xref: /openbmc/linux/mm/swap_state.c (revision 93d90ad7)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 
21 #include <asm/pgtable.h>
22 
23 /*
24  * swapper_space is a fiction, retained to simplify the path through
25  * vmscan's shrink_page_list.
26  */
27 static const struct address_space_operations swap_aops = {
28 	.writepage	= swap_writepage,
29 	.set_page_dirty	= swap_set_page_dirty,
30 #ifdef CONFIG_MIGRATION
31 	.migratepage	= migrate_page,
32 #endif
33 };
34 
35 static struct backing_dev_info swap_backing_dev_info = {
36 	.name		= "swap",
37 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
38 };
39 
40 struct address_space swapper_spaces[MAX_SWAPFILES] = {
41 	[0 ... MAX_SWAPFILES - 1] = {
42 		.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
43 		.i_mmap_writable = ATOMIC_INIT(0),
44 		.a_ops		= &swap_aops,
45 		.backing_dev_info = &swap_backing_dev_info,
46 	}
47 };
48 
49 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
50 
51 static struct {
52 	unsigned long add_total;
53 	unsigned long del_total;
54 	unsigned long find_success;
55 	unsigned long find_total;
56 } swap_cache_info;
57 
58 unsigned long total_swapcache_pages(void)
59 {
60 	int i;
61 	unsigned long ret = 0;
62 
63 	for (i = 0; i < MAX_SWAPFILES; i++)
64 		ret += swapper_spaces[i].nrpages;
65 	return ret;
66 }
67 
68 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
69 
70 void show_swap_cache_info(void)
71 {
72 	printk("%lu pages in swap cache\n", total_swapcache_pages());
73 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
74 		swap_cache_info.add_total, swap_cache_info.del_total,
75 		swap_cache_info.find_success, swap_cache_info.find_total);
76 	printk("Free swap  = %ldkB\n",
77 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
78 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
79 }
80 
81 /*
82  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
83  * but sets SwapCache flag and private instead of mapping and index.
84  */
85 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
86 {
87 	int error;
88 	struct address_space *address_space;
89 
90 	VM_BUG_ON_PAGE(!PageLocked(page), page);
91 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
92 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
93 
94 	page_cache_get(page);
95 	SetPageSwapCache(page);
96 	set_page_private(page, entry.val);
97 
98 	address_space = swap_address_space(entry);
99 	spin_lock_irq(&address_space->tree_lock);
100 	error = radix_tree_insert(&address_space->page_tree,
101 					entry.val, page);
102 	if (likely(!error)) {
103 		address_space->nrpages++;
104 		__inc_zone_page_state(page, NR_FILE_PAGES);
105 		INC_CACHE_INFO(add_total);
106 	}
107 	spin_unlock_irq(&address_space->tree_lock);
108 
109 	if (unlikely(error)) {
110 		/*
111 		 * Only the context which have set SWAP_HAS_CACHE flag
112 		 * would call add_to_swap_cache().
113 		 * So add_to_swap_cache() doesn't returns -EEXIST.
114 		 */
115 		VM_BUG_ON(error == -EEXIST);
116 		set_page_private(page, 0UL);
117 		ClearPageSwapCache(page);
118 		page_cache_release(page);
119 	}
120 
121 	return error;
122 }
123 
124 
125 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
126 {
127 	int error;
128 
129 	error = radix_tree_maybe_preload(gfp_mask);
130 	if (!error) {
131 		error = __add_to_swap_cache(page, entry);
132 		radix_tree_preload_end();
133 	}
134 	return error;
135 }
136 
137 /*
138  * This must be called only on pages that have
139  * been verified to be in the swap cache.
140  */
141 void __delete_from_swap_cache(struct page *page)
142 {
143 	swp_entry_t entry;
144 	struct address_space *address_space;
145 
146 	VM_BUG_ON_PAGE(!PageLocked(page), page);
147 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
148 	VM_BUG_ON_PAGE(PageWriteback(page), page);
149 
150 	entry.val = page_private(page);
151 	address_space = swap_address_space(entry);
152 	radix_tree_delete(&address_space->page_tree, page_private(page));
153 	set_page_private(page, 0);
154 	ClearPageSwapCache(page);
155 	address_space->nrpages--;
156 	__dec_zone_page_state(page, NR_FILE_PAGES);
157 	INC_CACHE_INFO(del_total);
158 }
159 
160 /**
161  * add_to_swap - allocate swap space for a page
162  * @page: page we want to move to swap
163  *
164  * Allocate swap space for the page and add the page to the
165  * swap cache.  Caller needs to hold the page lock.
166  */
167 int add_to_swap(struct page *page, struct list_head *list)
168 {
169 	swp_entry_t entry;
170 	int err;
171 
172 	VM_BUG_ON_PAGE(!PageLocked(page), page);
173 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
174 
175 	entry = get_swap_page();
176 	if (!entry.val)
177 		return 0;
178 
179 	if (unlikely(PageTransHuge(page)))
180 		if (unlikely(split_huge_page_to_list(page, list))) {
181 			swapcache_free(entry);
182 			return 0;
183 		}
184 
185 	/*
186 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
187 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
188 	 * stops emergency reserves from being allocated.
189 	 *
190 	 * TODO: this could cause a theoretical memory reclaim
191 	 * deadlock in the swap out path.
192 	 */
193 	/*
194 	 * Add it to the swap cache and mark it dirty
195 	 */
196 	err = add_to_swap_cache(page, entry,
197 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
198 
199 	if (!err) {	/* Success */
200 		SetPageDirty(page);
201 		return 1;
202 	} else {	/* -ENOMEM radix-tree allocation failure */
203 		/*
204 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 		 * clear SWAP_HAS_CACHE flag.
206 		 */
207 		swapcache_free(entry);
208 		return 0;
209 	}
210 }
211 
212 /*
213  * This must be called only on pages that have
214  * been verified to be in the swap cache and locked.
215  * It will never put the page into the free list,
216  * the caller has a reference on the page.
217  */
218 void delete_from_swap_cache(struct page *page)
219 {
220 	swp_entry_t entry;
221 	struct address_space *address_space;
222 
223 	entry.val = page_private(page);
224 
225 	address_space = swap_address_space(entry);
226 	spin_lock_irq(&address_space->tree_lock);
227 	__delete_from_swap_cache(page);
228 	spin_unlock_irq(&address_space->tree_lock);
229 
230 	swapcache_free(entry);
231 	page_cache_release(page);
232 }
233 
234 /*
235  * If we are the only user, then try to free up the swap cache.
236  *
237  * Its ok to check for PageSwapCache without the page lock
238  * here because we are going to recheck again inside
239  * try_to_free_swap() _with_ the lock.
240  * 					- Marcelo
241  */
242 static inline void free_swap_cache(struct page *page)
243 {
244 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
245 		try_to_free_swap(page);
246 		unlock_page(page);
247 	}
248 }
249 
250 /*
251  * Perform a free_page(), also freeing any swap cache associated with
252  * this page if it is the last user of the page.
253  */
254 void free_page_and_swap_cache(struct page *page)
255 {
256 	free_swap_cache(page);
257 	page_cache_release(page);
258 }
259 
260 /*
261  * Passed an array of pages, drop them all from swapcache and then release
262  * them.  They are removed from the LRU and freed if this is their last use.
263  */
264 void free_pages_and_swap_cache(struct page **pages, int nr)
265 {
266 	struct page **pagep = pages;
267 	int i;
268 
269 	lru_add_drain();
270 	for (i = 0; i < nr; i++)
271 		free_swap_cache(pagep[i]);
272 	release_pages(pagep, nr, false);
273 }
274 
275 /*
276  * Lookup a swap entry in the swap cache. A found page will be returned
277  * unlocked and with its refcount incremented - we rely on the kernel
278  * lock getting page table operations atomic even if we drop the page
279  * lock before returning.
280  */
281 struct page * lookup_swap_cache(swp_entry_t entry)
282 {
283 	struct page *page;
284 
285 	page = find_get_page(swap_address_space(entry), entry.val);
286 
287 	if (page) {
288 		INC_CACHE_INFO(find_success);
289 		if (TestClearPageReadahead(page))
290 			atomic_inc(&swapin_readahead_hits);
291 	}
292 
293 	INC_CACHE_INFO(find_total);
294 	return page;
295 }
296 
297 /*
298  * Locate a page of swap in physical memory, reserving swap cache space
299  * and reading the disk if it is not already cached.
300  * A failure return means that either the page allocation failed or that
301  * the swap entry is no longer in use.
302  */
303 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
304 			struct vm_area_struct *vma, unsigned long addr)
305 {
306 	struct page *found_page, *new_page = NULL;
307 	int err;
308 
309 	do {
310 		/*
311 		 * First check the swap cache.  Since this is normally
312 		 * called after lookup_swap_cache() failed, re-calling
313 		 * that would confuse statistics.
314 		 */
315 		found_page = find_get_page(swap_address_space(entry),
316 					entry.val);
317 		if (found_page)
318 			break;
319 
320 		/*
321 		 * Get a new page to read into from swap.
322 		 */
323 		if (!new_page) {
324 			new_page = alloc_page_vma(gfp_mask, vma, addr);
325 			if (!new_page)
326 				break;		/* Out of memory */
327 		}
328 
329 		/*
330 		 * call radix_tree_preload() while we can wait.
331 		 */
332 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
333 		if (err)
334 			break;
335 
336 		/*
337 		 * Swap entry may have been freed since our caller observed it.
338 		 */
339 		err = swapcache_prepare(entry);
340 		if (err == -EEXIST) {
341 			radix_tree_preload_end();
342 			/*
343 			 * We might race against get_swap_page() and stumble
344 			 * across a SWAP_HAS_CACHE swap_map entry whose page
345 			 * has not been brought into the swapcache yet, while
346 			 * the other end is scheduled away waiting on discard
347 			 * I/O completion at scan_swap_map().
348 			 *
349 			 * In order to avoid turning this transitory state
350 			 * into a permanent loop around this -EEXIST case
351 			 * if !CONFIG_PREEMPT and the I/O completion happens
352 			 * to be waiting on the CPU waitqueue where we are now
353 			 * busy looping, we just conditionally invoke the
354 			 * scheduler here, if there are some more important
355 			 * tasks to run.
356 			 */
357 			cond_resched();
358 			continue;
359 		}
360 		if (err) {		/* swp entry is obsolete ? */
361 			radix_tree_preload_end();
362 			break;
363 		}
364 
365 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
366 		__set_page_locked(new_page);
367 		SetPageSwapBacked(new_page);
368 		err = __add_to_swap_cache(new_page, entry);
369 		if (likely(!err)) {
370 			radix_tree_preload_end();
371 			/*
372 			 * Initiate read into locked page and return.
373 			 */
374 			lru_cache_add_anon(new_page);
375 			swap_readpage(new_page);
376 			return new_page;
377 		}
378 		radix_tree_preload_end();
379 		ClearPageSwapBacked(new_page);
380 		__clear_page_locked(new_page);
381 		/*
382 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
383 		 * clear SWAP_HAS_CACHE flag.
384 		 */
385 		swapcache_free(entry);
386 	} while (err != -ENOMEM);
387 
388 	if (new_page)
389 		page_cache_release(new_page);
390 	return found_page;
391 }
392 
393 static unsigned long swapin_nr_pages(unsigned long offset)
394 {
395 	static unsigned long prev_offset;
396 	unsigned int pages, max_pages, last_ra;
397 	static atomic_t last_readahead_pages;
398 
399 	max_pages = 1 << ACCESS_ONCE(page_cluster);
400 	if (max_pages <= 1)
401 		return 1;
402 
403 	/*
404 	 * This heuristic has been found to work well on both sequential and
405 	 * random loads, swapping to hard disk or to SSD: please don't ask
406 	 * what the "+ 2" means, it just happens to work well, that's all.
407 	 */
408 	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
409 	if (pages == 2) {
410 		/*
411 		 * We can have no readahead hits to judge by: but must not get
412 		 * stuck here forever, so check for an adjacent offset instead
413 		 * (and don't even bother to check whether swap type is same).
414 		 */
415 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
416 			pages = 1;
417 		prev_offset = offset;
418 	} else {
419 		unsigned int roundup = 4;
420 		while (roundup < pages)
421 			roundup <<= 1;
422 		pages = roundup;
423 	}
424 
425 	if (pages > max_pages)
426 		pages = max_pages;
427 
428 	/* Don't shrink readahead too fast */
429 	last_ra = atomic_read(&last_readahead_pages) / 2;
430 	if (pages < last_ra)
431 		pages = last_ra;
432 	atomic_set(&last_readahead_pages, pages);
433 
434 	return pages;
435 }
436 
437 /**
438  * swapin_readahead - swap in pages in hope we need them soon
439  * @entry: swap entry of this memory
440  * @gfp_mask: memory allocation flags
441  * @vma: user vma this address belongs to
442  * @addr: target address for mempolicy
443  *
444  * Returns the struct page for entry and addr, after queueing swapin.
445  *
446  * Primitive swap readahead code. We simply read an aligned block of
447  * (1 << page_cluster) entries in the swap area. This method is chosen
448  * because it doesn't cost us any seek time.  We also make sure to queue
449  * the 'original' request together with the readahead ones...
450  *
451  * This has been extended to use the NUMA policies from the mm triggering
452  * the readahead.
453  *
454  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
455  */
456 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
457 			struct vm_area_struct *vma, unsigned long addr)
458 {
459 	struct page *page;
460 	unsigned long entry_offset = swp_offset(entry);
461 	unsigned long offset = entry_offset;
462 	unsigned long start_offset, end_offset;
463 	unsigned long mask;
464 	struct blk_plug plug;
465 
466 	mask = swapin_nr_pages(offset) - 1;
467 	if (!mask)
468 		goto skip;
469 
470 	/* Read a page_cluster sized and aligned cluster around offset. */
471 	start_offset = offset & ~mask;
472 	end_offset = offset | mask;
473 	if (!start_offset)	/* First page is swap header. */
474 		start_offset++;
475 
476 	blk_start_plug(&plug);
477 	for (offset = start_offset; offset <= end_offset ; offset++) {
478 		/* Ok, do the async read-ahead now */
479 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
480 						gfp_mask, vma, addr);
481 		if (!page)
482 			continue;
483 		if (offset != entry_offset)
484 			SetPageReadahead(page);
485 		page_cache_release(page);
486 	}
487 	blk_finish_plug(&plug);
488 
489 	lru_add_drain();	/* Push any new pages onto the LRU now */
490 skip:
491 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
492 }
493