xref: /openbmc/linux/mm/swap_state.c (revision a09d2831)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27  * future use of radix_tree tags in the swap cache.
28  */
29 static const struct address_space_operations swap_aops = {
30 	.writepage	= swap_writepage,
31 	.sync_page	= block_sync_page,
32 	.set_page_dirty	= __set_page_dirty_nobuffers,
33 	.migratepage	= migrate_page,
34 };
35 
36 static struct backing_dev_info swap_backing_dev_info = {
37 	.name		= "swap",
38 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
39 	.unplug_io_fn	= swap_unplug_io_fn,
40 };
41 
42 struct address_space swapper_space = {
43 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
44 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
45 	.a_ops		= &swap_aops,
46 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
47 	.backing_dev_info = &swap_backing_dev_info,
48 };
49 
50 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
51 
52 static struct {
53 	unsigned long add_total;
54 	unsigned long del_total;
55 	unsigned long find_success;
56 	unsigned long find_total;
57 } swap_cache_info;
58 
59 void show_swap_cache_info(void)
60 {
61 	printk("%lu pages in swap cache\n", total_swapcache_pages);
62 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
63 		swap_cache_info.add_total, swap_cache_info.del_total,
64 		swap_cache_info.find_success, swap_cache_info.find_total);
65 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
66 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
67 }
68 
69 /*
70  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
71  * but sets SwapCache flag and private instead of mapping and index.
72  */
73 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
74 {
75 	int error;
76 
77 	VM_BUG_ON(!PageLocked(page));
78 	VM_BUG_ON(PageSwapCache(page));
79 	VM_BUG_ON(!PageSwapBacked(page));
80 
81 	page_cache_get(page);
82 	SetPageSwapCache(page);
83 	set_page_private(page, entry.val);
84 
85 	spin_lock_irq(&swapper_space.tree_lock);
86 	error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
87 	if (likely(!error)) {
88 		total_swapcache_pages++;
89 		__inc_zone_page_state(page, NR_FILE_PAGES);
90 		INC_CACHE_INFO(add_total);
91 	}
92 	spin_unlock_irq(&swapper_space.tree_lock);
93 
94 	if (unlikely(error)) {
95 		/*
96 		 * Only the context which have set SWAP_HAS_CACHE flag
97 		 * would call add_to_swap_cache().
98 		 * So add_to_swap_cache() doesn't returns -EEXIST.
99 		 */
100 		VM_BUG_ON(error == -EEXIST);
101 		set_page_private(page, 0UL);
102 		ClearPageSwapCache(page);
103 		page_cache_release(page);
104 	}
105 
106 	return error;
107 }
108 
109 
110 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
111 {
112 	int error;
113 
114 	error = radix_tree_preload(gfp_mask);
115 	if (!error) {
116 		error = __add_to_swap_cache(page, entry);
117 		radix_tree_preload_end();
118 	}
119 	return error;
120 }
121 
122 /*
123  * This must be called only on pages that have
124  * been verified to be in the swap cache.
125  */
126 void __delete_from_swap_cache(struct page *page)
127 {
128 	VM_BUG_ON(!PageLocked(page));
129 	VM_BUG_ON(!PageSwapCache(page));
130 	VM_BUG_ON(PageWriteback(page));
131 
132 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
133 	set_page_private(page, 0);
134 	ClearPageSwapCache(page);
135 	total_swapcache_pages--;
136 	__dec_zone_page_state(page, NR_FILE_PAGES);
137 	INC_CACHE_INFO(del_total);
138 }
139 
140 /**
141  * add_to_swap - allocate swap space for a page
142  * @page: page we want to move to swap
143  *
144  * Allocate swap space for the page and add the page to the
145  * swap cache.  Caller needs to hold the page lock.
146  */
147 int add_to_swap(struct page *page)
148 {
149 	swp_entry_t entry;
150 	int err;
151 
152 	VM_BUG_ON(!PageLocked(page));
153 	VM_BUG_ON(!PageUptodate(page));
154 
155 	entry = get_swap_page();
156 	if (!entry.val)
157 		return 0;
158 
159 	/*
160 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
161 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
162 	 * stops emergency reserves from being allocated.
163 	 *
164 	 * TODO: this could cause a theoretical memory reclaim
165 	 * deadlock in the swap out path.
166 	 */
167 	/*
168 	 * Add it to the swap cache and mark it dirty
169 	 */
170 	err = add_to_swap_cache(page, entry,
171 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
172 
173 	if (!err) {	/* Success */
174 		SetPageDirty(page);
175 		return 1;
176 	} else {	/* -ENOMEM radix-tree allocation failure */
177 		/*
178 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
179 		 * clear SWAP_HAS_CACHE flag.
180 		 */
181 		swapcache_free(entry, NULL);
182 		return 0;
183 	}
184 }
185 
186 /*
187  * This must be called only on pages that have
188  * been verified to be in the swap cache and locked.
189  * It will never put the page into the free list,
190  * the caller has a reference on the page.
191  */
192 void delete_from_swap_cache(struct page *page)
193 {
194 	swp_entry_t entry;
195 
196 	entry.val = page_private(page);
197 
198 	spin_lock_irq(&swapper_space.tree_lock);
199 	__delete_from_swap_cache(page);
200 	spin_unlock_irq(&swapper_space.tree_lock);
201 
202 	swapcache_free(entry, page);
203 	page_cache_release(page);
204 }
205 
206 /*
207  * If we are the only user, then try to free up the swap cache.
208  *
209  * Its ok to check for PageSwapCache without the page lock
210  * here because we are going to recheck again inside
211  * try_to_free_swap() _with_ the lock.
212  * 					- Marcelo
213  */
214 static inline void free_swap_cache(struct page *page)
215 {
216 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
217 		try_to_free_swap(page);
218 		unlock_page(page);
219 	}
220 }
221 
222 /*
223  * Perform a free_page(), also freeing any swap cache associated with
224  * this page if it is the last user of the page.
225  */
226 void free_page_and_swap_cache(struct page *page)
227 {
228 	free_swap_cache(page);
229 	page_cache_release(page);
230 }
231 
232 /*
233  * Passed an array of pages, drop them all from swapcache and then release
234  * them.  They are removed from the LRU and freed if this is their last use.
235  */
236 void free_pages_and_swap_cache(struct page **pages, int nr)
237 {
238 	struct page **pagep = pages;
239 
240 	lru_add_drain();
241 	while (nr) {
242 		int todo = min(nr, PAGEVEC_SIZE);
243 		int i;
244 
245 		for (i = 0; i < todo; i++)
246 			free_swap_cache(pagep[i]);
247 		release_pages(pagep, todo, 0);
248 		pagep += todo;
249 		nr -= todo;
250 	}
251 }
252 
253 /*
254  * Lookup a swap entry in the swap cache. A found page will be returned
255  * unlocked and with its refcount incremented - we rely on the kernel
256  * lock getting page table operations atomic even if we drop the page
257  * lock before returning.
258  */
259 struct page * lookup_swap_cache(swp_entry_t entry)
260 {
261 	struct page *page;
262 
263 	page = find_get_page(&swapper_space, entry.val);
264 
265 	if (page)
266 		INC_CACHE_INFO(find_success);
267 
268 	INC_CACHE_INFO(find_total);
269 	return page;
270 }
271 
272 /*
273  * Locate a page of swap in physical memory, reserving swap cache space
274  * and reading the disk if it is not already cached.
275  * A failure return means that either the page allocation failed or that
276  * the swap entry is no longer in use.
277  */
278 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
279 			struct vm_area_struct *vma, unsigned long addr)
280 {
281 	struct page *found_page, *new_page = NULL;
282 	int err;
283 
284 	do {
285 		/*
286 		 * First check the swap cache.  Since this is normally
287 		 * called after lookup_swap_cache() failed, re-calling
288 		 * that would confuse statistics.
289 		 */
290 		found_page = find_get_page(&swapper_space, entry.val);
291 		if (found_page)
292 			break;
293 
294 		/*
295 		 * Get a new page to read into from swap.
296 		 */
297 		if (!new_page) {
298 			new_page = alloc_page_vma(gfp_mask, vma, addr);
299 			if (!new_page)
300 				break;		/* Out of memory */
301 		}
302 
303 		/*
304 		 * call radix_tree_preload() while we can wait.
305 		 */
306 		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
307 		if (err)
308 			break;
309 
310 		/*
311 		 * Swap entry may have been freed since our caller observed it.
312 		 */
313 		err = swapcache_prepare(entry);
314 		if (err == -EEXIST) {	/* seems racy */
315 			radix_tree_preload_end();
316 			continue;
317 		}
318 		if (err) {		/* swp entry is obsolete ? */
319 			radix_tree_preload_end();
320 			break;
321 		}
322 
323 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
324 		__set_page_locked(new_page);
325 		SetPageSwapBacked(new_page);
326 		err = __add_to_swap_cache(new_page, entry);
327 		if (likely(!err)) {
328 			radix_tree_preload_end();
329 			/*
330 			 * Initiate read into locked page and return.
331 			 */
332 			lru_cache_add_anon(new_page);
333 			swap_readpage(new_page);
334 			return new_page;
335 		}
336 		radix_tree_preload_end();
337 		ClearPageSwapBacked(new_page);
338 		__clear_page_locked(new_page);
339 		/*
340 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
341 		 * clear SWAP_HAS_CACHE flag.
342 		 */
343 		swapcache_free(entry, NULL);
344 	} while (err != -ENOMEM);
345 
346 	if (new_page)
347 		page_cache_release(new_page);
348 	return found_page;
349 }
350 
351 /**
352  * swapin_readahead - swap in pages in hope we need them soon
353  * @entry: swap entry of this memory
354  * @gfp_mask: memory allocation flags
355  * @vma: user vma this address belongs to
356  * @addr: target address for mempolicy
357  *
358  * Returns the struct page for entry and addr, after queueing swapin.
359  *
360  * Primitive swap readahead code. We simply read an aligned block of
361  * (1 << page_cluster) entries in the swap area. This method is chosen
362  * because it doesn't cost us any seek time.  We also make sure to queue
363  * the 'original' request together with the readahead ones...
364  *
365  * This has been extended to use the NUMA policies from the mm triggering
366  * the readahead.
367  *
368  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
369  */
370 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
371 			struct vm_area_struct *vma, unsigned long addr)
372 {
373 	int nr_pages;
374 	struct page *page;
375 	unsigned long offset;
376 	unsigned long end_offset;
377 
378 	/*
379 	 * Get starting offset for readaround, and number of pages to read.
380 	 * Adjust starting address by readbehind (for NUMA interleave case)?
381 	 * No, it's very unlikely that swap layout would follow vma layout,
382 	 * more likely that neighbouring swap pages came from the same node:
383 	 * so use the same "addr" to choose the same node for each swap read.
384 	 */
385 	nr_pages = valid_swaphandles(entry, &offset);
386 	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
387 		/* Ok, do the async read-ahead now */
388 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
389 						gfp_mask, vma, addr);
390 		if (!page)
391 			break;
392 		page_cache_release(page);
393 	}
394 	lru_add_drain();	/* Push any new pages onto the LRU now */
395 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
396 }
397