1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/mm.h> 10 #include <linux/gfp.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev.h> 17 #include <linux/blkdev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 #include <linux/page_cgroup.h> 21 22 #include <asm/pgtable.h> 23 24 /* 25 * swapper_space is a fiction, retained to simplify the path through 26 * vmscan's shrink_page_list. 27 */ 28 static const struct address_space_operations swap_aops = { 29 .writepage = swap_writepage, 30 .set_page_dirty = swap_set_page_dirty, 31 .migratepage = migrate_page, 32 }; 33 34 static struct backing_dev_info swap_backing_dev_info = { 35 .name = "swap", 36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 37 }; 38 39 struct address_space swapper_space = { 40 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 41 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), 42 .a_ops = &swap_aops, 43 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), 44 .backing_dev_info = &swap_backing_dev_info, 45 }; 46 47 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 48 49 static struct { 50 unsigned long add_total; 51 unsigned long del_total; 52 unsigned long find_success; 53 unsigned long find_total; 54 } swap_cache_info; 55 56 void show_swap_cache_info(void) 57 { 58 printk("%lu pages in swap cache\n", total_swapcache_pages); 59 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 60 swap_cache_info.add_total, swap_cache_info.del_total, 61 swap_cache_info.find_success, swap_cache_info.find_total); 62 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); 63 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 64 } 65 66 /* 67 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 68 * but sets SwapCache flag and private instead of mapping and index. 69 */ 70 static int __add_to_swap_cache(struct page *page, swp_entry_t entry) 71 { 72 int error; 73 74 VM_BUG_ON(!PageLocked(page)); 75 VM_BUG_ON(PageSwapCache(page)); 76 VM_BUG_ON(!PageSwapBacked(page)); 77 78 page_cache_get(page); 79 SetPageSwapCache(page); 80 set_page_private(page, entry.val); 81 82 spin_lock_irq(&swapper_space.tree_lock); 83 error = radix_tree_insert(&swapper_space.page_tree, entry.val, page); 84 if (likely(!error)) { 85 total_swapcache_pages++; 86 __inc_zone_page_state(page, NR_FILE_PAGES); 87 INC_CACHE_INFO(add_total); 88 } 89 spin_unlock_irq(&swapper_space.tree_lock); 90 91 if (unlikely(error)) { 92 /* 93 * Only the context which have set SWAP_HAS_CACHE flag 94 * would call add_to_swap_cache(). 95 * So add_to_swap_cache() doesn't returns -EEXIST. 96 */ 97 VM_BUG_ON(error == -EEXIST); 98 set_page_private(page, 0UL); 99 ClearPageSwapCache(page); 100 page_cache_release(page); 101 } 102 103 return error; 104 } 105 106 107 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 108 { 109 int error; 110 111 error = radix_tree_preload(gfp_mask); 112 if (!error) { 113 error = __add_to_swap_cache(page, entry); 114 radix_tree_preload_end(); 115 } 116 return error; 117 } 118 119 /* 120 * This must be called only on pages that have 121 * been verified to be in the swap cache. 122 */ 123 void __delete_from_swap_cache(struct page *page) 124 { 125 VM_BUG_ON(!PageLocked(page)); 126 VM_BUG_ON(!PageSwapCache(page)); 127 VM_BUG_ON(PageWriteback(page)); 128 129 radix_tree_delete(&swapper_space.page_tree, page_private(page)); 130 set_page_private(page, 0); 131 ClearPageSwapCache(page); 132 total_swapcache_pages--; 133 __dec_zone_page_state(page, NR_FILE_PAGES); 134 INC_CACHE_INFO(del_total); 135 } 136 137 /** 138 * add_to_swap - allocate swap space for a page 139 * @page: page we want to move to swap 140 * 141 * Allocate swap space for the page and add the page to the 142 * swap cache. Caller needs to hold the page lock. 143 */ 144 int add_to_swap(struct page *page) 145 { 146 swp_entry_t entry; 147 int err; 148 149 VM_BUG_ON(!PageLocked(page)); 150 VM_BUG_ON(!PageUptodate(page)); 151 152 entry = get_swap_page(); 153 if (!entry.val) 154 return 0; 155 156 if (unlikely(PageTransHuge(page))) 157 if (unlikely(split_huge_page(page))) { 158 swapcache_free(entry, NULL); 159 return 0; 160 } 161 162 /* 163 * Radix-tree node allocations from PF_MEMALLOC contexts could 164 * completely exhaust the page allocator. __GFP_NOMEMALLOC 165 * stops emergency reserves from being allocated. 166 * 167 * TODO: this could cause a theoretical memory reclaim 168 * deadlock in the swap out path. 169 */ 170 /* 171 * Add it to the swap cache and mark it dirty 172 */ 173 err = add_to_swap_cache(page, entry, 174 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 175 176 if (!err) { /* Success */ 177 SetPageDirty(page); 178 return 1; 179 } else { /* -ENOMEM radix-tree allocation failure */ 180 /* 181 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 182 * clear SWAP_HAS_CACHE flag. 183 */ 184 swapcache_free(entry, NULL); 185 return 0; 186 } 187 } 188 189 /* 190 * This must be called only on pages that have 191 * been verified to be in the swap cache and locked. 192 * It will never put the page into the free list, 193 * the caller has a reference on the page. 194 */ 195 void delete_from_swap_cache(struct page *page) 196 { 197 swp_entry_t entry; 198 199 entry.val = page_private(page); 200 201 spin_lock_irq(&swapper_space.tree_lock); 202 __delete_from_swap_cache(page); 203 spin_unlock_irq(&swapper_space.tree_lock); 204 205 swapcache_free(entry, page); 206 page_cache_release(page); 207 } 208 209 /* 210 * If we are the only user, then try to free up the swap cache. 211 * 212 * Its ok to check for PageSwapCache without the page lock 213 * here because we are going to recheck again inside 214 * try_to_free_swap() _with_ the lock. 215 * - Marcelo 216 */ 217 static inline void free_swap_cache(struct page *page) 218 { 219 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 220 try_to_free_swap(page); 221 unlock_page(page); 222 } 223 } 224 225 /* 226 * Perform a free_page(), also freeing any swap cache associated with 227 * this page if it is the last user of the page. 228 */ 229 void free_page_and_swap_cache(struct page *page) 230 { 231 free_swap_cache(page); 232 page_cache_release(page); 233 } 234 235 /* 236 * Passed an array of pages, drop them all from swapcache and then release 237 * them. They are removed from the LRU and freed if this is their last use. 238 */ 239 void free_pages_and_swap_cache(struct page **pages, int nr) 240 { 241 struct page **pagep = pages; 242 243 lru_add_drain(); 244 while (nr) { 245 int todo = min(nr, PAGEVEC_SIZE); 246 int i; 247 248 for (i = 0; i < todo; i++) 249 free_swap_cache(pagep[i]); 250 release_pages(pagep, todo, 0); 251 pagep += todo; 252 nr -= todo; 253 } 254 } 255 256 /* 257 * Lookup a swap entry in the swap cache. A found page will be returned 258 * unlocked and with its refcount incremented - we rely on the kernel 259 * lock getting page table operations atomic even if we drop the page 260 * lock before returning. 261 */ 262 struct page * lookup_swap_cache(swp_entry_t entry) 263 { 264 struct page *page; 265 266 page = find_get_page(&swapper_space, entry.val); 267 268 if (page) 269 INC_CACHE_INFO(find_success); 270 271 INC_CACHE_INFO(find_total); 272 return page; 273 } 274 275 /* 276 * Locate a page of swap in physical memory, reserving swap cache space 277 * and reading the disk if it is not already cached. 278 * A failure return means that either the page allocation failed or that 279 * the swap entry is no longer in use. 280 */ 281 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 282 struct vm_area_struct *vma, unsigned long addr) 283 { 284 struct page *found_page, *new_page = NULL; 285 int err; 286 287 do { 288 /* 289 * First check the swap cache. Since this is normally 290 * called after lookup_swap_cache() failed, re-calling 291 * that would confuse statistics. 292 */ 293 found_page = find_get_page(&swapper_space, entry.val); 294 if (found_page) 295 break; 296 297 /* 298 * Get a new page to read into from swap. 299 */ 300 if (!new_page) { 301 new_page = alloc_page_vma(gfp_mask, vma, addr); 302 if (!new_page) 303 break; /* Out of memory */ 304 } 305 306 /* 307 * call radix_tree_preload() while we can wait. 308 */ 309 err = radix_tree_preload(gfp_mask & GFP_KERNEL); 310 if (err) 311 break; 312 313 /* 314 * Swap entry may have been freed since our caller observed it. 315 */ 316 err = swapcache_prepare(entry); 317 if (err == -EEXIST) { /* seems racy */ 318 radix_tree_preload_end(); 319 continue; 320 } 321 if (err) { /* swp entry is obsolete ? */ 322 radix_tree_preload_end(); 323 break; 324 } 325 326 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 327 __set_page_locked(new_page); 328 SetPageSwapBacked(new_page); 329 err = __add_to_swap_cache(new_page, entry); 330 if (likely(!err)) { 331 radix_tree_preload_end(); 332 /* 333 * Initiate read into locked page and return. 334 */ 335 lru_cache_add_anon(new_page); 336 swap_readpage(new_page); 337 return new_page; 338 } 339 radix_tree_preload_end(); 340 ClearPageSwapBacked(new_page); 341 __clear_page_locked(new_page); 342 /* 343 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 344 * clear SWAP_HAS_CACHE flag. 345 */ 346 swapcache_free(entry, NULL); 347 } while (err != -ENOMEM); 348 349 if (new_page) 350 page_cache_release(new_page); 351 return found_page; 352 } 353 354 /** 355 * swapin_readahead - swap in pages in hope we need them soon 356 * @entry: swap entry of this memory 357 * @gfp_mask: memory allocation flags 358 * @vma: user vma this address belongs to 359 * @addr: target address for mempolicy 360 * 361 * Returns the struct page for entry and addr, after queueing swapin. 362 * 363 * Primitive swap readahead code. We simply read an aligned block of 364 * (1 << page_cluster) entries in the swap area. This method is chosen 365 * because it doesn't cost us any seek time. We also make sure to queue 366 * the 'original' request together with the readahead ones... 367 * 368 * This has been extended to use the NUMA policies from the mm triggering 369 * the readahead. 370 * 371 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 372 */ 373 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 374 struct vm_area_struct *vma, unsigned long addr) 375 { 376 struct page *page; 377 unsigned long offset = swp_offset(entry); 378 unsigned long start_offset, end_offset; 379 unsigned long mask = (1UL << page_cluster) - 1; 380 struct blk_plug plug; 381 382 /* Read a page_cluster sized and aligned cluster around offset. */ 383 start_offset = offset & ~mask; 384 end_offset = offset | mask; 385 if (!start_offset) /* First page is swap header. */ 386 start_offset++; 387 388 blk_start_plug(&plug); 389 for (offset = start_offset; offset <= end_offset ; offset++) { 390 /* Ok, do the async read-ahead now */ 391 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 392 gfp_mask, vma, addr); 393 if (!page) 394 continue; 395 page_cache_release(page); 396 } 397 blk_finish_plug(&plug); 398 399 lru_add_drain(); /* Push any new pages onto the LRU now */ 400 return read_swap_cache_async(entry, gfp_mask, vma, addr); 401 } 402