall(swap_init_sysfs);
900 #endif
901