1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/mm.h> 10 #include <linux/gfp.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev.h> 17 #include <linux/blkdev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 21 #include <asm/pgtable.h> 22 23 /* 24 * swapper_space is a fiction, retained to simplify the path through 25 * vmscan's shrink_page_list. 26 */ 27 static const struct address_space_operations swap_aops = { 28 .writepage = swap_writepage, 29 .set_page_dirty = swap_set_page_dirty, 30 #ifdef CONFIG_MIGRATION 31 .migratepage = migrate_page, 32 #endif 33 }; 34 35 static struct backing_dev_info swap_backing_dev_info = { 36 .name = "swap", 37 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 38 }; 39 40 struct address_space swapper_spaces[MAX_SWAPFILES] = { 41 [0 ... MAX_SWAPFILES - 1] = { 42 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 43 .i_mmap_writable = ATOMIC_INIT(0), 44 .a_ops = &swap_aops, 45 .backing_dev_info = &swap_backing_dev_info, 46 } 47 }; 48 49 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 50 51 static struct { 52 unsigned long add_total; 53 unsigned long del_total; 54 unsigned long find_success; 55 unsigned long find_total; 56 } swap_cache_info; 57 58 unsigned long total_swapcache_pages(void) 59 { 60 int i; 61 unsigned long ret = 0; 62 63 for (i = 0; i < MAX_SWAPFILES; i++) 64 ret += swapper_spaces[i].nrpages; 65 return ret; 66 } 67 68 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 69 70 void show_swap_cache_info(void) 71 { 72 printk("%lu pages in swap cache\n", total_swapcache_pages()); 73 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 74 swap_cache_info.add_total, swap_cache_info.del_total, 75 swap_cache_info.find_success, swap_cache_info.find_total); 76 printk("Free swap = %ldkB\n", 77 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 78 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 79 } 80 81 /* 82 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 83 * but sets SwapCache flag and private instead of mapping and index. 84 */ 85 int __add_to_swap_cache(struct page *page, swp_entry_t entry) 86 { 87 int error; 88 struct address_space *address_space; 89 90 VM_BUG_ON_PAGE(!PageLocked(page), page); 91 VM_BUG_ON_PAGE(PageSwapCache(page), page); 92 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 93 94 page_cache_get(page); 95 SetPageSwapCache(page); 96 set_page_private(page, entry.val); 97 98 address_space = swap_address_space(entry); 99 spin_lock_irq(&address_space->tree_lock); 100 error = radix_tree_insert(&address_space->page_tree, 101 entry.val, page); 102 if (likely(!error)) { 103 address_space->nrpages++; 104 __inc_zone_page_state(page, NR_FILE_PAGES); 105 INC_CACHE_INFO(add_total); 106 } 107 spin_unlock_irq(&address_space->tree_lock); 108 109 if (unlikely(error)) { 110 /* 111 * Only the context which have set SWAP_HAS_CACHE flag 112 * would call add_to_swap_cache(). 113 * So add_to_swap_cache() doesn't returns -EEXIST. 114 */ 115 VM_BUG_ON(error == -EEXIST); 116 set_page_private(page, 0UL); 117 ClearPageSwapCache(page); 118 page_cache_release(page); 119 } 120 121 return error; 122 } 123 124 125 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 126 { 127 int error; 128 129 error = radix_tree_maybe_preload(gfp_mask); 130 if (!error) { 131 error = __add_to_swap_cache(page, entry); 132 radix_tree_preload_end(); 133 } 134 return error; 135 } 136 137 /* 138 * This must be called only on pages that have 139 * been verified to be in the swap cache. 140 */ 141 void __delete_from_swap_cache(struct page *page) 142 { 143 swp_entry_t entry; 144 struct address_space *address_space; 145 146 VM_BUG_ON_PAGE(!PageLocked(page), page); 147 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 148 VM_BUG_ON_PAGE(PageWriteback(page), page); 149 150 entry.val = page_private(page); 151 address_space = swap_address_space(entry); 152 radix_tree_delete(&address_space->page_tree, page_private(page)); 153 set_page_private(page, 0); 154 ClearPageSwapCache(page); 155 address_space->nrpages--; 156 __dec_zone_page_state(page, NR_FILE_PAGES); 157 INC_CACHE_INFO(del_total); 158 } 159 160 /** 161 * add_to_swap - allocate swap space for a page 162 * @page: page we want to move to swap 163 * 164 * Allocate swap space for the page and add the page to the 165 * swap cache. Caller needs to hold the page lock. 166 */ 167 int add_to_swap(struct page *page, struct list_head *list) 168 { 169 swp_entry_t entry; 170 int err; 171 172 VM_BUG_ON_PAGE(!PageLocked(page), page); 173 VM_BUG_ON_PAGE(!PageUptodate(page), page); 174 175 entry = get_swap_page(); 176 if (!entry.val) 177 return 0; 178 179 if (unlikely(PageTransHuge(page))) 180 if (unlikely(split_huge_page_to_list(page, list))) { 181 swapcache_free(entry); 182 return 0; 183 } 184 185 /* 186 * Radix-tree node allocations from PF_MEMALLOC contexts could 187 * completely exhaust the page allocator. __GFP_NOMEMALLOC 188 * stops emergency reserves from being allocated. 189 * 190 * TODO: this could cause a theoretical memory reclaim 191 * deadlock in the swap out path. 192 */ 193 /* 194 * Add it to the swap cache and mark it dirty 195 */ 196 err = add_to_swap_cache(page, entry, 197 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 198 199 if (!err) { /* Success */ 200 SetPageDirty(page); 201 return 1; 202 } else { /* -ENOMEM radix-tree allocation failure */ 203 /* 204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 205 * clear SWAP_HAS_CACHE flag. 206 */ 207 swapcache_free(entry); 208 return 0; 209 } 210 } 211 212 /* 213 * This must be called only on pages that have 214 * been verified to be in the swap cache and locked. 215 * It will never put the page into the free list, 216 * the caller has a reference on the page. 217 */ 218 void delete_from_swap_cache(struct page *page) 219 { 220 swp_entry_t entry; 221 struct address_space *address_space; 222 223 entry.val = page_private(page); 224 225 address_space = swap_address_space(entry); 226 spin_lock_irq(&address_space->tree_lock); 227 __delete_from_swap_cache(page); 228 spin_unlock_irq(&address_space->tree_lock); 229 230 swapcache_free(entry); 231 page_cache_release(page); 232 } 233 234 /* 235 * If we are the only user, then try to free up the swap cache. 236 * 237 * Its ok to check for PageSwapCache without the page lock 238 * here because we are going to recheck again inside 239 * try_to_free_swap() _with_ the lock. 240 * - Marcelo 241 */ 242 static inline void free_swap_cache(struct page *page) 243 { 244 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 245 try_to_free_swap(page); 246 unlock_page(page); 247 } 248 } 249 250 /* 251 * Perform a free_page(), also freeing any swap cache associated with 252 * this page if it is the last user of the page. 253 */ 254 void free_page_and_swap_cache(struct page *page) 255 { 256 free_swap_cache(page); 257 page_cache_release(page); 258 } 259 260 /* 261 * Passed an array of pages, drop them all from swapcache and then release 262 * them. They are removed from the LRU and freed if this is their last use. 263 */ 264 void free_pages_and_swap_cache(struct page **pages, int nr) 265 { 266 struct page **pagep = pages; 267 int i; 268 269 lru_add_drain(); 270 for (i = 0; i < nr; i++) 271 free_swap_cache(pagep[i]); 272 release_pages(pagep, nr, false); 273 } 274 275 /* 276 * Lookup a swap entry in the swap cache. A found page will be returned 277 * unlocked and with its refcount incremented - we rely on the kernel 278 * lock getting page table operations atomic even if we drop the page 279 * lock before returning. 280 */ 281 struct page * lookup_swap_cache(swp_entry_t entry) 282 { 283 struct page *page; 284 285 page = find_get_page(swap_address_space(entry), entry.val); 286 287 if (page) { 288 INC_CACHE_INFO(find_success); 289 if (TestClearPageReadahead(page)) 290 atomic_inc(&swapin_readahead_hits); 291 } 292 293 INC_CACHE_INFO(find_total); 294 return page; 295 } 296 297 /* 298 * Locate a page of swap in physical memory, reserving swap cache space 299 * and reading the disk if it is not already cached. 300 * A failure return means that either the page allocation failed or that 301 * the swap entry is no longer in use. 302 */ 303 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 304 struct vm_area_struct *vma, unsigned long addr) 305 { 306 struct page *found_page, *new_page = NULL; 307 int err; 308 309 do { 310 /* 311 * First check the swap cache. Since this is normally 312 * called after lookup_swap_cache() failed, re-calling 313 * that would confuse statistics. 314 */ 315 found_page = find_get_page(swap_address_space(entry), 316 entry.val); 317 if (found_page) 318 break; 319 320 /* 321 * Get a new page to read into from swap. 322 */ 323 if (!new_page) { 324 new_page = alloc_page_vma(gfp_mask, vma, addr); 325 if (!new_page) 326 break; /* Out of memory */ 327 } 328 329 /* 330 * call radix_tree_preload() while we can wait. 331 */ 332 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); 333 if (err) 334 break; 335 336 /* 337 * Swap entry may have been freed since our caller observed it. 338 */ 339 err = swapcache_prepare(entry); 340 if (err == -EEXIST) { 341 radix_tree_preload_end(); 342 /* 343 * We might race against get_swap_page() and stumble 344 * across a SWAP_HAS_CACHE swap_map entry whose page 345 * has not been brought into the swapcache yet, while 346 * the other end is scheduled away waiting on discard 347 * I/O completion at scan_swap_map(). 348 * 349 * In order to avoid turning this transitory state 350 * into a permanent loop around this -EEXIST case 351 * if !CONFIG_PREEMPT and the I/O completion happens 352 * to be waiting on the CPU waitqueue where we are now 353 * busy looping, we just conditionally invoke the 354 * scheduler here, if there are some more important 355 * tasks to run. 356 */ 357 cond_resched(); 358 continue; 359 } 360 if (err) { /* swp entry is obsolete ? */ 361 radix_tree_preload_end(); 362 break; 363 } 364 365 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 366 __set_page_locked(new_page); 367 SetPageSwapBacked(new_page); 368 err = __add_to_swap_cache(new_page, entry); 369 if (likely(!err)) { 370 radix_tree_preload_end(); 371 /* 372 * Initiate read into locked page and return. 373 */ 374 lru_cache_add_anon(new_page); 375 swap_readpage(new_page); 376 return new_page; 377 } 378 radix_tree_preload_end(); 379 ClearPageSwapBacked(new_page); 380 __clear_page_locked(new_page); 381 /* 382 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 383 * clear SWAP_HAS_CACHE flag. 384 */ 385 swapcache_free(entry); 386 } while (err != -ENOMEM); 387 388 if (new_page) 389 page_cache_release(new_page); 390 return found_page; 391 } 392 393 static unsigned long swapin_nr_pages(unsigned long offset) 394 { 395 static unsigned long prev_offset; 396 unsigned int pages, max_pages, last_ra; 397 static atomic_t last_readahead_pages; 398 399 max_pages = 1 << ACCESS_ONCE(page_cluster); 400 if (max_pages <= 1) 401 return 1; 402 403 /* 404 * This heuristic has been found to work well on both sequential and 405 * random loads, swapping to hard disk or to SSD: please don't ask 406 * what the "+ 2" means, it just happens to work well, that's all. 407 */ 408 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2; 409 if (pages == 2) { 410 /* 411 * We can have no readahead hits to judge by: but must not get 412 * stuck here forever, so check for an adjacent offset instead 413 * (and don't even bother to check whether swap type is same). 414 */ 415 if (offset != prev_offset + 1 && offset != prev_offset - 1) 416 pages = 1; 417 prev_offset = offset; 418 } else { 419 unsigned int roundup = 4; 420 while (roundup < pages) 421 roundup <<= 1; 422 pages = roundup; 423 } 424 425 if (pages > max_pages) 426 pages = max_pages; 427 428 /* Don't shrink readahead too fast */ 429 last_ra = atomic_read(&last_readahead_pages) / 2; 430 if (pages < last_ra) 431 pages = last_ra; 432 atomic_set(&last_readahead_pages, pages); 433 434 return pages; 435 } 436 437 /** 438 * swapin_readahead - swap in pages in hope we need them soon 439 * @entry: swap entry of this memory 440 * @gfp_mask: memory allocation flags 441 * @vma: user vma this address belongs to 442 * @addr: target address for mempolicy 443 * 444 * Returns the struct page for entry and addr, after queueing swapin. 445 * 446 * Primitive swap readahead code. We simply read an aligned block of 447 * (1 << page_cluster) entries in the swap area. This method is chosen 448 * because it doesn't cost us any seek time. We also make sure to queue 449 * the 'original' request together with the readahead ones... 450 * 451 * This has been extended to use the NUMA policies from the mm triggering 452 * the readahead. 453 * 454 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 455 */ 456 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 457 struct vm_area_struct *vma, unsigned long addr) 458 { 459 struct page *page; 460 unsigned long entry_offset = swp_offset(entry); 461 unsigned long offset = entry_offset; 462 unsigned long start_offset, end_offset; 463 unsigned long mask; 464 struct blk_plug plug; 465 466 mask = swapin_nr_pages(offset) - 1; 467 if (!mask) 468 goto skip; 469 470 /* Read a page_cluster sized and aligned cluster around offset. */ 471 start_offset = offset & ~mask; 472 end_offset = offset | mask; 473 if (!start_offset) /* First page is swap header. */ 474 start_offset++; 475 476 blk_start_plug(&plug); 477 for (offset = start_offset; offset <= end_offset ; offset++) { 478 /* Ok, do the async read-ahead now */ 479 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 480 gfp_mask, vma, addr); 481 if (!page) 482 continue; 483 if (offset != entry_offset) 484 SetPageReadahead(page); 485 page_cache_release(page); 486 } 487 blk_finish_plug(&plug); 488 489 lru_add_drain(); /* Push any new pages onto the LRU now */ 490 skip: 491 return read_swap_cache_async(entry, gfp_mask, vma, addr); 492 } 493