1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/mm.h> 10 #include <linux/gfp.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev.h> 17 #include <linux/blkdev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 21 #include <asm/pgtable.h> 22 23 /* 24 * swapper_space is a fiction, retained to simplify the path through 25 * vmscan's shrink_page_list. 26 */ 27 static const struct address_space_operations swap_aops = { 28 .writepage = swap_writepage, 29 .set_page_dirty = swap_set_page_dirty, 30 #ifdef CONFIG_MIGRATION 31 .migratepage = migrate_page, 32 #endif 33 }; 34 35 struct address_space swapper_spaces[MAX_SWAPFILES] = { 36 [0 ... MAX_SWAPFILES - 1] = { 37 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 38 .i_mmap_writable = ATOMIC_INIT(0), 39 .a_ops = &swap_aops, 40 } 41 }; 42 43 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 44 45 static struct { 46 unsigned long add_total; 47 unsigned long del_total; 48 unsigned long find_success; 49 unsigned long find_total; 50 } swap_cache_info; 51 52 unsigned long total_swapcache_pages(void) 53 { 54 int i; 55 unsigned long ret = 0; 56 57 for (i = 0; i < MAX_SWAPFILES; i++) 58 ret += swapper_spaces[i].nrpages; 59 return ret; 60 } 61 62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 63 64 void show_swap_cache_info(void) 65 { 66 printk("%lu pages in swap cache\n", total_swapcache_pages()); 67 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 68 swap_cache_info.add_total, swap_cache_info.del_total, 69 swap_cache_info.find_success, swap_cache_info.find_total); 70 printk("Free swap = %ldkB\n", 71 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 72 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 73 } 74 75 /* 76 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 77 * but sets SwapCache flag and private instead of mapping and index. 78 */ 79 int __add_to_swap_cache(struct page *page, swp_entry_t entry) 80 { 81 int error; 82 struct address_space *address_space; 83 84 VM_BUG_ON_PAGE(!PageLocked(page), page); 85 VM_BUG_ON_PAGE(PageSwapCache(page), page); 86 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 87 88 page_cache_get(page); 89 SetPageSwapCache(page); 90 set_page_private(page, entry.val); 91 92 address_space = swap_address_space(entry); 93 spin_lock_irq(&address_space->tree_lock); 94 error = radix_tree_insert(&address_space->page_tree, 95 entry.val, page); 96 if (likely(!error)) { 97 address_space->nrpages++; 98 __inc_zone_page_state(page, NR_FILE_PAGES); 99 INC_CACHE_INFO(add_total); 100 } 101 spin_unlock_irq(&address_space->tree_lock); 102 103 if (unlikely(error)) { 104 /* 105 * Only the context which have set SWAP_HAS_CACHE flag 106 * would call add_to_swap_cache(). 107 * So add_to_swap_cache() doesn't returns -EEXIST. 108 */ 109 VM_BUG_ON(error == -EEXIST); 110 set_page_private(page, 0UL); 111 ClearPageSwapCache(page); 112 page_cache_release(page); 113 } 114 115 return error; 116 } 117 118 119 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 120 { 121 int error; 122 123 error = radix_tree_maybe_preload(gfp_mask); 124 if (!error) { 125 error = __add_to_swap_cache(page, entry); 126 radix_tree_preload_end(); 127 } 128 return error; 129 } 130 131 /* 132 * This must be called only on pages that have 133 * been verified to be in the swap cache. 134 */ 135 void __delete_from_swap_cache(struct page *page) 136 { 137 swp_entry_t entry; 138 struct address_space *address_space; 139 140 VM_BUG_ON_PAGE(!PageLocked(page), page); 141 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 142 VM_BUG_ON_PAGE(PageWriteback(page), page); 143 144 entry.val = page_private(page); 145 address_space = swap_address_space(entry); 146 radix_tree_delete(&address_space->page_tree, page_private(page)); 147 set_page_private(page, 0); 148 ClearPageSwapCache(page); 149 address_space->nrpages--; 150 __dec_zone_page_state(page, NR_FILE_PAGES); 151 INC_CACHE_INFO(del_total); 152 } 153 154 /** 155 * add_to_swap - allocate swap space for a page 156 * @page: page we want to move to swap 157 * 158 * Allocate swap space for the page and add the page to the 159 * swap cache. Caller needs to hold the page lock. 160 */ 161 int add_to_swap(struct page *page, struct list_head *list) 162 { 163 swp_entry_t entry; 164 int err; 165 166 VM_BUG_ON_PAGE(!PageLocked(page), page); 167 VM_BUG_ON_PAGE(!PageUptodate(page), page); 168 169 entry = get_swap_page(); 170 if (!entry.val) 171 return 0; 172 173 if (unlikely(PageTransHuge(page))) 174 if (unlikely(split_huge_page_to_list(page, list))) { 175 swapcache_free(entry); 176 return 0; 177 } 178 179 /* 180 * Radix-tree node allocations from PF_MEMALLOC contexts could 181 * completely exhaust the page allocator. __GFP_NOMEMALLOC 182 * stops emergency reserves from being allocated. 183 * 184 * TODO: this could cause a theoretical memory reclaim 185 * deadlock in the swap out path. 186 */ 187 /* 188 * Add it to the swap cache and mark it dirty 189 */ 190 err = add_to_swap_cache(page, entry, 191 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 192 193 if (!err) { /* Success */ 194 SetPageDirty(page); 195 return 1; 196 } else { /* -ENOMEM radix-tree allocation failure */ 197 /* 198 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 199 * clear SWAP_HAS_CACHE flag. 200 */ 201 swapcache_free(entry); 202 return 0; 203 } 204 } 205 206 /* 207 * This must be called only on pages that have 208 * been verified to be in the swap cache and locked. 209 * It will never put the page into the free list, 210 * the caller has a reference on the page. 211 */ 212 void delete_from_swap_cache(struct page *page) 213 { 214 swp_entry_t entry; 215 struct address_space *address_space; 216 217 entry.val = page_private(page); 218 219 address_space = swap_address_space(entry); 220 spin_lock_irq(&address_space->tree_lock); 221 __delete_from_swap_cache(page); 222 spin_unlock_irq(&address_space->tree_lock); 223 224 swapcache_free(entry); 225 page_cache_release(page); 226 } 227 228 /* 229 * If we are the only user, then try to free up the swap cache. 230 * 231 * Its ok to check for PageSwapCache without the page lock 232 * here because we are going to recheck again inside 233 * try_to_free_swap() _with_ the lock. 234 * - Marcelo 235 */ 236 static inline void free_swap_cache(struct page *page) 237 { 238 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 239 try_to_free_swap(page); 240 unlock_page(page); 241 } 242 } 243 244 /* 245 * Perform a free_page(), also freeing any swap cache associated with 246 * this page if it is the last user of the page. 247 */ 248 void free_page_and_swap_cache(struct page *page) 249 { 250 free_swap_cache(page); 251 page_cache_release(page); 252 } 253 254 /* 255 * Passed an array of pages, drop them all from swapcache and then release 256 * them. They are removed from the LRU and freed if this is their last use. 257 */ 258 void free_pages_and_swap_cache(struct page **pages, int nr) 259 { 260 struct page **pagep = pages; 261 int i; 262 263 lru_add_drain(); 264 for (i = 0; i < nr; i++) 265 free_swap_cache(pagep[i]); 266 release_pages(pagep, nr, false); 267 } 268 269 /* 270 * Lookup a swap entry in the swap cache. A found page will be returned 271 * unlocked and with its refcount incremented - we rely on the kernel 272 * lock getting page table operations atomic even if we drop the page 273 * lock before returning. 274 */ 275 struct page * lookup_swap_cache(swp_entry_t entry) 276 { 277 struct page *page; 278 279 page = find_get_page(swap_address_space(entry), entry.val); 280 281 if (page) { 282 INC_CACHE_INFO(find_success); 283 if (TestClearPageReadahead(page)) 284 atomic_inc(&swapin_readahead_hits); 285 } 286 287 INC_CACHE_INFO(find_total); 288 return page; 289 } 290 291 /* 292 * Locate a page of swap in physical memory, reserving swap cache space 293 * and reading the disk if it is not already cached. 294 * A failure return means that either the page allocation failed or that 295 * the swap entry is no longer in use. 296 */ 297 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 298 struct vm_area_struct *vma, unsigned long addr) 299 { 300 struct page *found_page, *new_page = NULL; 301 int err; 302 303 do { 304 /* 305 * First check the swap cache. Since this is normally 306 * called after lookup_swap_cache() failed, re-calling 307 * that would confuse statistics. 308 */ 309 found_page = find_get_page(swap_address_space(entry), 310 entry.val); 311 if (found_page) 312 break; 313 314 /* 315 * Get a new page to read into from swap. 316 */ 317 if (!new_page) { 318 new_page = alloc_page_vma(gfp_mask, vma, addr); 319 if (!new_page) 320 break; /* Out of memory */ 321 } 322 323 /* 324 * call radix_tree_preload() while we can wait. 325 */ 326 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); 327 if (err) 328 break; 329 330 /* 331 * Swap entry may have been freed since our caller observed it. 332 */ 333 err = swapcache_prepare(entry); 334 if (err == -EEXIST) { 335 radix_tree_preload_end(); 336 /* 337 * We might race against get_swap_page() and stumble 338 * across a SWAP_HAS_CACHE swap_map entry whose page 339 * has not been brought into the swapcache yet, while 340 * the other end is scheduled away waiting on discard 341 * I/O completion at scan_swap_map(). 342 * 343 * In order to avoid turning this transitory state 344 * into a permanent loop around this -EEXIST case 345 * if !CONFIG_PREEMPT and the I/O completion happens 346 * to be waiting on the CPU waitqueue where we are now 347 * busy looping, we just conditionally invoke the 348 * scheduler here, if there are some more important 349 * tasks to run. 350 */ 351 cond_resched(); 352 continue; 353 } 354 if (err) { /* swp entry is obsolete ? */ 355 radix_tree_preload_end(); 356 break; 357 } 358 359 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 360 __set_page_locked(new_page); 361 SetPageSwapBacked(new_page); 362 err = __add_to_swap_cache(new_page, entry); 363 if (likely(!err)) { 364 radix_tree_preload_end(); 365 /* 366 * Initiate read into locked page and return. 367 */ 368 lru_cache_add_anon(new_page); 369 swap_readpage(new_page); 370 return new_page; 371 } 372 radix_tree_preload_end(); 373 ClearPageSwapBacked(new_page); 374 __clear_page_locked(new_page); 375 /* 376 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 377 * clear SWAP_HAS_CACHE flag. 378 */ 379 swapcache_free(entry); 380 } while (err != -ENOMEM); 381 382 if (new_page) 383 page_cache_release(new_page); 384 return found_page; 385 } 386 387 static unsigned long swapin_nr_pages(unsigned long offset) 388 { 389 static unsigned long prev_offset; 390 unsigned int pages, max_pages, last_ra; 391 static atomic_t last_readahead_pages; 392 393 max_pages = 1 << ACCESS_ONCE(page_cluster); 394 if (max_pages <= 1) 395 return 1; 396 397 /* 398 * This heuristic has been found to work well on both sequential and 399 * random loads, swapping to hard disk or to SSD: please don't ask 400 * what the "+ 2" means, it just happens to work well, that's all. 401 */ 402 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2; 403 if (pages == 2) { 404 /* 405 * We can have no readahead hits to judge by: but must not get 406 * stuck here forever, so check for an adjacent offset instead 407 * (and don't even bother to check whether swap type is same). 408 */ 409 if (offset != prev_offset + 1 && offset != prev_offset - 1) 410 pages = 1; 411 prev_offset = offset; 412 } else { 413 unsigned int roundup = 4; 414 while (roundup < pages) 415 roundup <<= 1; 416 pages = roundup; 417 } 418 419 if (pages > max_pages) 420 pages = max_pages; 421 422 /* Don't shrink readahead too fast */ 423 last_ra = atomic_read(&last_readahead_pages) / 2; 424 if (pages < last_ra) 425 pages = last_ra; 426 atomic_set(&last_readahead_pages, pages); 427 428 return pages; 429 } 430 431 /** 432 * swapin_readahead - swap in pages in hope we need them soon 433 * @entry: swap entry of this memory 434 * @gfp_mask: memory allocation flags 435 * @vma: user vma this address belongs to 436 * @addr: target address for mempolicy 437 * 438 * Returns the struct page for entry and addr, after queueing swapin. 439 * 440 * Primitive swap readahead code. We simply read an aligned block of 441 * (1 << page_cluster) entries in the swap area. This method is chosen 442 * because it doesn't cost us any seek time. We also make sure to queue 443 * the 'original' request together with the readahead ones... 444 * 445 * This has been extended to use the NUMA policies from the mm triggering 446 * the readahead. 447 * 448 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 449 */ 450 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 451 struct vm_area_struct *vma, unsigned long addr) 452 { 453 struct page *page; 454 unsigned long entry_offset = swp_offset(entry); 455 unsigned long offset = entry_offset; 456 unsigned long start_offset, end_offset; 457 unsigned long mask; 458 struct blk_plug plug; 459 460 mask = swapin_nr_pages(offset) - 1; 461 if (!mask) 462 goto skip; 463 464 /* Read a page_cluster sized and aligned cluster around offset. */ 465 start_offset = offset & ~mask; 466 end_offset = offset | mask; 467 if (!start_offset) /* First page is swap header. */ 468 start_offset++; 469 470 blk_start_plug(&plug); 471 for (offset = start_offset; offset <= end_offset ; offset++) { 472 /* Ok, do the async read-ahead now */ 473 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 474 gfp_mask, vma, addr); 475 if (!page) 476 continue; 477 if (offset != entry_offset) 478 SetPageReadahead(page); 479 page_cache_release(page); 480 } 481 blk_finish_plug(&plug); 482 483 lru_add_drain(); /* Push any new pages onto the LRU now */ 484 skip: 485 return read_swap_cache_async(entry, gfp_mask, vma, addr); 486 } 487