xref: /openbmc/linux/mm/swap_state.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 
25 #include <asm/pgtable.h>
26 
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32 	.writepage	= swap_writepage,
33 	.set_page_dirty	= swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 	.migratepage	= migrate_page,
36 #endif
37 };
38 
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42 
43 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 
48 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51 
52 #define SWAP_RA_VAL(addr, win, hits)				\
53 	(((addr) & PAGE_MASK) |					\
54 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55 	 ((hits) & SWAP_RA_HITS_MASK))
56 
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)					\
59 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 
61 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
62 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
63 
64 static struct {
65 	unsigned long add_total;
66 	unsigned long del_total;
67 	unsigned long find_success;
68 	unsigned long find_total;
69 } swap_cache_info;
70 
71 unsigned long total_swapcache_pages(void)
72 {
73 	unsigned int i, j, nr;
74 	unsigned long ret = 0;
75 	struct address_space *spaces;
76 
77 	rcu_read_lock();
78 	for (i = 0; i < MAX_SWAPFILES; i++) {
79 		/*
80 		 * The corresponding entries in nr_swapper_spaces and
81 		 * swapper_spaces will be reused only after at least
82 		 * one grace period.  So it is impossible for them
83 		 * belongs to different usage.
84 		 */
85 		nr = nr_swapper_spaces[i];
86 		spaces = rcu_dereference(swapper_spaces[i]);
87 		if (!nr || !spaces)
88 			continue;
89 		for (j = 0; j < nr; j++)
90 			ret += spaces[j].nrpages;
91 	}
92 	rcu_read_unlock();
93 	return ret;
94 }
95 
96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97 
98 void show_swap_cache_info(void)
99 {
100 	printk("%lu pages in swap cache\n", total_swapcache_pages());
101 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 		swap_cache_info.add_total, swap_cache_info.del_total,
103 		swap_cache_info.find_success, swap_cache_info.find_total);
104 	printk("Free swap  = %ldkB\n",
105 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
106 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107 }
108 
109 /*
110  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111  * but sets SwapCache flag and private instead of mapping and index.
112  */
113 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
114 {
115 	struct address_space *address_space = swap_address_space(entry);
116 	pgoff_t idx = swp_offset(entry);
117 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
118 	unsigned long i, nr = 1UL << compound_order(page);
119 
120 	VM_BUG_ON_PAGE(!PageLocked(page), page);
121 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
122 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
123 
124 	page_ref_add(page, nr);
125 	SetPageSwapCache(page);
126 
127 	do {
128 		xas_lock_irq(&xas);
129 		xas_create_range(&xas);
130 		if (xas_error(&xas))
131 			goto unlock;
132 		for (i = 0; i < nr; i++) {
133 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
134 			set_page_private(page + i, entry.val + i);
135 			xas_store(&xas, page);
136 			xas_next(&xas);
137 		}
138 		address_space->nrpages += nr;
139 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
140 		ADD_CACHE_INFO(add_total, nr);
141 unlock:
142 		xas_unlock_irq(&xas);
143 	} while (xas_nomem(&xas, gfp));
144 
145 	if (!xas_error(&xas))
146 		return 0;
147 
148 	ClearPageSwapCache(page);
149 	page_ref_sub(page, nr);
150 	return xas_error(&xas);
151 }
152 
153 /*
154  * This must be called only on pages that have
155  * been verified to be in the swap cache.
156  */
157 void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
158 {
159 	struct address_space *address_space = swap_address_space(entry);
160 	int i, nr = hpage_nr_pages(page);
161 	pgoff_t idx = swp_offset(entry);
162 	XA_STATE(xas, &address_space->i_pages, idx);
163 
164 	VM_BUG_ON_PAGE(!PageLocked(page), page);
165 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 	VM_BUG_ON_PAGE(PageWriteback(page), page);
167 
168 	for (i = 0; i < nr; i++) {
169 		void *entry = xas_store(&xas, NULL);
170 		VM_BUG_ON_PAGE(entry != page, entry);
171 		set_page_private(page + i, 0);
172 		xas_next(&xas);
173 	}
174 	ClearPageSwapCache(page);
175 	address_space->nrpages -= nr;
176 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
177 	ADD_CACHE_INFO(del_total, nr);
178 }
179 
180 /**
181  * add_to_swap - allocate swap space for a page
182  * @page: page we want to move to swap
183  *
184  * Allocate swap space for the page and add the page to the
185  * swap cache.  Caller needs to hold the page lock.
186  */
187 int add_to_swap(struct page *page)
188 {
189 	swp_entry_t entry;
190 	int err;
191 
192 	VM_BUG_ON_PAGE(!PageLocked(page), page);
193 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
194 
195 	entry = get_swap_page(page);
196 	if (!entry.val)
197 		return 0;
198 
199 	/*
200 	 * XArray node allocations from PF_MEMALLOC contexts could
201 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
202 	 * stops emergency reserves from being allocated.
203 	 *
204 	 * TODO: this could cause a theoretical memory reclaim
205 	 * deadlock in the swap out path.
206 	 */
207 	/*
208 	 * Add it to the swap cache.
209 	 */
210 	err = add_to_swap_cache(page, entry,
211 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
212 	if (err)
213 		/*
214 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 		 * clear SWAP_HAS_CACHE flag.
216 		 */
217 		goto fail;
218 	/*
219 	 * Normally the page will be dirtied in unmap because its pte should be
220 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
221 	 * dirty bit cleared but the page's SwapBacked bit is still set because
222 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
223 	 * such page, unmap will not set dirty bit for it, so page reclaim will
224 	 * not write the page out. This can cause data corruption when the page
225 	 * is swap in later. Always setting the dirty bit for the page solves
226 	 * the problem.
227 	 */
228 	set_page_dirty(page);
229 
230 	return 1;
231 
232 fail:
233 	put_swap_page(page, entry);
234 	return 0;
235 }
236 
237 /*
238  * This must be called only on pages that have
239  * been verified to be in the swap cache and locked.
240  * It will never put the page into the free list,
241  * the caller has a reference on the page.
242  */
243 void delete_from_swap_cache(struct page *page)
244 {
245 	swp_entry_t entry = { .val = page_private(page) };
246 	struct address_space *address_space = swap_address_space(entry);
247 
248 	xa_lock_irq(&address_space->i_pages);
249 	__delete_from_swap_cache(page, entry);
250 	xa_unlock_irq(&address_space->i_pages);
251 
252 	put_swap_page(page, entry);
253 	page_ref_sub(page, hpage_nr_pages(page));
254 }
255 
256 /*
257  * If we are the only user, then try to free up the swap cache.
258  *
259  * Its ok to check for PageSwapCache without the page lock
260  * here because we are going to recheck again inside
261  * try_to_free_swap() _with_ the lock.
262  * 					- Marcelo
263  */
264 static inline void free_swap_cache(struct page *page)
265 {
266 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
267 		try_to_free_swap(page);
268 		unlock_page(page);
269 	}
270 }
271 
272 /*
273  * Perform a free_page(), also freeing any swap cache associated with
274  * this page if it is the last user of the page.
275  */
276 void free_page_and_swap_cache(struct page *page)
277 {
278 	free_swap_cache(page);
279 	if (!is_huge_zero_page(page))
280 		put_page(page);
281 }
282 
283 /*
284  * Passed an array of pages, drop them all from swapcache and then release
285  * them.  They are removed from the LRU and freed if this is their last use.
286  */
287 void free_pages_and_swap_cache(struct page **pages, int nr)
288 {
289 	struct page **pagep = pages;
290 	int i;
291 
292 	lru_add_drain();
293 	for (i = 0; i < nr; i++)
294 		free_swap_cache(pagep[i]);
295 	release_pages(pagep, nr);
296 }
297 
298 static inline bool swap_use_vma_readahead(void)
299 {
300 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
301 }
302 
303 /*
304  * Lookup a swap entry in the swap cache. A found page will be returned
305  * unlocked and with its refcount incremented - we rely on the kernel
306  * lock getting page table operations atomic even if we drop the page
307  * lock before returning.
308  */
309 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
310 			       unsigned long addr)
311 {
312 	struct page *page;
313 
314 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
315 
316 	INC_CACHE_INFO(find_total);
317 	if (page) {
318 		bool vma_ra = swap_use_vma_readahead();
319 		bool readahead;
320 
321 		INC_CACHE_INFO(find_success);
322 		/*
323 		 * At the moment, we don't support PG_readahead for anon THP
324 		 * so let's bail out rather than confusing the readahead stat.
325 		 */
326 		if (unlikely(PageTransCompound(page)))
327 			return page;
328 
329 		readahead = TestClearPageReadahead(page);
330 		if (vma && vma_ra) {
331 			unsigned long ra_val;
332 			int win, hits;
333 
334 			ra_val = GET_SWAP_RA_VAL(vma);
335 			win = SWAP_RA_WIN(ra_val);
336 			hits = SWAP_RA_HITS(ra_val);
337 			if (readahead)
338 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
339 			atomic_long_set(&vma->swap_readahead_info,
340 					SWAP_RA_VAL(addr, win, hits));
341 		}
342 
343 		if (readahead) {
344 			count_vm_event(SWAP_RA_HIT);
345 			if (!vma || !vma_ra)
346 				atomic_inc(&swapin_readahead_hits);
347 		}
348 	}
349 
350 	return page;
351 }
352 
353 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
354 			struct vm_area_struct *vma, unsigned long addr,
355 			bool *new_page_allocated)
356 {
357 	struct page *found_page, *new_page = NULL;
358 	struct address_space *swapper_space = swap_address_space(entry);
359 	int err;
360 	*new_page_allocated = false;
361 
362 	do {
363 		/*
364 		 * First check the swap cache.  Since this is normally
365 		 * called after lookup_swap_cache() failed, re-calling
366 		 * that would confuse statistics.
367 		 */
368 		found_page = find_get_page(swapper_space, swp_offset(entry));
369 		if (found_page)
370 			break;
371 
372 		/*
373 		 * Just skip read ahead for unused swap slot.
374 		 * During swap_off when swap_slot_cache is disabled,
375 		 * we have to handle the race between putting
376 		 * swap entry in swap cache and marking swap slot
377 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
378 		 * else swap_off will be aborted if we return NULL.
379 		 */
380 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
381 			break;
382 
383 		/*
384 		 * Get a new page to read into from swap.
385 		 */
386 		if (!new_page) {
387 			new_page = alloc_page_vma(gfp_mask, vma, addr);
388 			if (!new_page)
389 				break;		/* Out of memory */
390 		}
391 
392 		/*
393 		 * Swap entry may have been freed since our caller observed it.
394 		 */
395 		err = swapcache_prepare(entry);
396 		if (err == -EEXIST) {
397 			/*
398 			 * We might race against get_swap_page() and stumble
399 			 * across a SWAP_HAS_CACHE swap_map entry whose page
400 			 * has not been brought into the swapcache yet.
401 			 */
402 			cond_resched();
403 			continue;
404 		} else if (err)		/* swp entry is obsolete ? */
405 			break;
406 
407 		/* May fail (-ENOMEM) if XArray node allocation failed. */
408 		__SetPageLocked(new_page);
409 		__SetPageSwapBacked(new_page);
410 		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
411 		if (likely(!err)) {
412 			/* Initiate read into locked page */
413 			SetPageWorkingset(new_page);
414 			lru_cache_add_anon(new_page);
415 			*new_page_allocated = true;
416 			return new_page;
417 		}
418 		__ClearPageLocked(new_page);
419 		/*
420 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
421 		 * clear SWAP_HAS_CACHE flag.
422 		 */
423 		put_swap_page(new_page, entry);
424 	} while (err != -ENOMEM);
425 
426 	if (new_page)
427 		put_page(new_page);
428 	return found_page;
429 }
430 
431 /*
432  * Locate a page of swap in physical memory, reserving swap cache space
433  * and reading the disk if it is not already cached.
434  * A failure return means that either the page allocation failed or that
435  * the swap entry is no longer in use.
436  */
437 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
438 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
439 {
440 	bool page_was_allocated;
441 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
442 			vma, addr, &page_was_allocated);
443 
444 	if (page_was_allocated)
445 		swap_readpage(retpage, do_poll);
446 
447 	return retpage;
448 }
449 
450 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
451 				      unsigned long offset,
452 				      int hits,
453 				      int max_pages,
454 				      int prev_win)
455 {
456 	unsigned int pages, last_ra;
457 
458 	/*
459 	 * This heuristic has been found to work well on both sequential and
460 	 * random loads, swapping to hard disk or to SSD: please don't ask
461 	 * what the "+ 2" means, it just happens to work well, that's all.
462 	 */
463 	pages = hits + 2;
464 	if (pages == 2) {
465 		/*
466 		 * We can have no readahead hits to judge by: but must not get
467 		 * stuck here forever, so check for an adjacent offset instead
468 		 * (and don't even bother to check whether swap type is same).
469 		 */
470 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
471 			pages = 1;
472 	} else {
473 		unsigned int roundup = 4;
474 		while (roundup < pages)
475 			roundup <<= 1;
476 		pages = roundup;
477 	}
478 
479 	if (pages > max_pages)
480 		pages = max_pages;
481 
482 	/* Don't shrink readahead too fast */
483 	last_ra = prev_win / 2;
484 	if (pages < last_ra)
485 		pages = last_ra;
486 
487 	return pages;
488 }
489 
490 static unsigned long swapin_nr_pages(unsigned long offset)
491 {
492 	static unsigned long prev_offset;
493 	unsigned int hits, pages, max_pages;
494 	static atomic_t last_readahead_pages;
495 
496 	max_pages = 1 << READ_ONCE(page_cluster);
497 	if (max_pages <= 1)
498 		return 1;
499 
500 	hits = atomic_xchg(&swapin_readahead_hits, 0);
501 	pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
502 				  atomic_read(&last_readahead_pages));
503 	if (!hits)
504 		prev_offset = offset;
505 	atomic_set(&last_readahead_pages, pages);
506 
507 	return pages;
508 }
509 
510 /**
511  * swap_cluster_readahead - swap in pages in hope we need them soon
512  * @entry: swap entry of this memory
513  * @gfp_mask: memory allocation flags
514  * @vmf: fault information
515  *
516  * Returns the struct page for entry and addr, after queueing swapin.
517  *
518  * Primitive swap readahead code. We simply read an aligned block of
519  * (1 << page_cluster) entries in the swap area. This method is chosen
520  * because it doesn't cost us any seek time.  We also make sure to queue
521  * the 'original' request together with the readahead ones...
522  *
523  * This has been extended to use the NUMA policies from the mm triggering
524  * the readahead.
525  *
526  * Caller must hold read mmap_sem if vmf->vma is not NULL.
527  */
528 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
529 				struct vm_fault *vmf)
530 {
531 	struct page *page;
532 	unsigned long entry_offset = swp_offset(entry);
533 	unsigned long offset = entry_offset;
534 	unsigned long start_offset, end_offset;
535 	unsigned long mask;
536 	struct swap_info_struct *si = swp_swap_info(entry);
537 	struct blk_plug plug;
538 	bool do_poll = true, page_allocated;
539 	struct vm_area_struct *vma = vmf->vma;
540 	unsigned long addr = vmf->address;
541 
542 	mask = swapin_nr_pages(offset) - 1;
543 	if (!mask)
544 		goto skip;
545 
546 	/* Test swap type to make sure the dereference is safe */
547 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
548 		struct inode *inode = si->swap_file->f_mapping->host;
549 		if (inode_read_congested(inode))
550 			goto skip;
551 	}
552 
553 	do_poll = false;
554 	/* Read a page_cluster sized and aligned cluster around offset. */
555 	start_offset = offset & ~mask;
556 	end_offset = offset | mask;
557 	if (!start_offset)	/* First page is swap header. */
558 		start_offset++;
559 	if (end_offset >= si->max)
560 		end_offset = si->max - 1;
561 
562 	blk_start_plug(&plug);
563 	for (offset = start_offset; offset <= end_offset ; offset++) {
564 		/* Ok, do the async read-ahead now */
565 		page = __read_swap_cache_async(
566 			swp_entry(swp_type(entry), offset),
567 			gfp_mask, vma, addr, &page_allocated);
568 		if (!page)
569 			continue;
570 		if (page_allocated) {
571 			swap_readpage(page, false);
572 			if (offset != entry_offset) {
573 				SetPageReadahead(page);
574 				count_vm_event(SWAP_RA);
575 			}
576 		}
577 		put_page(page);
578 	}
579 	blk_finish_plug(&plug);
580 
581 	lru_add_drain();	/* Push any new pages onto the LRU now */
582 skip:
583 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
584 }
585 
586 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
587 {
588 	struct address_space *spaces, *space;
589 	unsigned int i, nr;
590 
591 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
592 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
593 	if (!spaces)
594 		return -ENOMEM;
595 	for (i = 0; i < nr; i++) {
596 		space = spaces + i;
597 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
598 		atomic_set(&space->i_mmap_writable, 0);
599 		space->a_ops = &swap_aops;
600 		/* swap cache doesn't use writeback related tags */
601 		mapping_set_no_writeback_tags(space);
602 	}
603 	nr_swapper_spaces[type] = nr;
604 	rcu_assign_pointer(swapper_spaces[type], spaces);
605 
606 	return 0;
607 }
608 
609 void exit_swap_address_space(unsigned int type)
610 {
611 	struct address_space *spaces;
612 
613 	spaces = swapper_spaces[type];
614 	nr_swapper_spaces[type] = 0;
615 	rcu_assign_pointer(swapper_spaces[type], NULL);
616 	synchronize_rcu();
617 	kvfree(spaces);
618 }
619 
620 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
621 				     unsigned long faddr,
622 				     unsigned long lpfn,
623 				     unsigned long rpfn,
624 				     unsigned long *start,
625 				     unsigned long *end)
626 {
627 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
628 		      PFN_DOWN(faddr & PMD_MASK));
629 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
630 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
631 }
632 
633 static void swap_ra_info(struct vm_fault *vmf,
634 			struct vma_swap_readahead *ra_info)
635 {
636 	struct vm_area_struct *vma = vmf->vma;
637 	unsigned long ra_val;
638 	swp_entry_t entry;
639 	unsigned long faddr, pfn, fpfn;
640 	unsigned long start, end;
641 	pte_t *pte, *orig_pte;
642 	unsigned int max_win, hits, prev_win, win, left;
643 #ifndef CONFIG_64BIT
644 	pte_t *tpte;
645 #endif
646 
647 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
648 			     SWAP_RA_ORDER_CEILING);
649 	if (max_win == 1) {
650 		ra_info->win = 1;
651 		return;
652 	}
653 
654 	faddr = vmf->address;
655 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
656 	entry = pte_to_swp_entry(*pte);
657 	if ((unlikely(non_swap_entry(entry)))) {
658 		pte_unmap(orig_pte);
659 		return;
660 	}
661 
662 	fpfn = PFN_DOWN(faddr);
663 	ra_val = GET_SWAP_RA_VAL(vma);
664 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
665 	prev_win = SWAP_RA_WIN(ra_val);
666 	hits = SWAP_RA_HITS(ra_val);
667 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
668 					       max_win, prev_win);
669 	atomic_long_set(&vma->swap_readahead_info,
670 			SWAP_RA_VAL(faddr, win, 0));
671 
672 	if (win == 1) {
673 		pte_unmap(orig_pte);
674 		return;
675 	}
676 
677 	/* Copy the PTEs because the page table may be unmapped */
678 	if (fpfn == pfn + 1)
679 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
680 	else if (pfn == fpfn + 1)
681 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
682 				  &start, &end);
683 	else {
684 		left = (win - 1) / 2;
685 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
686 				  &start, &end);
687 	}
688 	ra_info->nr_pte = end - start;
689 	ra_info->offset = fpfn - start;
690 	pte -= ra_info->offset;
691 #ifdef CONFIG_64BIT
692 	ra_info->ptes = pte;
693 #else
694 	tpte = ra_info->ptes;
695 	for (pfn = start; pfn != end; pfn++)
696 		*tpte++ = *pte++;
697 #endif
698 	pte_unmap(orig_pte);
699 }
700 
701 /**
702  * swap_vma_readahead - swap in pages in hope we need them soon
703  * @entry: swap entry of this memory
704  * @gfp_mask: memory allocation flags
705  * @vmf: fault information
706  *
707  * Returns the struct page for entry and addr, after queueing swapin.
708  *
709  * Primitive swap readahead code. We simply read in a few pages whoes
710  * virtual addresses are around the fault address in the same vma.
711  *
712  * Caller must hold read mmap_sem if vmf->vma is not NULL.
713  *
714  */
715 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
716 				       struct vm_fault *vmf)
717 {
718 	struct blk_plug plug;
719 	struct vm_area_struct *vma = vmf->vma;
720 	struct page *page;
721 	pte_t *pte, pentry;
722 	swp_entry_t entry;
723 	unsigned int i;
724 	bool page_allocated;
725 	struct vma_swap_readahead ra_info = {0,};
726 
727 	swap_ra_info(vmf, &ra_info);
728 	if (ra_info.win == 1)
729 		goto skip;
730 
731 	blk_start_plug(&plug);
732 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
733 	     i++, pte++) {
734 		pentry = *pte;
735 		if (pte_none(pentry))
736 			continue;
737 		if (pte_present(pentry))
738 			continue;
739 		entry = pte_to_swp_entry(pentry);
740 		if (unlikely(non_swap_entry(entry)))
741 			continue;
742 		page = __read_swap_cache_async(entry, gfp_mask, vma,
743 					       vmf->address, &page_allocated);
744 		if (!page)
745 			continue;
746 		if (page_allocated) {
747 			swap_readpage(page, false);
748 			if (i != ra_info.offset) {
749 				SetPageReadahead(page);
750 				count_vm_event(SWAP_RA);
751 			}
752 		}
753 		put_page(page);
754 	}
755 	blk_finish_plug(&plug);
756 	lru_add_drain();
757 skip:
758 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
759 				     ra_info.win == 1);
760 }
761 
762 /**
763  * swapin_readahead - swap in pages in hope we need them soon
764  * @entry: swap entry of this memory
765  * @gfp_mask: memory allocation flags
766  * @vmf: fault information
767  *
768  * Returns the struct page for entry and addr, after queueing swapin.
769  *
770  * It's a main entry function for swap readahead. By the configuration,
771  * it will read ahead blocks by cluster-based(ie, physical disk based)
772  * or vma-based(ie, virtual address based on faulty address) readahead.
773  */
774 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
775 				struct vm_fault *vmf)
776 {
777 	return swap_use_vma_readahead() ?
778 			swap_vma_readahead(entry, gfp_mask, vmf) :
779 			swap_cluster_readahead(entry, gfp_mask, vmf);
780 }
781 
782 #ifdef CONFIG_SYSFS
783 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
784 				     struct kobj_attribute *attr, char *buf)
785 {
786 	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
787 }
788 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
789 				      struct kobj_attribute *attr,
790 				      const char *buf, size_t count)
791 {
792 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
793 		enable_vma_readahead = true;
794 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
795 		enable_vma_readahead = false;
796 	else
797 		return -EINVAL;
798 
799 	return count;
800 }
801 static struct kobj_attribute vma_ra_enabled_attr =
802 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
803 	       vma_ra_enabled_store);
804 
805 static struct attribute *swap_attrs[] = {
806 	&vma_ra_enabled_attr.attr,
807 	NULL,
808 };
809 
810 static struct attribute_group swap_attr_group = {
811 	.attrs = swap_attrs,
812 };
813 
814 static int __init swap_init_sysfs(void)
815 {
816 	int err;
817 	struct kobject *swap_kobj;
818 
819 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
820 	if (!swap_kobj) {
821 		pr_err("failed to create swap kobject\n");
822 		return -ENOMEM;
823 	}
824 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
825 	if (err) {
826 		pr_err("failed to register swap group\n");
827 		goto delete_obj;
828 	}
829 	return 0;
830 
831 delete_obj:
832 	kobject_put(swap_kobj);
833 	return err;
834 }
835 subsys_initcall(swap_init_sysfs);
836 #endif
837