xref: /openbmc/linux/mm/swap_state.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include "internal.h"
25 
26 /*
27  * swapper_space is a fiction, retained to simplify the path through
28  * vmscan's shrink_page_list.
29  */
30 static const struct address_space_operations swap_aops = {
31 	.writepage	= swap_writepage,
32 	.set_page_dirty	= swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 	.migratepage	= migrate_page,
35 #endif
36 };
37 
38 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static bool enable_vma_readahead __read_mostly = true;
41 
42 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
43 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
44 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
45 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
46 
47 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
48 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
49 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
50 
51 #define SWAP_RA_VAL(addr, win, hits)				\
52 	(((addr) & PAGE_MASK) |					\
53 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
54 	 ((hits) & SWAP_RA_HITS_MASK))
55 
56 /* Initial readahead hits is 4 to start up with a small window */
57 #define GET_SWAP_RA_VAL(vma)					\
58 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
59 
60 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
61 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
62 
63 static struct {
64 	unsigned long add_total;
65 	unsigned long del_total;
66 	unsigned long find_success;
67 	unsigned long find_total;
68 } swap_cache_info;
69 
70 unsigned long total_swapcache_pages(void)
71 {
72 	unsigned int i, j, nr;
73 	unsigned long ret = 0;
74 	struct address_space *spaces;
75 	struct swap_info_struct *si;
76 
77 	for (i = 0; i < MAX_SWAPFILES; i++) {
78 		swp_entry_t entry = swp_entry(i, 1);
79 
80 		/* Avoid get_swap_device() to warn for bad swap entry */
81 		if (!swp_swap_info(entry))
82 			continue;
83 		/* Prevent swapoff to free swapper_spaces */
84 		si = get_swap_device(entry);
85 		if (!si)
86 			continue;
87 		nr = nr_swapper_spaces[i];
88 		spaces = swapper_spaces[i];
89 		for (j = 0; j < nr; j++)
90 			ret += spaces[j].nrpages;
91 		put_swap_device(si);
92 	}
93 	return ret;
94 }
95 
96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97 
98 void show_swap_cache_info(void)
99 {
100 	printk("%lu pages in swap cache\n", total_swapcache_pages());
101 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 		swap_cache_info.add_total, swap_cache_info.del_total,
103 		swap_cache_info.find_success, swap_cache_info.find_total);
104 	printk("Free swap  = %ldkB\n",
105 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
106 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107 }
108 
109 /*
110  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111  * but sets SwapCache flag and private instead of mapping and index.
112  */
113 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
114 {
115 	struct address_space *address_space = swap_address_space(entry);
116 	pgoff_t idx = swp_offset(entry);
117 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
118 	unsigned long i, nr = hpage_nr_pages(page);
119 
120 	VM_BUG_ON_PAGE(!PageLocked(page), page);
121 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
122 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
123 
124 	page_ref_add(page, nr);
125 	SetPageSwapCache(page);
126 
127 	do {
128 		xas_lock_irq(&xas);
129 		xas_create_range(&xas);
130 		if (xas_error(&xas))
131 			goto unlock;
132 		for (i = 0; i < nr; i++) {
133 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
134 			set_page_private(page + i, entry.val + i);
135 			xas_store(&xas, page);
136 			xas_next(&xas);
137 		}
138 		address_space->nrpages += nr;
139 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
140 		ADD_CACHE_INFO(add_total, nr);
141 unlock:
142 		xas_unlock_irq(&xas);
143 	} while (xas_nomem(&xas, gfp));
144 
145 	if (!xas_error(&xas))
146 		return 0;
147 
148 	ClearPageSwapCache(page);
149 	page_ref_sub(page, nr);
150 	return xas_error(&xas);
151 }
152 
153 /*
154  * This must be called only on pages that have
155  * been verified to be in the swap cache.
156  */
157 void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
158 {
159 	struct address_space *address_space = swap_address_space(entry);
160 	int i, nr = hpage_nr_pages(page);
161 	pgoff_t idx = swp_offset(entry);
162 	XA_STATE(xas, &address_space->i_pages, idx);
163 
164 	VM_BUG_ON_PAGE(!PageLocked(page), page);
165 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 	VM_BUG_ON_PAGE(PageWriteback(page), page);
167 
168 	for (i = 0; i < nr; i++) {
169 		void *entry = xas_store(&xas, NULL);
170 		VM_BUG_ON_PAGE(entry != page, entry);
171 		set_page_private(page + i, 0);
172 		xas_next(&xas);
173 	}
174 	ClearPageSwapCache(page);
175 	address_space->nrpages -= nr;
176 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
177 	ADD_CACHE_INFO(del_total, nr);
178 }
179 
180 /**
181  * add_to_swap - allocate swap space for a page
182  * @page: page we want to move to swap
183  *
184  * Allocate swap space for the page and add the page to the
185  * swap cache.  Caller needs to hold the page lock.
186  */
187 int add_to_swap(struct page *page)
188 {
189 	swp_entry_t entry;
190 	int err;
191 
192 	VM_BUG_ON_PAGE(!PageLocked(page), page);
193 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
194 
195 	entry = get_swap_page(page);
196 	if (!entry.val)
197 		return 0;
198 
199 	/*
200 	 * XArray node allocations from PF_MEMALLOC contexts could
201 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
202 	 * stops emergency reserves from being allocated.
203 	 *
204 	 * TODO: this could cause a theoretical memory reclaim
205 	 * deadlock in the swap out path.
206 	 */
207 	/*
208 	 * Add it to the swap cache.
209 	 */
210 	err = add_to_swap_cache(page, entry,
211 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
212 	if (err)
213 		/*
214 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 		 * clear SWAP_HAS_CACHE flag.
216 		 */
217 		goto fail;
218 	/*
219 	 * Normally the page will be dirtied in unmap because its pte should be
220 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
221 	 * dirty bit cleared but the page's SwapBacked bit is still set because
222 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
223 	 * such page, unmap will not set dirty bit for it, so page reclaim will
224 	 * not write the page out. This can cause data corruption when the page
225 	 * is swap in later. Always setting the dirty bit for the page solves
226 	 * the problem.
227 	 */
228 	set_page_dirty(page);
229 
230 	return 1;
231 
232 fail:
233 	put_swap_page(page, entry);
234 	return 0;
235 }
236 
237 /*
238  * This must be called only on pages that have
239  * been verified to be in the swap cache and locked.
240  * It will never put the page into the free list,
241  * the caller has a reference on the page.
242  */
243 void delete_from_swap_cache(struct page *page)
244 {
245 	swp_entry_t entry = { .val = page_private(page) };
246 	struct address_space *address_space = swap_address_space(entry);
247 
248 	xa_lock_irq(&address_space->i_pages);
249 	__delete_from_swap_cache(page, entry);
250 	xa_unlock_irq(&address_space->i_pages);
251 
252 	put_swap_page(page, entry);
253 	page_ref_sub(page, hpage_nr_pages(page));
254 }
255 
256 /*
257  * If we are the only user, then try to free up the swap cache.
258  *
259  * Its ok to check for PageSwapCache without the page lock
260  * here because we are going to recheck again inside
261  * try_to_free_swap() _with_ the lock.
262  * 					- Marcelo
263  */
264 static inline void free_swap_cache(struct page *page)
265 {
266 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
267 		try_to_free_swap(page);
268 		unlock_page(page);
269 	}
270 }
271 
272 /*
273  * Perform a free_page(), also freeing any swap cache associated with
274  * this page if it is the last user of the page.
275  */
276 void free_page_and_swap_cache(struct page *page)
277 {
278 	free_swap_cache(page);
279 	if (!is_huge_zero_page(page))
280 		put_page(page);
281 }
282 
283 /*
284  * Passed an array of pages, drop them all from swapcache and then release
285  * them.  They are removed from the LRU and freed if this is their last use.
286  */
287 void free_pages_and_swap_cache(struct page **pages, int nr)
288 {
289 	struct page **pagep = pages;
290 	int i;
291 
292 	lru_add_drain();
293 	for (i = 0; i < nr; i++)
294 		free_swap_cache(pagep[i]);
295 	release_pages(pagep, nr);
296 }
297 
298 static inline bool swap_use_vma_readahead(void)
299 {
300 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
301 }
302 
303 /*
304  * Lookup a swap entry in the swap cache. A found page will be returned
305  * unlocked and with its refcount incremented - we rely on the kernel
306  * lock getting page table operations atomic even if we drop the page
307  * lock before returning.
308  */
309 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
310 			       unsigned long addr)
311 {
312 	struct page *page;
313 	struct swap_info_struct *si;
314 
315 	si = get_swap_device(entry);
316 	if (!si)
317 		return NULL;
318 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
319 	put_swap_device(si);
320 
321 	INC_CACHE_INFO(find_total);
322 	if (page) {
323 		bool vma_ra = swap_use_vma_readahead();
324 		bool readahead;
325 
326 		INC_CACHE_INFO(find_success);
327 		/*
328 		 * At the moment, we don't support PG_readahead for anon THP
329 		 * so let's bail out rather than confusing the readahead stat.
330 		 */
331 		if (unlikely(PageTransCompound(page)))
332 			return page;
333 
334 		readahead = TestClearPageReadahead(page);
335 		if (vma && vma_ra) {
336 			unsigned long ra_val;
337 			int win, hits;
338 
339 			ra_val = GET_SWAP_RA_VAL(vma);
340 			win = SWAP_RA_WIN(ra_val);
341 			hits = SWAP_RA_HITS(ra_val);
342 			if (readahead)
343 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
344 			atomic_long_set(&vma->swap_readahead_info,
345 					SWAP_RA_VAL(addr, win, hits));
346 		}
347 
348 		if (readahead) {
349 			count_vm_event(SWAP_RA_HIT);
350 			if (!vma || !vma_ra)
351 				atomic_inc(&swapin_readahead_hits);
352 		}
353 	}
354 
355 	return page;
356 }
357 
358 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
359 			struct vm_area_struct *vma, unsigned long addr,
360 			bool *new_page_allocated)
361 {
362 	struct swap_info_struct *si;
363 	struct page *page;
364 
365 	*new_page_allocated = false;
366 
367 	for (;;) {
368 		int err;
369 		/*
370 		 * First check the swap cache.  Since this is normally
371 		 * called after lookup_swap_cache() failed, re-calling
372 		 * that would confuse statistics.
373 		 */
374 		si = get_swap_device(entry);
375 		if (!si)
376 			return NULL;
377 		page = find_get_page(swap_address_space(entry),
378 				     swp_offset(entry));
379 		put_swap_device(si);
380 		if (page)
381 			return page;
382 
383 		/*
384 		 * Just skip read ahead for unused swap slot.
385 		 * During swap_off when swap_slot_cache is disabled,
386 		 * we have to handle the race between putting
387 		 * swap entry in swap cache and marking swap slot
388 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
389 		 * else swap_off will be aborted if we return NULL.
390 		 */
391 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
392 			return NULL;
393 
394 		/*
395 		 * Get a new page to read into from swap.  Allocate it now,
396 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
397 		 * cause any racers to loop around until we add it to cache.
398 		 */
399 		page = alloc_page_vma(gfp_mask, vma, addr);
400 		if (!page)
401 			return NULL;
402 
403 		/*
404 		 * Swap entry may have been freed since our caller observed it.
405 		 */
406 		err = swapcache_prepare(entry);
407 		if (!err)
408 			break;
409 
410 		put_page(page);
411 		if (err != -EEXIST)
412 			return NULL;
413 
414 		/*
415 		 * We might race against __delete_from_swap_cache(), and
416 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
417 		 * has not yet been cleared.  Or race against another
418 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
419 		 * in swap_map, but not yet added its page to swap cache.
420 		 */
421 		cond_resched();
422 	}
423 
424 	/*
425 	 * The swap entry is ours to swap in. Prepare the new page.
426 	 */
427 
428 	__SetPageLocked(page);
429 	__SetPageSwapBacked(page);
430 
431 	/* May fail (-ENOMEM) if XArray node allocation failed. */
432 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK)) {
433 		put_swap_page(page, entry);
434 		goto fail_unlock;
435 	}
436 
437 	if (mem_cgroup_charge(page, NULL, gfp_mask)) {
438 		delete_from_swap_cache(page);
439 		goto fail_unlock;
440 	}
441 
442 	/* XXX: Move to lru_cache_add() when it supports new vs putback */
443 	spin_lock_irq(&page_pgdat(page)->lru_lock);
444 	lru_note_cost_page(page);
445 	spin_unlock_irq(&page_pgdat(page)->lru_lock);
446 
447 	/* Caller will initiate read into locked page */
448 	SetPageWorkingset(page);
449 	lru_cache_add(page);
450 	*new_page_allocated = true;
451 	return page;
452 
453 fail_unlock:
454 	unlock_page(page);
455 	put_page(page);
456 	return NULL;
457 }
458 
459 /*
460  * Locate a page of swap in physical memory, reserving swap cache space
461  * and reading the disk if it is not already cached.
462  * A failure return means that either the page allocation failed or that
463  * the swap entry is no longer in use.
464  */
465 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
466 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
467 {
468 	bool page_was_allocated;
469 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
470 			vma, addr, &page_was_allocated);
471 
472 	if (page_was_allocated)
473 		swap_readpage(retpage, do_poll);
474 
475 	return retpage;
476 }
477 
478 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
479 				      unsigned long offset,
480 				      int hits,
481 				      int max_pages,
482 				      int prev_win)
483 {
484 	unsigned int pages, last_ra;
485 
486 	/*
487 	 * This heuristic has been found to work well on both sequential and
488 	 * random loads, swapping to hard disk or to SSD: please don't ask
489 	 * what the "+ 2" means, it just happens to work well, that's all.
490 	 */
491 	pages = hits + 2;
492 	if (pages == 2) {
493 		/*
494 		 * We can have no readahead hits to judge by: but must not get
495 		 * stuck here forever, so check for an adjacent offset instead
496 		 * (and don't even bother to check whether swap type is same).
497 		 */
498 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
499 			pages = 1;
500 	} else {
501 		unsigned int roundup = 4;
502 		while (roundup < pages)
503 			roundup <<= 1;
504 		pages = roundup;
505 	}
506 
507 	if (pages > max_pages)
508 		pages = max_pages;
509 
510 	/* Don't shrink readahead too fast */
511 	last_ra = prev_win / 2;
512 	if (pages < last_ra)
513 		pages = last_ra;
514 
515 	return pages;
516 }
517 
518 static unsigned long swapin_nr_pages(unsigned long offset)
519 {
520 	static unsigned long prev_offset;
521 	unsigned int hits, pages, max_pages;
522 	static atomic_t last_readahead_pages;
523 
524 	max_pages = 1 << READ_ONCE(page_cluster);
525 	if (max_pages <= 1)
526 		return 1;
527 
528 	hits = atomic_xchg(&swapin_readahead_hits, 0);
529 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
530 				  max_pages,
531 				  atomic_read(&last_readahead_pages));
532 	if (!hits)
533 		WRITE_ONCE(prev_offset, offset);
534 	atomic_set(&last_readahead_pages, pages);
535 
536 	return pages;
537 }
538 
539 /**
540  * swap_cluster_readahead - swap in pages in hope we need them soon
541  * @entry: swap entry of this memory
542  * @gfp_mask: memory allocation flags
543  * @vmf: fault information
544  *
545  * Returns the struct page for entry and addr, after queueing swapin.
546  *
547  * Primitive swap readahead code. We simply read an aligned block of
548  * (1 << page_cluster) entries in the swap area. This method is chosen
549  * because it doesn't cost us any seek time.  We also make sure to queue
550  * the 'original' request together with the readahead ones...
551  *
552  * This has been extended to use the NUMA policies from the mm triggering
553  * the readahead.
554  *
555  * Caller must hold read mmap_lock if vmf->vma is not NULL.
556  */
557 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
558 				struct vm_fault *vmf)
559 {
560 	struct page *page;
561 	unsigned long entry_offset = swp_offset(entry);
562 	unsigned long offset = entry_offset;
563 	unsigned long start_offset, end_offset;
564 	unsigned long mask;
565 	struct swap_info_struct *si = swp_swap_info(entry);
566 	struct blk_plug plug;
567 	bool do_poll = true, page_allocated;
568 	struct vm_area_struct *vma = vmf->vma;
569 	unsigned long addr = vmf->address;
570 
571 	mask = swapin_nr_pages(offset) - 1;
572 	if (!mask)
573 		goto skip;
574 
575 	/* Test swap type to make sure the dereference is safe */
576 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
577 		struct inode *inode = si->swap_file->f_mapping->host;
578 		if (inode_read_congested(inode))
579 			goto skip;
580 	}
581 
582 	do_poll = false;
583 	/* Read a page_cluster sized and aligned cluster around offset. */
584 	start_offset = offset & ~mask;
585 	end_offset = offset | mask;
586 	if (!start_offset)	/* First page is swap header. */
587 		start_offset++;
588 	if (end_offset >= si->max)
589 		end_offset = si->max - 1;
590 
591 	blk_start_plug(&plug);
592 	for (offset = start_offset; offset <= end_offset ; offset++) {
593 		/* Ok, do the async read-ahead now */
594 		page = __read_swap_cache_async(
595 			swp_entry(swp_type(entry), offset),
596 			gfp_mask, vma, addr, &page_allocated);
597 		if (!page)
598 			continue;
599 		if (page_allocated) {
600 			swap_readpage(page, false);
601 			if (offset != entry_offset) {
602 				SetPageReadahead(page);
603 				count_vm_event(SWAP_RA);
604 			}
605 		}
606 		put_page(page);
607 	}
608 	blk_finish_plug(&plug);
609 
610 	lru_add_drain();	/* Push any new pages onto the LRU now */
611 skip:
612 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
613 }
614 
615 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
616 {
617 	struct address_space *spaces, *space;
618 	unsigned int i, nr;
619 
620 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
621 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
622 	if (!spaces)
623 		return -ENOMEM;
624 	for (i = 0; i < nr; i++) {
625 		space = spaces + i;
626 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
627 		atomic_set(&space->i_mmap_writable, 0);
628 		space->a_ops = &swap_aops;
629 		/* swap cache doesn't use writeback related tags */
630 		mapping_set_no_writeback_tags(space);
631 	}
632 	nr_swapper_spaces[type] = nr;
633 	swapper_spaces[type] = spaces;
634 
635 	return 0;
636 }
637 
638 void exit_swap_address_space(unsigned int type)
639 {
640 	kvfree(swapper_spaces[type]);
641 	nr_swapper_spaces[type] = 0;
642 	swapper_spaces[type] = NULL;
643 }
644 
645 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
646 				     unsigned long faddr,
647 				     unsigned long lpfn,
648 				     unsigned long rpfn,
649 				     unsigned long *start,
650 				     unsigned long *end)
651 {
652 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
653 		      PFN_DOWN(faddr & PMD_MASK));
654 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
655 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
656 }
657 
658 static void swap_ra_info(struct vm_fault *vmf,
659 			struct vma_swap_readahead *ra_info)
660 {
661 	struct vm_area_struct *vma = vmf->vma;
662 	unsigned long ra_val;
663 	swp_entry_t entry;
664 	unsigned long faddr, pfn, fpfn;
665 	unsigned long start, end;
666 	pte_t *pte, *orig_pte;
667 	unsigned int max_win, hits, prev_win, win, left;
668 #ifndef CONFIG_64BIT
669 	pte_t *tpte;
670 #endif
671 
672 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
673 			     SWAP_RA_ORDER_CEILING);
674 	if (max_win == 1) {
675 		ra_info->win = 1;
676 		return;
677 	}
678 
679 	faddr = vmf->address;
680 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
681 	entry = pte_to_swp_entry(*pte);
682 	if ((unlikely(non_swap_entry(entry)))) {
683 		pte_unmap(orig_pte);
684 		return;
685 	}
686 
687 	fpfn = PFN_DOWN(faddr);
688 	ra_val = GET_SWAP_RA_VAL(vma);
689 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
690 	prev_win = SWAP_RA_WIN(ra_val);
691 	hits = SWAP_RA_HITS(ra_val);
692 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
693 					       max_win, prev_win);
694 	atomic_long_set(&vma->swap_readahead_info,
695 			SWAP_RA_VAL(faddr, win, 0));
696 
697 	if (win == 1) {
698 		pte_unmap(orig_pte);
699 		return;
700 	}
701 
702 	/* Copy the PTEs because the page table may be unmapped */
703 	if (fpfn == pfn + 1)
704 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
705 	else if (pfn == fpfn + 1)
706 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
707 				  &start, &end);
708 	else {
709 		left = (win - 1) / 2;
710 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
711 				  &start, &end);
712 	}
713 	ra_info->nr_pte = end - start;
714 	ra_info->offset = fpfn - start;
715 	pte -= ra_info->offset;
716 #ifdef CONFIG_64BIT
717 	ra_info->ptes = pte;
718 #else
719 	tpte = ra_info->ptes;
720 	for (pfn = start; pfn != end; pfn++)
721 		*tpte++ = *pte++;
722 #endif
723 	pte_unmap(orig_pte);
724 }
725 
726 /**
727  * swap_vma_readahead - swap in pages in hope we need them soon
728  * @entry: swap entry of this memory
729  * @gfp_mask: memory allocation flags
730  * @vmf: fault information
731  *
732  * Returns the struct page for entry and addr, after queueing swapin.
733  *
734  * Primitive swap readahead code. We simply read in a few pages whoes
735  * virtual addresses are around the fault address in the same vma.
736  *
737  * Caller must hold read mmap_lock if vmf->vma is not NULL.
738  *
739  */
740 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
741 				       struct vm_fault *vmf)
742 {
743 	struct blk_plug plug;
744 	struct vm_area_struct *vma = vmf->vma;
745 	struct page *page;
746 	pte_t *pte, pentry;
747 	swp_entry_t entry;
748 	unsigned int i;
749 	bool page_allocated;
750 	struct vma_swap_readahead ra_info = {0,};
751 
752 	swap_ra_info(vmf, &ra_info);
753 	if (ra_info.win == 1)
754 		goto skip;
755 
756 	blk_start_plug(&plug);
757 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
758 	     i++, pte++) {
759 		pentry = *pte;
760 		if (pte_none(pentry))
761 			continue;
762 		if (pte_present(pentry))
763 			continue;
764 		entry = pte_to_swp_entry(pentry);
765 		if (unlikely(non_swap_entry(entry)))
766 			continue;
767 		page = __read_swap_cache_async(entry, gfp_mask, vma,
768 					       vmf->address, &page_allocated);
769 		if (!page)
770 			continue;
771 		if (page_allocated) {
772 			swap_readpage(page, false);
773 			if (i != ra_info.offset) {
774 				SetPageReadahead(page);
775 				count_vm_event(SWAP_RA);
776 			}
777 		}
778 		put_page(page);
779 	}
780 	blk_finish_plug(&plug);
781 	lru_add_drain();
782 skip:
783 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
784 				     ra_info.win == 1);
785 }
786 
787 /**
788  * swapin_readahead - swap in pages in hope we need them soon
789  * @entry: swap entry of this memory
790  * @gfp_mask: memory allocation flags
791  * @vmf: fault information
792  *
793  * Returns the struct page for entry and addr, after queueing swapin.
794  *
795  * It's a main entry function for swap readahead. By the configuration,
796  * it will read ahead blocks by cluster-based(ie, physical disk based)
797  * or vma-based(ie, virtual address based on faulty address) readahead.
798  */
799 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
800 				struct vm_fault *vmf)
801 {
802 	return swap_use_vma_readahead() ?
803 			swap_vma_readahead(entry, gfp_mask, vmf) :
804 			swap_cluster_readahead(entry, gfp_mask, vmf);
805 }
806 
807 #ifdef CONFIG_SYSFS
808 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
809 				     struct kobj_attribute *attr, char *buf)
810 {
811 	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
812 }
813 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
814 				      struct kobj_attribute *attr,
815 				      const char *buf, size_t count)
816 {
817 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
818 		enable_vma_readahead = true;
819 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
820 		enable_vma_readahead = false;
821 	else
822 		return -EINVAL;
823 
824 	return count;
825 }
826 static struct kobj_attribute vma_ra_enabled_attr =
827 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
828 	       vma_ra_enabled_store);
829 
830 static struct attribute *swap_attrs[] = {
831 	&vma_ra_enabled_attr.attr,
832 	NULL,
833 };
834 
835 static struct attribute_group swap_attr_group = {
836 	.attrs = swap_attrs,
837 };
838 
839 static int __init swap_init_sysfs(void)
840 {
841 	int err;
842 	struct kobject *swap_kobj;
843 
844 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
845 	if (!swap_kobj) {
846 		pr_err("failed to create swap kobject\n");
847 		return -ENOMEM;
848 	}
849 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
850 	if (err) {
851 		pr_err("failed to register swap group\n");
852 		goto delete_obj;
853 	}
854 	return 0;
855 
856 delete_obj:
857 	kobject_put(swap_kobj);
858 	return err;
859 }
860 subsys_initcall(swap_init_sysfs);
861 #endif
862