1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/buffer_head.h> 17 #include <linux/backing-dev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 #include <linux/page_cgroup.h> 21 22 #include <asm/pgtable.h> 23 24 /* 25 * swapper_space is a fiction, retained to simplify the path through 26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow 27 * future use of radix_tree tags in the swap cache. 28 */ 29 static const struct address_space_operations swap_aops = { 30 .writepage = swap_writepage, 31 .sync_page = block_sync_page, 32 .set_page_dirty = __set_page_dirty_nobuffers, 33 .migratepage = migrate_page, 34 }; 35 36 static struct backing_dev_info swap_backing_dev_info = { 37 .name = "swap", 38 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 39 .unplug_io_fn = swap_unplug_io_fn, 40 }; 41 42 struct address_space swapper_space = { 43 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 44 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), 45 .a_ops = &swap_aops, 46 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), 47 .backing_dev_info = &swap_backing_dev_info, 48 }; 49 50 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 51 52 static struct { 53 unsigned long add_total; 54 unsigned long del_total; 55 unsigned long find_success; 56 unsigned long find_total; 57 } swap_cache_info; 58 59 void show_swap_cache_info(void) 60 { 61 printk("%lu pages in swap cache\n", total_swapcache_pages); 62 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 63 swap_cache_info.add_total, swap_cache_info.del_total, 64 swap_cache_info.find_success, swap_cache_info.find_total); 65 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); 66 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 67 } 68 69 /* 70 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 71 * but sets SwapCache flag and private instead of mapping and index. 72 */ 73 static int __add_to_swap_cache(struct page *page, swp_entry_t entry) 74 { 75 int error; 76 77 VM_BUG_ON(!PageLocked(page)); 78 VM_BUG_ON(PageSwapCache(page)); 79 VM_BUG_ON(!PageSwapBacked(page)); 80 81 page_cache_get(page); 82 SetPageSwapCache(page); 83 set_page_private(page, entry.val); 84 85 spin_lock_irq(&swapper_space.tree_lock); 86 error = radix_tree_insert(&swapper_space.page_tree, entry.val, page); 87 if (likely(!error)) { 88 total_swapcache_pages++; 89 __inc_zone_page_state(page, NR_FILE_PAGES); 90 INC_CACHE_INFO(add_total); 91 } 92 spin_unlock_irq(&swapper_space.tree_lock); 93 94 if (unlikely(error)) { 95 /* 96 * Only the context which have set SWAP_HAS_CACHE flag 97 * would call add_to_swap_cache(). 98 * So add_to_swap_cache() doesn't returns -EEXIST. 99 */ 100 VM_BUG_ON(error == -EEXIST); 101 set_page_private(page, 0UL); 102 ClearPageSwapCache(page); 103 page_cache_release(page); 104 } 105 106 return error; 107 } 108 109 110 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 111 { 112 int error; 113 114 error = radix_tree_preload(gfp_mask); 115 if (!error) { 116 error = __add_to_swap_cache(page, entry); 117 radix_tree_preload_end(); 118 } 119 return error; 120 } 121 122 /* 123 * This must be called only on pages that have 124 * been verified to be in the swap cache. 125 */ 126 void __delete_from_swap_cache(struct page *page) 127 { 128 VM_BUG_ON(!PageLocked(page)); 129 VM_BUG_ON(!PageSwapCache(page)); 130 VM_BUG_ON(PageWriteback(page)); 131 132 radix_tree_delete(&swapper_space.page_tree, page_private(page)); 133 set_page_private(page, 0); 134 ClearPageSwapCache(page); 135 total_swapcache_pages--; 136 __dec_zone_page_state(page, NR_FILE_PAGES); 137 INC_CACHE_INFO(del_total); 138 } 139 140 /** 141 * add_to_swap - allocate swap space for a page 142 * @page: page we want to move to swap 143 * 144 * Allocate swap space for the page and add the page to the 145 * swap cache. Caller needs to hold the page lock. 146 */ 147 int add_to_swap(struct page *page) 148 { 149 swp_entry_t entry; 150 int err; 151 152 VM_BUG_ON(!PageLocked(page)); 153 VM_BUG_ON(!PageUptodate(page)); 154 155 entry = get_swap_page(); 156 if (!entry.val) 157 return 0; 158 159 /* 160 * Radix-tree node allocations from PF_MEMALLOC contexts could 161 * completely exhaust the page allocator. __GFP_NOMEMALLOC 162 * stops emergency reserves from being allocated. 163 * 164 * TODO: this could cause a theoretical memory reclaim 165 * deadlock in the swap out path. 166 */ 167 /* 168 * Add it to the swap cache and mark it dirty 169 */ 170 err = add_to_swap_cache(page, entry, 171 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 172 173 if (!err) { /* Success */ 174 SetPageDirty(page); 175 return 1; 176 } else { /* -ENOMEM radix-tree allocation failure */ 177 /* 178 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 179 * clear SWAP_HAS_CACHE flag. 180 */ 181 swapcache_free(entry, NULL); 182 return 0; 183 } 184 } 185 186 /* 187 * This must be called only on pages that have 188 * been verified to be in the swap cache and locked. 189 * It will never put the page into the free list, 190 * the caller has a reference on the page. 191 */ 192 void delete_from_swap_cache(struct page *page) 193 { 194 swp_entry_t entry; 195 196 entry.val = page_private(page); 197 198 spin_lock_irq(&swapper_space.tree_lock); 199 __delete_from_swap_cache(page); 200 spin_unlock_irq(&swapper_space.tree_lock); 201 202 swapcache_free(entry, page); 203 page_cache_release(page); 204 } 205 206 /* 207 * If we are the only user, then try to free up the swap cache. 208 * 209 * Its ok to check for PageSwapCache without the page lock 210 * here because we are going to recheck again inside 211 * try_to_free_swap() _with_ the lock. 212 * - Marcelo 213 */ 214 static inline void free_swap_cache(struct page *page) 215 { 216 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 217 try_to_free_swap(page); 218 unlock_page(page); 219 } 220 } 221 222 /* 223 * Perform a free_page(), also freeing any swap cache associated with 224 * this page if it is the last user of the page. 225 */ 226 void free_page_and_swap_cache(struct page *page) 227 { 228 free_swap_cache(page); 229 page_cache_release(page); 230 } 231 232 /* 233 * Passed an array of pages, drop them all from swapcache and then release 234 * them. They are removed from the LRU and freed if this is their last use. 235 */ 236 void free_pages_and_swap_cache(struct page **pages, int nr) 237 { 238 struct page **pagep = pages; 239 240 lru_add_drain(); 241 while (nr) { 242 int todo = min(nr, PAGEVEC_SIZE); 243 int i; 244 245 for (i = 0; i < todo; i++) 246 free_swap_cache(pagep[i]); 247 release_pages(pagep, todo, 0); 248 pagep += todo; 249 nr -= todo; 250 } 251 } 252 253 /* 254 * Lookup a swap entry in the swap cache. A found page will be returned 255 * unlocked and with its refcount incremented - we rely on the kernel 256 * lock getting page table operations atomic even if we drop the page 257 * lock before returning. 258 */ 259 struct page * lookup_swap_cache(swp_entry_t entry) 260 { 261 struct page *page; 262 263 page = find_get_page(&swapper_space, entry.val); 264 265 if (page) 266 INC_CACHE_INFO(find_success); 267 268 INC_CACHE_INFO(find_total); 269 return page; 270 } 271 272 /* 273 * Locate a page of swap in physical memory, reserving swap cache space 274 * and reading the disk if it is not already cached. 275 * A failure return means that either the page allocation failed or that 276 * the swap entry is no longer in use. 277 */ 278 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 279 struct vm_area_struct *vma, unsigned long addr) 280 { 281 struct page *found_page, *new_page = NULL; 282 int err; 283 284 do { 285 /* 286 * First check the swap cache. Since this is normally 287 * called after lookup_swap_cache() failed, re-calling 288 * that would confuse statistics. 289 */ 290 found_page = find_get_page(&swapper_space, entry.val); 291 if (found_page) 292 break; 293 294 /* 295 * Get a new page to read into from swap. 296 */ 297 if (!new_page) { 298 new_page = alloc_page_vma(gfp_mask, vma, addr); 299 if (!new_page) 300 break; /* Out of memory */ 301 } 302 303 /* 304 * call radix_tree_preload() while we can wait. 305 */ 306 err = radix_tree_preload(gfp_mask & GFP_KERNEL); 307 if (err) 308 break; 309 310 /* 311 * Swap entry may have been freed since our caller observed it. 312 */ 313 err = swapcache_prepare(entry); 314 if (err == -EEXIST) { /* seems racy */ 315 radix_tree_preload_end(); 316 continue; 317 } 318 if (err) { /* swp entry is obsolete ? */ 319 radix_tree_preload_end(); 320 break; 321 } 322 323 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 324 __set_page_locked(new_page); 325 SetPageSwapBacked(new_page); 326 err = __add_to_swap_cache(new_page, entry); 327 if (likely(!err)) { 328 radix_tree_preload_end(); 329 /* 330 * Initiate read into locked page and return. 331 */ 332 lru_cache_add_anon(new_page); 333 swap_readpage(new_page); 334 return new_page; 335 } 336 radix_tree_preload_end(); 337 ClearPageSwapBacked(new_page); 338 __clear_page_locked(new_page); 339 /* 340 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 341 * clear SWAP_HAS_CACHE flag. 342 */ 343 swapcache_free(entry, NULL); 344 } while (err != -ENOMEM); 345 346 if (new_page) 347 page_cache_release(new_page); 348 return found_page; 349 } 350 351 /** 352 * swapin_readahead - swap in pages in hope we need them soon 353 * @entry: swap entry of this memory 354 * @gfp_mask: memory allocation flags 355 * @vma: user vma this address belongs to 356 * @addr: target address for mempolicy 357 * 358 * Returns the struct page for entry and addr, after queueing swapin. 359 * 360 * Primitive swap readahead code. We simply read an aligned block of 361 * (1 << page_cluster) entries in the swap area. This method is chosen 362 * because it doesn't cost us any seek time. We also make sure to queue 363 * the 'original' request together with the readahead ones... 364 * 365 * This has been extended to use the NUMA policies from the mm triggering 366 * the readahead. 367 * 368 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 369 */ 370 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 371 struct vm_area_struct *vma, unsigned long addr) 372 { 373 int nr_pages; 374 struct page *page; 375 unsigned long offset; 376 unsigned long end_offset; 377 378 /* 379 * Get starting offset for readaround, and number of pages to read. 380 * Adjust starting address by readbehind (for NUMA interleave case)? 381 * No, it's very unlikely that swap layout would follow vma layout, 382 * more likely that neighbouring swap pages came from the same node: 383 * so use the same "addr" to choose the same node for each swap read. 384 */ 385 nr_pages = valid_swaphandles(entry, &offset); 386 for (end_offset = offset + nr_pages; offset < end_offset; offset++) { 387 /* Ok, do the async read-ahead now */ 388 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 389 gfp_mask, vma, addr); 390 if (!page) 391 break; 392 page_cache_release(page); 393 } 394 lru_add_drain(); /* Push any new pages onto the LRU now */ 395 return read_swap_cache_async(entry, gfp_mask, vma, addr); 396 } 397