1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/buffer_head.h> 17 #include <linux/backing-dev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 #include <linux/page_cgroup.h> 21 22 #include <asm/pgtable.h> 23 24 /* 25 * swapper_space is a fiction, retained to simplify the path through 26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow 27 * future use of radix_tree tags in the swap cache. 28 */ 29 static const struct address_space_operations swap_aops = { 30 .writepage = swap_writepage, 31 .sync_page = block_sync_page, 32 .set_page_dirty = __set_page_dirty_nobuffers, 33 .migratepage = migrate_page, 34 }; 35 36 static struct backing_dev_info swap_backing_dev_info = { 37 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 38 .unplug_io_fn = swap_unplug_io_fn, 39 }; 40 41 struct address_space swapper_space = { 42 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 43 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), 44 .a_ops = &swap_aops, 45 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), 46 .backing_dev_info = &swap_backing_dev_info, 47 }; 48 49 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 50 51 static struct { 52 unsigned long add_total; 53 unsigned long del_total; 54 unsigned long find_success; 55 unsigned long find_total; 56 } swap_cache_info; 57 58 void show_swap_cache_info(void) 59 { 60 printk("%lu pages in swap cache\n", total_swapcache_pages); 61 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 62 swap_cache_info.add_total, swap_cache_info.del_total, 63 swap_cache_info.find_success, swap_cache_info.find_total); 64 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); 65 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 66 } 67 68 /* 69 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 70 * but sets SwapCache flag and private instead of mapping and index. 71 */ 72 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 73 { 74 int error; 75 76 VM_BUG_ON(!PageLocked(page)); 77 VM_BUG_ON(PageSwapCache(page)); 78 VM_BUG_ON(!PageSwapBacked(page)); 79 80 error = radix_tree_preload(gfp_mask); 81 if (!error) { 82 page_cache_get(page); 83 SetPageSwapCache(page); 84 set_page_private(page, entry.val); 85 86 spin_lock_irq(&swapper_space.tree_lock); 87 error = radix_tree_insert(&swapper_space.page_tree, 88 entry.val, page); 89 if (likely(!error)) { 90 total_swapcache_pages++; 91 __inc_zone_page_state(page, NR_FILE_PAGES); 92 INC_CACHE_INFO(add_total); 93 } 94 spin_unlock_irq(&swapper_space.tree_lock); 95 radix_tree_preload_end(); 96 97 if (unlikely(error)) { 98 set_page_private(page, 0UL); 99 ClearPageSwapCache(page); 100 page_cache_release(page); 101 } 102 } 103 return error; 104 } 105 106 /* 107 * This must be called only on pages that have 108 * been verified to be in the swap cache. 109 */ 110 void __delete_from_swap_cache(struct page *page) 111 { 112 swp_entry_t ent = {.val = page_private(page)}; 113 114 VM_BUG_ON(!PageLocked(page)); 115 VM_BUG_ON(!PageSwapCache(page)); 116 VM_BUG_ON(PageWriteback(page)); 117 118 radix_tree_delete(&swapper_space.page_tree, page_private(page)); 119 set_page_private(page, 0); 120 ClearPageSwapCache(page); 121 total_swapcache_pages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 INC_CACHE_INFO(del_total); 124 mem_cgroup_uncharge_swapcache(page, ent); 125 } 126 127 /** 128 * add_to_swap - allocate swap space for a page 129 * @page: page we want to move to swap 130 * @gfp_mask: memory allocation flags 131 * 132 * Allocate swap space for the page and add the page to the 133 * swap cache. Caller needs to hold the page lock. 134 */ 135 int add_to_swap(struct page *page) 136 { 137 swp_entry_t entry; 138 int err; 139 140 VM_BUG_ON(!PageLocked(page)); 141 VM_BUG_ON(!PageUptodate(page)); 142 143 for (;;) { 144 entry = get_swap_page(); 145 if (!entry.val) 146 return 0; 147 148 /* 149 * Radix-tree node allocations from PF_MEMALLOC contexts could 150 * completely exhaust the page allocator. __GFP_NOMEMALLOC 151 * stops emergency reserves from being allocated. 152 * 153 * TODO: this could cause a theoretical memory reclaim 154 * deadlock in the swap out path. 155 */ 156 /* 157 * Add it to the swap cache and mark it dirty 158 */ 159 err = add_to_swap_cache(page, entry, 160 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 161 162 switch (err) { 163 case 0: /* Success */ 164 SetPageDirty(page); 165 return 1; 166 case -EEXIST: 167 /* Raced with "speculative" read_swap_cache_async */ 168 swap_free(entry); 169 continue; 170 default: 171 /* -ENOMEM radix-tree allocation failure */ 172 swap_free(entry); 173 return 0; 174 } 175 } 176 } 177 178 /* 179 * This must be called only on pages that have 180 * been verified to be in the swap cache and locked. 181 * It will never put the page into the free list, 182 * the caller has a reference on the page. 183 */ 184 void delete_from_swap_cache(struct page *page) 185 { 186 swp_entry_t entry; 187 188 entry.val = page_private(page); 189 190 spin_lock_irq(&swapper_space.tree_lock); 191 __delete_from_swap_cache(page); 192 spin_unlock_irq(&swapper_space.tree_lock); 193 194 swap_free(entry); 195 page_cache_release(page); 196 } 197 198 /* 199 * If we are the only user, then try to free up the swap cache. 200 * 201 * Its ok to check for PageSwapCache without the page lock 202 * here because we are going to recheck again inside 203 * try_to_free_swap() _with_ the lock. 204 * - Marcelo 205 */ 206 static inline void free_swap_cache(struct page *page) 207 { 208 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 209 try_to_free_swap(page); 210 unlock_page(page); 211 } 212 } 213 214 /* 215 * Perform a free_page(), also freeing any swap cache associated with 216 * this page if it is the last user of the page. 217 */ 218 void free_page_and_swap_cache(struct page *page) 219 { 220 free_swap_cache(page); 221 page_cache_release(page); 222 } 223 224 /* 225 * Passed an array of pages, drop them all from swapcache and then release 226 * them. They are removed from the LRU and freed if this is their last use. 227 */ 228 void free_pages_and_swap_cache(struct page **pages, int nr) 229 { 230 struct page **pagep = pages; 231 232 lru_add_drain(); 233 while (nr) { 234 int todo = min(nr, PAGEVEC_SIZE); 235 int i; 236 237 for (i = 0; i < todo; i++) 238 free_swap_cache(pagep[i]); 239 release_pages(pagep, todo, 0); 240 pagep += todo; 241 nr -= todo; 242 } 243 } 244 245 /* 246 * Lookup a swap entry in the swap cache. A found page will be returned 247 * unlocked and with its refcount incremented - we rely on the kernel 248 * lock getting page table operations atomic even if we drop the page 249 * lock before returning. 250 */ 251 struct page * lookup_swap_cache(swp_entry_t entry) 252 { 253 struct page *page; 254 255 page = find_get_page(&swapper_space, entry.val); 256 257 if (page) 258 INC_CACHE_INFO(find_success); 259 260 INC_CACHE_INFO(find_total); 261 return page; 262 } 263 264 /* 265 * Locate a page of swap in physical memory, reserving swap cache space 266 * and reading the disk if it is not already cached. 267 * A failure return means that either the page allocation failed or that 268 * the swap entry is no longer in use. 269 */ 270 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 271 struct vm_area_struct *vma, unsigned long addr) 272 { 273 struct page *found_page, *new_page = NULL; 274 int err; 275 276 do { 277 /* 278 * First check the swap cache. Since this is normally 279 * called after lookup_swap_cache() failed, re-calling 280 * that would confuse statistics. 281 */ 282 found_page = find_get_page(&swapper_space, entry.val); 283 if (found_page) 284 break; 285 286 /* 287 * Get a new page to read into from swap. 288 */ 289 if (!new_page) { 290 new_page = alloc_page_vma(gfp_mask, vma, addr); 291 if (!new_page) 292 break; /* Out of memory */ 293 } 294 295 /* 296 * Swap entry may have been freed since our caller observed it. 297 */ 298 if (!swap_duplicate(entry)) 299 break; 300 301 /* 302 * Associate the page with swap entry in the swap cache. 303 * May fail (-EEXIST) if there is already a page associated 304 * with this entry in the swap cache: added by a racing 305 * read_swap_cache_async, or add_to_swap or shmem_writepage 306 * re-using the just freed swap entry for an existing page. 307 * May fail (-ENOMEM) if radix-tree node allocation failed. 308 */ 309 __set_page_locked(new_page); 310 SetPageSwapBacked(new_page); 311 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); 312 if (likely(!err)) { 313 /* 314 * Initiate read into locked page and return. 315 */ 316 lru_cache_add_anon(new_page); 317 swap_readpage(NULL, new_page); 318 return new_page; 319 } 320 ClearPageSwapBacked(new_page); 321 __clear_page_locked(new_page); 322 swap_free(entry); 323 } while (err != -ENOMEM); 324 325 if (new_page) 326 page_cache_release(new_page); 327 return found_page; 328 } 329 330 /** 331 * swapin_readahead - swap in pages in hope we need them soon 332 * @entry: swap entry of this memory 333 * @gfp_mask: memory allocation flags 334 * @vma: user vma this address belongs to 335 * @addr: target address for mempolicy 336 * 337 * Returns the struct page for entry and addr, after queueing swapin. 338 * 339 * Primitive swap readahead code. We simply read an aligned block of 340 * (1 << page_cluster) entries in the swap area. This method is chosen 341 * because it doesn't cost us any seek time. We also make sure to queue 342 * the 'original' request together with the readahead ones... 343 * 344 * This has been extended to use the NUMA policies from the mm triggering 345 * the readahead. 346 * 347 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 348 */ 349 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 350 struct vm_area_struct *vma, unsigned long addr) 351 { 352 int nr_pages; 353 struct page *page; 354 unsigned long offset; 355 unsigned long end_offset; 356 357 /* 358 * Get starting offset for readaround, and number of pages to read. 359 * Adjust starting address by readbehind (for NUMA interleave case)? 360 * No, it's very unlikely that swap layout would follow vma layout, 361 * more likely that neighbouring swap pages came from the same node: 362 * so use the same "addr" to choose the same node for each swap read. 363 */ 364 nr_pages = valid_swaphandles(entry, &offset); 365 for (end_offset = offset + nr_pages; offset < end_offset; offset++) { 366 /* Ok, do the async read-ahead now */ 367 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 368 gfp_mask, vma, addr); 369 if (!page) 370 break; 371 page_cache_release(page); 372 } 373 lru_add_drain(); /* Push any new pages onto the LRU now */ 374 return read_swap_cache_async(entry, gfp_mask, vma, addr); 375 } 376