xref: /openbmc/linux/mm/swap_state.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32 	.writepage	= swap_writepage,
33 	.set_page_dirty	= swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 	.migratepage	= migrate_page,
36 #endif
37 };
38 
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42 
43 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 
48 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51 
52 #define SWAP_RA_VAL(addr, win, hits)				\
53 	(((addr) & PAGE_MASK) |					\
54 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55 	 ((hits) & SWAP_RA_HITS_MASK))
56 
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)					\
59 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 
61 #define INC_CACHE_INFO(x)	data_race(swap_cache_info.x++)
62 #define ADD_CACHE_INFO(x, nr)	data_race(swap_cache_info.x += (nr))
63 
64 static struct {
65 	unsigned long add_total;
66 	unsigned long del_total;
67 	unsigned long find_success;
68 	unsigned long find_total;
69 } swap_cache_info;
70 
71 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
72 
73 void show_swap_cache_info(void)
74 {
75 	printk("%lu pages in swap cache\n", total_swapcache_pages());
76 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
77 		swap_cache_info.add_total, swap_cache_info.del_total,
78 		swap_cache_info.find_success, swap_cache_info.find_total);
79 	printk("Free swap  = %ldkB\n",
80 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
81 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82 }
83 
84 void *get_shadow_from_swap_cache(swp_entry_t entry)
85 {
86 	struct address_space *address_space = swap_address_space(entry);
87 	pgoff_t idx = swp_offset(entry);
88 	struct page *page;
89 
90 	page = xa_load(&address_space->i_pages, idx);
91 	if (xa_is_value(page))
92 		return page;
93 	return NULL;
94 }
95 
96 /*
97  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
98  * but sets SwapCache flag and private instead of mapping and index.
99  */
100 int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 			gfp_t gfp, void **shadowp)
102 {
103 	struct address_space *address_space = swap_address_space(entry);
104 	pgoff_t idx = swp_offset(entry);
105 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
106 	unsigned long i, nr = thp_nr_pages(page);
107 	void *old;
108 
109 	VM_BUG_ON_PAGE(!PageLocked(page), page);
110 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
112 
113 	page_ref_add(page, nr);
114 	SetPageSwapCache(page);
115 
116 	do {
117 		unsigned long nr_shadows = 0;
118 
119 		xas_lock_irq(&xas);
120 		xas_create_range(&xas);
121 		if (xas_error(&xas))
122 			goto unlock;
123 		for (i = 0; i < nr; i++) {
124 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
125 			old = xas_load(&xas);
126 			if (xa_is_value(old)) {
127 				nr_shadows++;
128 				if (shadowp)
129 					*shadowp = old;
130 			}
131 			set_page_private(page + i, entry.val + i);
132 			xas_store(&xas, page);
133 			xas_next(&xas);
134 		}
135 		address_space->nrexceptional -= nr_shadows;
136 		address_space->nrpages += nr;
137 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138 		__mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
139 		ADD_CACHE_INFO(add_total, nr);
140 unlock:
141 		xas_unlock_irq(&xas);
142 	} while (xas_nomem(&xas, gfp));
143 
144 	if (!xas_error(&xas))
145 		return 0;
146 
147 	ClearPageSwapCache(page);
148 	page_ref_sub(page, nr);
149 	return xas_error(&xas);
150 }
151 
152 /*
153  * This must be called only on pages that have
154  * been verified to be in the swap cache.
155  */
156 void __delete_from_swap_cache(struct page *page,
157 			swp_entry_t entry, void *shadow)
158 {
159 	struct address_space *address_space = swap_address_space(entry);
160 	int i, nr = thp_nr_pages(page);
161 	pgoff_t idx = swp_offset(entry);
162 	XA_STATE(xas, &address_space->i_pages, idx);
163 
164 	VM_BUG_ON_PAGE(!PageLocked(page), page);
165 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 	VM_BUG_ON_PAGE(PageWriteback(page), page);
167 
168 	for (i = 0; i < nr; i++) {
169 		void *entry = xas_store(&xas, shadow);
170 		VM_BUG_ON_PAGE(entry != page, entry);
171 		set_page_private(page + i, 0);
172 		xas_next(&xas);
173 	}
174 	ClearPageSwapCache(page);
175 	if (shadow)
176 		address_space->nrexceptional += nr;
177 	address_space->nrpages -= nr;
178 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
179 	__mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
180 	ADD_CACHE_INFO(del_total, nr);
181 }
182 
183 /**
184  * add_to_swap - allocate swap space for a page
185  * @page: page we want to move to swap
186  *
187  * Allocate swap space for the page and add the page to the
188  * swap cache.  Caller needs to hold the page lock.
189  */
190 int add_to_swap(struct page *page)
191 {
192 	swp_entry_t entry;
193 	int err;
194 
195 	VM_BUG_ON_PAGE(!PageLocked(page), page);
196 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
197 
198 	entry = get_swap_page(page);
199 	if (!entry.val)
200 		return 0;
201 
202 	/*
203 	 * XArray node allocations from PF_MEMALLOC contexts could
204 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
205 	 * stops emergency reserves from being allocated.
206 	 *
207 	 * TODO: this could cause a theoretical memory reclaim
208 	 * deadlock in the swap out path.
209 	 */
210 	/*
211 	 * Add it to the swap cache.
212 	 */
213 	err = add_to_swap_cache(page, entry,
214 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
215 	if (err)
216 		/*
217 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
218 		 * clear SWAP_HAS_CACHE flag.
219 		 */
220 		goto fail;
221 	/*
222 	 * Normally the page will be dirtied in unmap because its pte should be
223 	 * dirty. A special case is MADV_FREE page. The page's pte could have
224 	 * dirty bit cleared but the page's SwapBacked bit is still set because
225 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
226 	 * such page, unmap will not set dirty bit for it, so page reclaim will
227 	 * not write the page out. This can cause data corruption when the page
228 	 * is swap in later. Always setting the dirty bit for the page solves
229 	 * the problem.
230 	 */
231 	set_page_dirty(page);
232 
233 	return 1;
234 
235 fail:
236 	put_swap_page(page, entry);
237 	return 0;
238 }
239 
240 /*
241  * This must be called only on pages that have
242  * been verified to be in the swap cache and locked.
243  * It will never put the page into the free list,
244  * the caller has a reference on the page.
245  */
246 void delete_from_swap_cache(struct page *page)
247 {
248 	swp_entry_t entry = { .val = page_private(page) };
249 	struct address_space *address_space = swap_address_space(entry);
250 
251 	xa_lock_irq(&address_space->i_pages);
252 	__delete_from_swap_cache(page, entry, NULL);
253 	xa_unlock_irq(&address_space->i_pages);
254 
255 	put_swap_page(page, entry);
256 	page_ref_sub(page, thp_nr_pages(page));
257 }
258 
259 void clear_shadow_from_swap_cache(int type, unsigned long begin,
260 				unsigned long end)
261 {
262 	unsigned long curr = begin;
263 	void *old;
264 
265 	for (;;) {
266 		unsigned long nr_shadows = 0;
267 		swp_entry_t entry = swp_entry(type, curr);
268 		struct address_space *address_space = swap_address_space(entry);
269 		XA_STATE(xas, &address_space->i_pages, curr);
270 
271 		xa_lock_irq(&address_space->i_pages);
272 		xas_for_each(&xas, old, end) {
273 			if (!xa_is_value(old))
274 				continue;
275 			xas_store(&xas, NULL);
276 			nr_shadows++;
277 		}
278 		address_space->nrexceptional -= nr_shadows;
279 		xa_unlock_irq(&address_space->i_pages);
280 
281 		/* search the next swapcache until we meet end */
282 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
283 		curr++;
284 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
285 		if (curr > end)
286 			break;
287 	}
288 }
289 
290 /*
291  * If we are the only user, then try to free up the swap cache.
292  *
293  * Its ok to check for PageSwapCache without the page lock
294  * here because we are going to recheck again inside
295  * try_to_free_swap() _with_ the lock.
296  * 					- Marcelo
297  */
298 static inline void free_swap_cache(struct page *page)
299 {
300 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
301 		try_to_free_swap(page);
302 		unlock_page(page);
303 	}
304 }
305 
306 /*
307  * Perform a free_page(), also freeing any swap cache associated with
308  * this page if it is the last user of the page.
309  */
310 void free_page_and_swap_cache(struct page *page)
311 {
312 	free_swap_cache(page);
313 	if (!is_huge_zero_page(page))
314 		put_page(page);
315 }
316 
317 /*
318  * Passed an array of pages, drop them all from swapcache and then release
319  * them.  They are removed from the LRU and freed if this is their last use.
320  */
321 void free_pages_and_swap_cache(struct page **pages, int nr)
322 {
323 	struct page **pagep = pages;
324 	int i;
325 
326 	lru_add_drain();
327 	for (i = 0; i < nr; i++)
328 		free_swap_cache(pagep[i]);
329 	release_pages(pagep, nr);
330 }
331 
332 static inline bool swap_use_vma_readahead(void)
333 {
334 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
335 }
336 
337 /*
338  * Lookup a swap entry in the swap cache. A found page will be returned
339  * unlocked and with its refcount incremented - we rely on the kernel
340  * lock getting page table operations atomic even if we drop the page
341  * lock before returning.
342  */
343 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
344 			       unsigned long addr)
345 {
346 	struct page *page;
347 	struct swap_info_struct *si;
348 
349 	si = get_swap_device(entry);
350 	if (!si)
351 		return NULL;
352 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
353 	put_swap_device(si);
354 
355 	INC_CACHE_INFO(find_total);
356 	if (page) {
357 		bool vma_ra = swap_use_vma_readahead();
358 		bool readahead;
359 
360 		INC_CACHE_INFO(find_success);
361 		/*
362 		 * At the moment, we don't support PG_readahead for anon THP
363 		 * so let's bail out rather than confusing the readahead stat.
364 		 */
365 		if (unlikely(PageTransCompound(page)))
366 			return page;
367 
368 		readahead = TestClearPageReadahead(page);
369 		if (vma && vma_ra) {
370 			unsigned long ra_val;
371 			int win, hits;
372 
373 			ra_val = GET_SWAP_RA_VAL(vma);
374 			win = SWAP_RA_WIN(ra_val);
375 			hits = SWAP_RA_HITS(ra_val);
376 			if (readahead)
377 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
378 			atomic_long_set(&vma->swap_readahead_info,
379 					SWAP_RA_VAL(addr, win, hits));
380 		}
381 
382 		if (readahead) {
383 			count_vm_event(SWAP_RA_HIT);
384 			if (!vma || !vma_ra)
385 				atomic_inc(&swapin_readahead_hits);
386 		}
387 	}
388 
389 	return page;
390 }
391 
392 /**
393  * find_get_incore_page - Find and get a page from the page or swap caches.
394  * @mapping: The address_space to search.
395  * @index: The page cache index.
396  *
397  * This differs from find_get_page() in that it will also look for the
398  * page in the swap cache.
399  *
400  * Return: The found page or %NULL.
401  */
402 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
403 {
404 	swp_entry_t swp;
405 	struct swap_info_struct *si;
406 	struct page *page = pagecache_get_page(mapping, index,
407 						FGP_ENTRY | FGP_HEAD, 0);
408 
409 	if (!page)
410 		return page;
411 	if (!xa_is_value(page))
412 		return find_subpage(page, index);
413 	if (!shmem_mapping(mapping))
414 		return NULL;
415 
416 	swp = radix_to_swp_entry(page);
417 	/* Prevent swapoff from happening to us */
418 	si = get_swap_device(swp);
419 	if (!si)
420 		return NULL;
421 	page = find_get_page(swap_address_space(swp), swp_offset(swp));
422 	put_swap_device(si);
423 	return page;
424 }
425 
426 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
427 			struct vm_area_struct *vma, unsigned long addr,
428 			bool *new_page_allocated)
429 {
430 	struct swap_info_struct *si;
431 	struct page *page;
432 	void *shadow = NULL;
433 
434 	*new_page_allocated = false;
435 
436 	for (;;) {
437 		int err;
438 		/*
439 		 * First check the swap cache.  Since this is normally
440 		 * called after lookup_swap_cache() failed, re-calling
441 		 * that would confuse statistics.
442 		 */
443 		si = get_swap_device(entry);
444 		if (!si)
445 			return NULL;
446 		page = find_get_page(swap_address_space(entry),
447 				     swp_offset(entry));
448 		put_swap_device(si);
449 		if (page)
450 			return page;
451 
452 		/*
453 		 * Just skip read ahead for unused swap slot.
454 		 * During swap_off when swap_slot_cache is disabled,
455 		 * we have to handle the race between putting
456 		 * swap entry in swap cache and marking swap slot
457 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
458 		 * else swap_off will be aborted if we return NULL.
459 		 */
460 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
461 			return NULL;
462 
463 		/*
464 		 * Get a new page to read into from swap.  Allocate it now,
465 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
466 		 * cause any racers to loop around until we add it to cache.
467 		 */
468 		page = alloc_page_vma(gfp_mask, vma, addr);
469 		if (!page)
470 			return NULL;
471 
472 		/*
473 		 * Swap entry may have been freed since our caller observed it.
474 		 */
475 		err = swapcache_prepare(entry);
476 		if (!err)
477 			break;
478 
479 		put_page(page);
480 		if (err != -EEXIST)
481 			return NULL;
482 
483 		/*
484 		 * We might race against __delete_from_swap_cache(), and
485 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
486 		 * has not yet been cleared.  Or race against another
487 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
488 		 * in swap_map, but not yet added its page to swap cache.
489 		 */
490 		cond_resched();
491 	}
492 
493 	/*
494 	 * The swap entry is ours to swap in. Prepare the new page.
495 	 */
496 
497 	__SetPageLocked(page);
498 	__SetPageSwapBacked(page);
499 
500 	if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
501 		goto fail_unlock;
502 
503 	/* May fail (-ENOMEM) if XArray node allocation failed. */
504 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
505 		goto fail_unlock;
506 
507 	mem_cgroup_swapin_uncharge_swap(entry);
508 
509 	if (shadow)
510 		workingset_refault(page, shadow);
511 
512 	/* Caller will initiate read into locked page */
513 	lru_cache_add(page);
514 	*new_page_allocated = true;
515 	return page;
516 
517 fail_unlock:
518 	put_swap_page(page, entry);
519 	unlock_page(page);
520 	put_page(page);
521 	return NULL;
522 }
523 
524 /*
525  * Locate a page of swap in physical memory, reserving swap cache space
526  * and reading the disk if it is not already cached.
527  * A failure return means that either the page allocation failed or that
528  * the swap entry is no longer in use.
529  */
530 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
531 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
532 {
533 	bool page_was_allocated;
534 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
535 			vma, addr, &page_was_allocated);
536 
537 	if (page_was_allocated)
538 		swap_readpage(retpage, do_poll);
539 
540 	return retpage;
541 }
542 
543 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
544 				      unsigned long offset,
545 				      int hits,
546 				      int max_pages,
547 				      int prev_win)
548 {
549 	unsigned int pages, last_ra;
550 
551 	/*
552 	 * This heuristic has been found to work well on both sequential and
553 	 * random loads, swapping to hard disk or to SSD: please don't ask
554 	 * what the "+ 2" means, it just happens to work well, that's all.
555 	 */
556 	pages = hits + 2;
557 	if (pages == 2) {
558 		/*
559 		 * We can have no readahead hits to judge by: but must not get
560 		 * stuck here forever, so check for an adjacent offset instead
561 		 * (and don't even bother to check whether swap type is same).
562 		 */
563 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
564 			pages = 1;
565 	} else {
566 		unsigned int roundup = 4;
567 		while (roundup < pages)
568 			roundup <<= 1;
569 		pages = roundup;
570 	}
571 
572 	if (pages > max_pages)
573 		pages = max_pages;
574 
575 	/* Don't shrink readahead too fast */
576 	last_ra = prev_win / 2;
577 	if (pages < last_ra)
578 		pages = last_ra;
579 
580 	return pages;
581 }
582 
583 static unsigned long swapin_nr_pages(unsigned long offset)
584 {
585 	static unsigned long prev_offset;
586 	unsigned int hits, pages, max_pages;
587 	static atomic_t last_readahead_pages;
588 
589 	max_pages = 1 << READ_ONCE(page_cluster);
590 	if (max_pages <= 1)
591 		return 1;
592 
593 	hits = atomic_xchg(&swapin_readahead_hits, 0);
594 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
595 				  max_pages,
596 				  atomic_read(&last_readahead_pages));
597 	if (!hits)
598 		WRITE_ONCE(prev_offset, offset);
599 	atomic_set(&last_readahead_pages, pages);
600 
601 	return pages;
602 }
603 
604 /**
605  * swap_cluster_readahead - swap in pages in hope we need them soon
606  * @entry: swap entry of this memory
607  * @gfp_mask: memory allocation flags
608  * @vmf: fault information
609  *
610  * Returns the struct page for entry and addr, after queueing swapin.
611  *
612  * Primitive swap readahead code. We simply read an aligned block of
613  * (1 << page_cluster) entries in the swap area. This method is chosen
614  * because it doesn't cost us any seek time.  We also make sure to queue
615  * the 'original' request together with the readahead ones...
616  *
617  * This has been extended to use the NUMA policies from the mm triggering
618  * the readahead.
619  *
620  * Caller must hold read mmap_lock if vmf->vma is not NULL.
621  */
622 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
623 				struct vm_fault *vmf)
624 {
625 	struct page *page;
626 	unsigned long entry_offset = swp_offset(entry);
627 	unsigned long offset = entry_offset;
628 	unsigned long start_offset, end_offset;
629 	unsigned long mask;
630 	struct swap_info_struct *si = swp_swap_info(entry);
631 	struct blk_plug plug;
632 	bool do_poll = true, page_allocated;
633 	struct vm_area_struct *vma = vmf->vma;
634 	unsigned long addr = vmf->address;
635 
636 	mask = swapin_nr_pages(offset) - 1;
637 	if (!mask)
638 		goto skip;
639 
640 	/* Test swap type to make sure the dereference is safe */
641 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
642 		struct inode *inode = si->swap_file->f_mapping->host;
643 		if (inode_read_congested(inode))
644 			goto skip;
645 	}
646 
647 	do_poll = false;
648 	/* Read a page_cluster sized and aligned cluster around offset. */
649 	start_offset = offset & ~mask;
650 	end_offset = offset | mask;
651 	if (!start_offset)	/* First page is swap header. */
652 		start_offset++;
653 	if (end_offset >= si->max)
654 		end_offset = si->max - 1;
655 
656 	blk_start_plug(&plug);
657 	for (offset = start_offset; offset <= end_offset ; offset++) {
658 		/* Ok, do the async read-ahead now */
659 		page = __read_swap_cache_async(
660 			swp_entry(swp_type(entry), offset),
661 			gfp_mask, vma, addr, &page_allocated);
662 		if (!page)
663 			continue;
664 		if (page_allocated) {
665 			swap_readpage(page, false);
666 			if (offset != entry_offset) {
667 				SetPageReadahead(page);
668 				count_vm_event(SWAP_RA);
669 			}
670 		}
671 		put_page(page);
672 	}
673 	blk_finish_plug(&plug);
674 
675 	lru_add_drain();	/* Push any new pages onto the LRU now */
676 skip:
677 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
678 }
679 
680 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
681 {
682 	struct address_space *spaces, *space;
683 	unsigned int i, nr;
684 
685 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
686 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
687 	if (!spaces)
688 		return -ENOMEM;
689 	for (i = 0; i < nr; i++) {
690 		space = spaces + i;
691 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
692 		atomic_set(&space->i_mmap_writable, 0);
693 		space->a_ops = &swap_aops;
694 		/* swap cache doesn't use writeback related tags */
695 		mapping_set_no_writeback_tags(space);
696 	}
697 	nr_swapper_spaces[type] = nr;
698 	swapper_spaces[type] = spaces;
699 
700 	return 0;
701 }
702 
703 void exit_swap_address_space(unsigned int type)
704 {
705 	kvfree(swapper_spaces[type]);
706 	nr_swapper_spaces[type] = 0;
707 	swapper_spaces[type] = NULL;
708 }
709 
710 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
711 				     unsigned long faddr,
712 				     unsigned long lpfn,
713 				     unsigned long rpfn,
714 				     unsigned long *start,
715 				     unsigned long *end)
716 {
717 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
718 		      PFN_DOWN(faddr & PMD_MASK));
719 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
720 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
721 }
722 
723 static void swap_ra_info(struct vm_fault *vmf,
724 			struct vma_swap_readahead *ra_info)
725 {
726 	struct vm_area_struct *vma = vmf->vma;
727 	unsigned long ra_val;
728 	swp_entry_t entry;
729 	unsigned long faddr, pfn, fpfn;
730 	unsigned long start, end;
731 	pte_t *pte, *orig_pte;
732 	unsigned int max_win, hits, prev_win, win, left;
733 #ifndef CONFIG_64BIT
734 	pte_t *tpte;
735 #endif
736 
737 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
738 			     SWAP_RA_ORDER_CEILING);
739 	if (max_win == 1) {
740 		ra_info->win = 1;
741 		return;
742 	}
743 
744 	faddr = vmf->address;
745 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
746 	entry = pte_to_swp_entry(*pte);
747 	if ((unlikely(non_swap_entry(entry)))) {
748 		pte_unmap(orig_pte);
749 		return;
750 	}
751 
752 	fpfn = PFN_DOWN(faddr);
753 	ra_val = GET_SWAP_RA_VAL(vma);
754 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
755 	prev_win = SWAP_RA_WIN(ra_val);
756 	hits = SWAP_RA_HITS(ra_val);
757 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
758 					       max_win, prev_win);
759 	atomic_long_set(&vma->swap_readahead_info,
760 			SWAP_RA_VAL(faddr, win, 0));
761 
762 	if (win == 1) {
763 		pte_unmap(orig_pte);
764 		return;
765 	}
766 
767 	/* Copy the PTEs because the page table may be unmapped */
768 	if (fpfn == pfn + 1)
769 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
770 	else if (pfn == fpfn + 1)
771 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
772 				  &start, &end);
773 	else {
774 		left = (win - 1) / 2;
775 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
776 				  &start, &end);
777 	}
778 	ra_info->nr_pte = end - start;
779 	ra_info->offset = fpfn - start;
780 	pte -= ra_info->offset;
781 #ifdef CONFIG_64BIT
782 	ra_info->ptes = pte;
783 #else
784 	tpte = ra_info->ptes;
785 	for (pfn = start; pfn != end; pfn++)
786 		*tpte++ = *pte++;
787 #endif
788 	pte_unmap(orig_pte);
789 }
790 
791 /**
792  * swap_vma_readahead - swap in pages in hope we need them soon
793  * @fentry: swap entry of this memory
794  * @gfp_mask: memory allocation flags
795  * @vmf: fault information
796  *
797  * Returns the struct page for entry and addr, after queueing swapin.
798  *
799  * Primitive swap readahead code. We simply read in a few pages whoes
800  * virtual addresses are around the fault address in the same vma.
801  *
802  * Caller must hold read mmap_lock if vmf->vma is not NULL.
803  *
804  */
805 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
806 				       struct vm_fault *vmf)
807 {
808 	struct blk_plug plug;
809 	struct vm_area_struct *vma = vmf->vma;
810 	struct page *page;
811 	pte_t *pte, pentry;
812 	swp_entry_t entry;
813 	unsigned int i;
814 	bool page_allocated;
815 	struct vma_swap_readahead ra_info = {
816 		.win = 1,
817 	};
818 
819 	swap_ra_info(vmf, &ra_info);
820 	if (ra_info.win == 1)
821 		goto skip;
822 
823 	blk_start_plug(&plug);
824 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
825 	     i++, pte++) {
826 		pentry = *pte;
827 		if (pte_none(pentry))
828 			continue;
829 		if (pte_present(pentry))
830 			continue;
831 		entry = pte_to_swp_entry(pentry);
832 		if (unlikely(non_swap_entry(entry)))
833 			continue;
834 		page = __read_swap_cache_async(entry, gfp_mask, vma,
835 					       vmf->address, &page_allocated);
836 		if (!page)
837 			continue;
838 		if (page_allocated) {
839 			swap_readpage(page, false);
840 			if (i != ra_info.offset) {
841 				SetPageReadahead(page);
842 				count_vm_event(SWAP_RA);
843 			}
844 		}
845 		put_page(page);
846 	}
847 	blk_finish_plug(&plug);
848 	lru_add_drain();
849 skip:
850 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
851 				     ra_info.win == 1);
852 }
853 
854 /**
855  * swapin_readahead - swap in pages in hope we need them soon
856  * @entry: swap entry of this memory
857  * @gfp_mask: memory allocation flags
858  * @vmf: fault information
859  *
860  * Returns the struct page for entry and addr, after queueing swapin.
861  *
862  * It's a main entry function for swap readahead. By the configuration,
863  * it will read ahead blocks by cluster-based(ie, physical disk based)
864  * or vma-based(ie, virtual address based on faulty address) readahead.
865  */
866 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
867 				struct vm_fault *vmf)
868 {
869 	return swap_use_vma_readahead() ?
870 			swap_vma_readahead(entry, gfp_mask, vmf) :
871 			swap_cluster_readahead(entry, gfp_mask, vmf);
872 }
873 
874 #ifdef CONFIG_SYSFS
875 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
876 				     struct kobj_attribute *attr, char *buf)
877 {
878 	return sysfs_emit(buf, "%s\n",
879 			  enable_vma_readahead ? "true" : "false");
880 }
881 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
882 				      struct kobj_attribute *attr,
883 				      const char *buf, size_t count)
884 {
885 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
886 		enable_vma_readahead = true;
887 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
888 		enable_vma_readahead = false;
889 	else
890 		return -EINVAL;
891 
892 	return count;
893 }
894 static struct kobj_attribute vma_ra_enabled_attr =
895 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
896 	       vma_ra_enabled_store);
897 
898 static struct attribute *swap_attrs[] = {
899 	&vma_ra_enabled_attr.attr,
900 	NULL,
901 };
902 
903 static const struct attribute_group swap_attr_group = {
904 	.attrs = swap_attrs,
905 };
906 
907 static int __init swap_init_sysfs(void)
908 {
909 	int err;
910 	struct kobject *swap_kobj;
911 
912 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
913 	if (!swap_kobj) {
914 		pr_err("failed to create swap kobject\n");
915 		return -ENOMEM;
916 	}
917 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
918 	if (err) {
919 		pr_err("failed to register swap group\n");
920 		goto delete_obj;
921 	}
922 	return 0;
923 
924 delete_obj:
925 	kobject_put(swap_kobj);
926 	return err;
927 }
928 subsys_initcall(swap_init_sysfs);
929 #endif
930