xref: /openbmc/linux/mm/swap_state.c (revision 8fdff1dc)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list.
27  */
28 static const struct address_space_operations swap_aops = {
29 	.writepage	= swap_writepage,
30 	.set_page_dirty	= swap_set_page_dirty,
31 	.migratepage	= migrate_page,
32 };
33 
34 static struct backing_dev_info swap_backing_dev_info = {
35 	.name		= "swap",
36 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37 };
38 
39 struct address_space swapper_space = {
40 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
41 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
42 	.a_ops		= &swap_aops,
43 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
44 	.backing_dev_info = &swap_backing_dev_info,
45 };
46 
47 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
48 
49 static struct {
50 	unsigned long add_total;
51 	unsigned long del_total;
52 	unsigned long find_success;
53 	unsigned long find_total;
54 } swap_cache_info;
55 
56 void show_swap_cache_info(void)
57 {
58 	printk("%lu pages in swap cache\n", total_swapcache_pages);
59 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
60 		swap_cache_info.add_total, swap_cache_info.del_total,
61 		swap_cache_info.find_success, swap_cache_info.find_total);
62 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
63 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
64 }
65 
66 /*
67  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
68  * but sets SwapCache flag and private instead of mapping and index.
69  */
70 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
71 {
72 	int error;
73 
74 	VM_BUG_ON(!PageLocked(page));
75 	VM_BUG_ON(PageSwapCache(page));
76 	VM_BUG_ON(!PageSwapBacked(page));
77 
78 	page_cache_get(page);
79 	SetPageSwapCache(page);
80 	set_page_private(page, entry.val);
81 
82 	spin_lock_irq(&swapper_space.tree_lock);
83 	error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
84 	if (likely(!error)) {
85 		total_swapcache_pages++;
86 		__inc_zone_page_state(page, NR_FILE_PAGES);
87 		INC_CACHE_INFO(add_total);
88 	}
89 	spin_unlock_irq(&swapper_space.tree_lock);
90 
91 	if (unlikely(error)) {
92 		/*
93 		 * Only the context which have set SWAP_HAS_CACHE flag
94 		 * would call add_to_swap_cache().
95 		 * So add_to_swap_cache() doesn't returns -EEXIST.
96 		 */
97 		VM_BUG_ON(error == -EEXIST);
98 		set_page_private(page, 0UL);
99 		ClearPageSwapCache(page);
100 		page_cache_release(page);
101 	}
102 
103 	return error;
104 }
105 
106 
107 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
108 {
109 	int error;
110 
111 	error = radix_tree_preload(gfp_mask);
112 	if (!error) {
113 		error = __add_to_swap_cache(page, entry);
114 		radix_tree_preload_end();
115 	}
116 	return error;
117 }
118 
119 /*
120  * This must be called only on pages that have
121  * been verified to be in the swap cache.
122  */
123 void __delete_from_swap_cache(struct page *page)
124 {
125 	VM_BUG_ON(!PageLocked(page));
126 	VM_BUG_ON(!PageSwapCache(page));
127 	VM_BUG_ON(PageWriteback(page));
128 
129 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
130 	set_page_private(page, 0);
131 	ClearPageSwapCache(page);
132 	total_swapcache_pages--;
133 	__dec_zone_page_state(page, NR_FILE_PAGES);
134 	INC_CACHE_INFO(del_total);
135 }
136 
137 /**
138  * add_to_swap - allocate swap space for a page
139  * @page: page we want to move to swap
140  *
141  * Allocate swap space for the page and add the page to the
142  * swap cache.  Caller needs to hold the page lock.
143  */
144 int add_to_swap(struct page *page)
145 {
146 	swp_entry_t entry;
147 	int err;
148 
149 	VM_BUG_ON(!PageLocked(page));
150 	VM_BUG_ON(!PageUptodate(page));
151 
152 	entry = get_swap_page();
153 	if (!entry.val)
154 		return 0;
155 
156 	if (unlikely(PageTransHuge(page)))
157 		if (unlikely(split_huge_page(page))) {
158 			swapcache_free(entry, NULL);
159 			return 0;
160 		}
161 
162 	/*
163 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
164 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
165 	 * stops emergency reserves from being allocated.
166 	 *
167 	 * TODO: this could cause a theoretical memory reclaim
168 	 * deadlock in the swap out path.
169 	 */
170 	/*
171 	 * Add it to the swap cache and mark it dirty
172 	 */
173 	err = add_to_swap_cache(page, entry,
174 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
175 
176 	if (!err) {	/* Success */
177 		SetPageDirty(page);
178 		return 1;
179 	} else {	/* -ENOMEM radix-tree allocation failure */
180 		/*
181 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
182 		 * clear SWAP_HAS_CACHE flag.
183 		 */
184 		swapcache_free(entry, NULL);
185 		return 0;
186 	}
187 }
188 
189 /*
190  * This must be called only on pages that have
191  * been verified to be in the swap cache and locked.
192  * It will never put the page into the free list,
193  * the caller has a reference on the page.
194  */
195 void delete_from_swap_cache(struct page *page)
196 {
197 	swp_entry_t entry;
198 
199 	entry.val = page_private(page);
200 
201 	spin_lock_irq(&swapper_space.tree_lock);
202 	__delete_from_swap_cache(page);
203 	spin_unlock_irq(&swapper_space.tree_lock);
204 
205 	swapcache_free(entry, page);
206 	page_cache_release(page);
207 }
208 
209 /*
210  * If we are the only user, then try to free up the swap cache.
211  *
212  * Its ok to check for PageSwapCache without the page lock
213  * here because we are going to recheck again inside
214  * try_to_free_swap() _with_ the lock.
215  * 					- Marcelo
216  */
217 static inline void free_swap_cache(struct page *page)
218 {
219 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
220 		try_to_free_swap(page);
221 		unlock_page(page);
222 	}
223 }
224 
225 /*
226  * Perform a free_page(), also freeing any swap cache associated with
227  * this page if it is the last user of the page.
228  */
229 void free_page_and_swap_cache(struct page *page)
230 {
231 	free_swap_cache(page);
232 	page_cache_release(page);
233 }
234 
235 /*
236  * Passed an array of pages, drop them all from swapcache and then release
237  * them.  They are removed from the LRU and freed if this is their last use.
238  */
239 void free_pages_and_swap_cache(struct page **pages, int nr)
240 {
241 	struct page **pagep = pages;
242 
243 	lru_add_drain();
244 	while (nr) {
245 		int todo = min(nr, PAGEVEC_SIZE);
246 		int i;
247 
248 		for (i = 0; i < todo; i++)
249 			free_swap_cache(pagep[i]);
250 		release_pages(pagep, todo, 0);
251 		pagep += todo;
252 		nr -= todo;
253 	}
254 }
255 
256 /*
257  * Lookup a swap entry in the swap cache. A found page will be returned
258  * unlocked and with its refcount incremented - we rely on the kernel
259  * lock getting page table operations atomic even if we drop the page
260  * lock before returning.
261  */
262 struct page * lookup_swap_cache(swp_entry_t entry)
263 {
264 	struct page *page;
265 
266 	page = find_get_page(&swapper_space, entry.val);
267 
268 	if (page)
269 		INC_CACHE_INFO(find_success);
270 
271 	INC_CACHE_INFO(find_total);
272 	return page;
273 }
274 
275 /*
276  * Locate a page of swap in physical memory, reserving swap cache space
277  * and reading the disk if it is not already cached.
278  * A failure return means that either the page allocation failed or that
279  * the swap entry is no longer in use.
280  */
281 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
282 			struct vm_area_struct *vma, unsigned long addr)
283 {
284 	struct page *found_page, *new_page = NULL;
285 	int err;
286 
287 	do {
288 		/*
289 		 * First check the swap cache.  Since this is normally
290 		 * called after lookup_swap_cache() failed, re-calling
291 		 * that would confuse statistics.
292 		 */
293 		found_page = find_get_page(&swapper_space, entry.val);
294 		if (found_page)
295 			break;
296 
297 		/*
298 		 * Get a new page to read into from swap.
299 		 */
300 		if (!new_page) {
301 			new_page = alloc_page_vma(gfp_mask, vma, addr);
302 			if (!new_page)
303 				break;		/* Out of memory */
304 		}
305 
306 		/*
307 		 * call radix_tree_preload() while we can wait.
308 		 */
309 		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
310 		if (err)
311 			break;
312 
313 		/*
314 		 * Swap entry may have been freed since our caller observed it.
315 		 */
316 		err = swapcache_prepare(entry);
317 		if (err == -EEXIST) {	/* seems racy */
318 			radix_tree_preload_end();
319 			continue;
320 		}
321 		if (err) {		/* swp entry is obsolete ? */
322 			radix_tree_preload_end();
323 			break;
324 		}
325 
326 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
327 		__set_page_locked(new_page);
328 		SetPageSwapBacked(new_page);
329 		err = __add_to_swap_cache(new_page, entry);
330 		if (likely(!err)) {
331 			radix_tree_preload_end();
332 			/*
333 			 * Initiate read into locked page and return.
334 			 */
335 			lru_cache_add_anon(new_page);
336 			swap_readpage(new_page);
337 			return new_page;
338 		}
339 		radix_tree_preload_end();
340 		ClearPageSwapBacked(new_page);
341 		__clear_page_locked(new_page);
342 		/*
343 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
344 		 * clear SWAP_HAS_CACHE flag.
345 		 */
346 		swapcache_free(entry, NULL);
347 	} while (err != -ENOMEM);
348 
349 	if (new_page)
350 		page_cache_release(new_page);
351 	return found_page;
352 }
353 
354 /**
355  * swapin_readahead - swap in pages in hope we need them soon
356  * @entry: swap entry of this memory
357  * @gfp_mask: memory allocation flags
358  * @vma: user vma this address belongs to
359  * @addr: target address for mempolicy
360  *
361  * Returns the struct page for entry and addr, after queueing swapin.
362  *
363  * Primitive swap readahead code. We simply read an aligned block of
364  * (1 << page_cluster) entries in the swap area. This method is chosen
365  * because it doesn't cost us any seek time.  We also make sure to queue
366  * the 'original' request together with the readahead ones...
367  *
368  * This has been extended to use the NUMA policies from the mm triggering
369  * the readahead.
370  *
371  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
372  */
373 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
374 			struct vm_area_struct *vma, unsigned long addr)
375 {
376 	struct page *page;
377 	unsigned long offset = swp_offset(entry);
378 	unsigned long start_offset, end_offset;
379 	unsigned long mask = (1UL << page_cluster) - 1;
380 	struct blk_plug plug;
381 
382 	/* Read a page_cluster sized and aligned cluster around offset. */
383 	start_offset = offset & ~mask;
384 	end_offset = offset | mask;
385 	if (!start_offset)	/* First page is swap header. */
386 		start_offset++;
387 
388 	blk_start_plug(&plug);
389 	for (offset = start_offset; offset <= end_offset ; offset++) {
390 		/* Ok, do the async read-ahead now */
391 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
392 						gfp_mask, vma, addr);
393 		if (!page)
394 			continue;
395 		page_cache_release(page);
396 	}
397 	blk_finish_plug(&plug);
398 
399 	lru_add_drain();	/* Push any new pages onto the LRU now */
400 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
401 }
402