1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_page_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .writepage = swap_writepage, 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migrate_folio = migrate_folio, 37 #endif 38 }; 39 40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static bool enable_vma_readahead __read_mostly = true; 43 44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 48 49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 52 53 #define SWAP_RA_VAL(addr, win, hits) \ 54 (((addr) & PAGE_MASK) | \ 55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 56 ((hits) & SWAP_RA_HITS_MASK)) 57 58 /* Initial readahead hits is 4 to start up with a small window */ 59 #define GET_SWAP_RA_VAL(vma) \ 60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 61 62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 63 64 void show_swap_cache_info(void) 65 { 66 printk("%lu pages in swap cache\n", total_swapcache_pages()); 67 printk("Free swap = %ldkB\n", 68 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 69 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 70 } 71 72 void *get_shadow_from_swap_cache(swp_entry_t entry) 73 { 74 struct address_space *address_space = swap_address_space(entry); 75 pgoff_t idx = swp_offset(entry); 76 struct page *page; 77 78 page = xa_load(&address_space->i_pages, idx); 79 if (xa_is_value(page)) 80 return page; 81 return NULL; 82 } 83 84 /* 85 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 86 * but sets SwapCache flag and private instead of mapping and index. 87 */ 88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 89 gfp_t gfp, void **shadowp) 90 { 91 struct address_space *address_space = swap_address_space(entry); 92 pgoff_t idx = swp_offset(entry); 93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 94 unsigned long i, nr = folio_nr_pages(folio); 95 void *old; 96 97 xas_set_update(&xas, workingset_update_node); 98 99 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 100 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 101 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 102 103 folio_ref_add(folio, nr); 104 folio_set_swapcache(folio); 105 106 do { 107 xas_lock_irq(&xas); 108 xas_create_range(&xas); 109 if (xas_error(&xas)) 110 goto unlock; 111 for (i = 0; i < nr; i++) { 112 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 113 old = xas_load(&xas); 114 if (xa_is_value(old)) { 115 if (shadowp) 116 *shadowp = old; 117 } 118 set_page_private(folio_page(folio, i), entry.val + i); 119 xas_store(&xas, folio); 120 xas_next(&xas); 121 } 122 address_space->nrpages += nr; 123 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 124 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 125 unlock: 126 xas_unlock_irq(&xas); 127 } while (xas_nomem(&xas, gfp)); 128 129 if (!xas_error(&xas)) 130 return 0; 131 132 folio_clear_swapcache(folio); 133 folio_ref_sub(folio, nr); 134 return xas_error(&xas); 135 } 136 137 /* 138 * This must be called only on folios that have 139 * been verified to be in the swap cache. 140 */ 141 void __delete_from_swap_cache(struct folio *folio, 142 swp_entry_t entry, void *shadow) 143 { 144 struct address_space *address_space = swap_address_space(entry); 145 int i; 146 long nr = folio_nr_pages(folio); 147 pgoff_t idx = swp_offset(entry); 148 XA_STATE(xas, &address_space->i_pages, idx); 149 150 xas_set_update(&xas, workingset_update_node); 151 152 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 153 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 154 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 155 156 for (i = 0; i < nr; i++) { 157 void *entry = xas_store(&xas, shadow); 158 VM_BUG_ON_PAGE(entry != folio, entry); 159 set_page_private(folio_page(folio, i), 0); 160 xas_next(&xas); 161 } 162 folio_clear_swapcache(folio); 163 address_space->nrpages -= nr; 164 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 165 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 166 } 167 168 /** 169 * add_to_swap - allocate swap space for a folio 170 * @folio: folio we want to move to swap 171 * 172 * Allocate swap space for the folio and add the folio to the 173 * swap cache. 174 * 175 * Context: Caller needs to hold the folio lock. 176 * Return: Whether the folio was added to the swap cache. 177 */ 178 bool add_to_swap(struct folio *folio) 179 { 180 swp_entry_t entry; 181 int err; 182 183 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 184 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 185 186 entry = folio_alloc_swap(folio); 187 if (!entry.val) 188 return false; 189 190 /* 191 * XArray node allocations from PF_MEMALLOC contexts could 192 * completely exhaust the page allocator. __GFP_NOMEMALLOC 193 * stops emergency reserves from being allocated. 194 * 195 * TODO: this could cause a theoretical memory reclaim 196 * deadlock in the swap out path. 197 */ 198 /* 199 * Add it to the swap cache. 200 */ 201 err = add_to_swap_cache(folio, entry, 202 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 203 if (err) 204 /* 205 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 206 * clear SWAP_HAS_CACHE flag. 207 */ 208 goto fail; 209 /* 210 * Normally the folio will be dirtied in unmap because its 211 * pte should be dirty. A special case is MADV_FREE page. The 212 * page's pte could have dirty bit cleared but the folio's 213 * SwapBacked flag is still set because clearing the dirty bit 214 * and SwapBacked flag has no lock protected. For such folio, 215 * unmap will not set dirty bit for it, so folio reclaim will 216 * not write the folio out. This can cause data corruption when 217 * the folio is swapped in later. Always setting the dirty flag 218 * for the folio solves the problem. 219 */ 220 folio_mark_dirty(folio); 221 222 return true; 223 224 fail: 225 put_swap_folio(folio, entry); 226 return false; 227 } 228 229 /* 230 * This must be called only on folios that have 231 * been verified to be in the swap cache and locked. 232 * It will never put the folio into the free list, 233 * the caller has a reference on the folio. 234 */ 235 void delete_from_swap_cache(struct folio *folio) 236 { 237 swp_entry_t entry = folio_swap_entry(folio); 238 struct address_space *address_space = swap_address_space(entry); 239 240 xa_lock_irq(&address_space->i_pages); 241 __delete_from_swap_cache(folio, entry, NULL); 242 xa_unlock_irq(&address_space->i_pages); 243 244 put_swap_folio(folio, entry); 245 folio_ref_sub(folio, folio_nr_pages(folio)); 246 } 247 248 void clear_shadow_from_swap_cache(int type, unsigned long begin, 249 unsigned long end) 250 { 251 unsigned long curr = begin; 252 void *old; 253 254 for (;;) { 255 swp_entry_t entry = swp_entry(type, curr); 256 struct address_space *address_space = swap_address_space(entry); 257 XA_STATE(xas, &address_space->i_pages, curr); 258 259 xas_set_update(&xas, workingset_update_node); 260 261 xa_lock_irq(&address_space->i_pages); 262 xas_for_each(&xas, old, end) { 263 if (!xa_is_value(old)) 264 continue; 265 xas_store(&xas, NULL); 266 } 267 xa_unlock_irq(&address_space->i_pages); 268 269 /* search the next swapcache until we meet end */ 270 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 271 curr++; 272 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 273 if (curr > end) 274 break; 275 } 276 } 277 278 /* 279 * If we are the only user, then try to free up the swap cache. 280 * 281 * Its ok to check the swapcache flag without the folio lock 282 * here because we are going to recheck again inside 283 * folio_free_swap() _with_ the lock. 284 * - Marcelo 285 */ 286 void free_swap_cache(struct page *page) 287 { 288 struct folio *folio = page_folio(page); 289 290 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 291 folio_trylock(folio)) { 292 folio_free_swap(folio); 293 folio_unlock(folio); 294 } 295 } 296 297 /* 298 * Perform a free_page(), also freeing any swap cache associated with 299 * this page if it is the last user of the page. 300 */ 301 void free_page_and_swap_cache(struct page *page) 302 { 303 free_swap_cache(page); 304 if (!is_huge_zero_page(page)) 305 put_page(page); 306 } 307 308 /* 309 * Passed an array of pages, drop them all from swapcache and then release 310 * them. They are removed from the LRU and freed if this is their last use. 311 */ 312 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 313 { 314 lru_add_drain(); 315 for (int i = 0; i < nr; i++) 316 free_swap_cache(encoded_page_ptr(pages[i])); 317 release_pages(pages, nr); 318 } 319 320 static inline bool swap_use_vma_readahead(void) 321 { 322 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 323 } 324 325 /* 326 * Lookup a swap entry in the swap cache. A found folio will be returned 327 * unlocked and with its refcount incremented - we rely on the kernel 328 * lock getting page table operations atomic even if we drop the folio 329 * lock before returning. 330 * 331 * Caller must lock the swap device or hold a reference to keep it valid. 332 */ 333 struct folio *swap_cache_get_folio(swp_entry_t entry, 334 struct vm_area_struct *vma, unsigned long addr) 335 { 336 struct folio *folio; 337 338 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry)); 339 if (!IS_ERR(folio)) { 340 bool vma_ra = swap_use_vma_readahead(); 341 bool readahead; 342 343 /* 344 * At the moment, we don't support PG_readahead for anon THP 345 * so let's bail out rather than confusing the readahead stat. 346 */ 347 if (unlikely(folio_test_large(folio))) 348 return folio; 349 350 readahead = folio_test_clear_readahead(folio); 351 if (vma && vma_ra) { 352 unsigned long ra_val; 353 int win, hits; 354 355 ra_val = GET_SWAP_RA_VAL(vma); 356 win = SWAP_RA_WIN(ra_val); 357 hits = SWAP_RA_HITS(ra_val); 358 if (readahead) 359 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 360 atomic_long_set(&vma->swap_readahead_info, 361 SWAP_RA_VAL(addr, win, hits)); 362 } 363 364 if (readahead) { 365 count_vm_event(SWAP_RA_HIT); 366 if (!vma || !vma_ra) 367 atomic_inc(&swapin_readahead_hits); 368 } 369 } else { 370 folio = NULL; 371 } 372 373 return folio; 374 } 375 376 /** 377 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 378 * @mapping: The address_space to search. 379 * @index: The page cache index. 380 * 381 * This differs from filemap_get_folio() in that it will also look for the 382 * folio in the swap cache. 383 * 384 * Return: The found folio or %NULL. 385 */ 386 struct folio *filemap_get_incore_folio(struct address_space *mapping, 387 pgoff_t index) 388 { 389 swp_entry_t swp; 390 struct swap_info_struct *si; 391 struct folio *folio = filemap_get_entry(mapping, index); 392 393 if (!folio) 394 return ERR_PTR(-ENOENT); 395 if (!xa_is_value(folio)) 396 return folio; 397 if (!shmem_mapping(mapping)) 398 return ERR_PTR(-ENOENT); 399 400 swp = radix_to_swp_entry(folio); 401 /* There might be swapin error entries in shmem mapping. */ 402 if (non_swap_entry(swp)) 403 return ERR_PTR(-ENOENT); 404 /* Prevent swapoff from happening to us */ 405 si = get_swap_device(swp); 406 if (!si) 407 return ERR_PTR(-ENOENT); 408 index = swp_offset(swp); 409 folio = filemap_get_folio(swap_address_space(swp), index); 410 put_swap_device(si); 411 return folio; 412 } 413 414 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 415 struct vm_area_struct *vma, unsigned long addr, 416 bool *new_page_allocated) 417 { 418 struct swap_info_struct *si; 419 struct folio *folio; 420 struct page *page; 421 void *shadow = NULL; 422 423 *new_page_allocated = false; 424 si = get_swap_device(entry); 425 if (!si) 426 return NULL; 427 428 for (;;) { 429 int err; 430 /* 431 * First check the swap cache. Since this is normally 432 * called after swap_cache_get_folio() failed, re-calling 433 * that would confuse statistics. 434 */ 435 folio = filemap_get_folio(swap_address_space(entry), 436 swp_offset(entry)); 437 if (!IS_ERR(folio)) { 438 page = folio_file_page(folio, swp_offset(entry)); 439 goto got_page; 440 } 441 442 /* 443 * Just skip read ahead for unused swap slot. 444 * During swap_off when swap_slot_cache is disabled, 445 * we have to handle the race between putting 446 * swap entry in swap cache and marking swap slot 447 * as SWAP_HAS_CACHE. That's done in later part of code or 448 * else swap_off will be aborted if we return NULL. 449 */ 450 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled) 451 goto fail_put_swap; 452 453 /* 454 * Get a new page to read into from swap. Allocate it now, 455 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 456 * cause any racers to loop around until we add it to cache. 457 */ 458 folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false); 459 if (!folio) 460 goto fail_put_swap; 461 462 /* 463 * Swap entry may have been freed since our caller observed it. 464 */ 465 err = swapcache_prepare(entry); 466 if (!err) 467 break; 468 469 folio_put(folio); 470 if (err != -EEXIST) 471 goto fail_put_swap; 472 473 /* 474 * We might race against __delete_from_swap_cache(), and 475 * stumble across a swap_map entry whose SWAP_HAS_CACHE 476 * has not yet been cleared. Or race against another 477 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 478 * in swap_map, but not yet added its page to swap cache. 479 */ 480 schedule_timeout_uninterruptible(1); 481 } 482 483 /* 484 * The swap entry is ours to swap in. Prepare the new page. 485 */ 486 487 __folio_set_locked(folio); 488 __folio_set_swapbacked(folio); 489 490 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) 491 goto fail_unlock; 492 493 /* May fail (-ENOMEM) if XArray node allocation failed. */ 494 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 495 goto fail_unlock; 496 497 mem_cgroup_swapin_uncharge_swap(entry); 498 499 if (shadow) 500 workingset_refault(folio, shadow); 501 502 /* Caller will initiate read into locked folio */ 503 folio_add_lru(folio); 504 *new_page_allocated = true; 505 page = &folio->page; 506 got_page: 507 put_swap_device(si); 508 return page; 509 510 fail_unlock: 511 put_swap_folio(folio, entry); 512 folio_unlock(folio); 513 folio_put(folio); 514 fail_put_swap: 515 put_swap_device(si); 516 return NULL; 517 } 518 519 /* 520 * Locate a page of swap in physical memory, reserving swap cache space 521 * and reading the disk if it is not already cached. 522 * A failure return means that either the page allocation failed or that 523 * the swap entry is no longer in use. 524 * 525 * get/put_swap_device() aren't needed to call this function, because 526 * __read_swap_cache_async() call them and swap_readpage() holds the 527 * swap cache folio lock. 528 */ 529 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 530 struct vm_area_struct *vma, 531 unsigned long addr, bool do_poll, 532 struct swap_iocb **plug) 533 { 534 bool page_was_allocated; 535 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 536 vma, addr, &page_was_allocated); 537 538 if (page_was_allocated) 539 swap_readpage(retpage, do_poll, plug); 540 541 return retpage; 542 } 543 544 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 545 unsigned long offset, 546 int hits, 547 int max_pages, 548 int prev_win) 549 { 550 unsigned int pages, last_ra; 551 552 /* 553 * This heuristic has been found to work well on both sequential and 554 * random loads, swapping to hard disk or to SSD: please don't ask 555 * what the "+ 2" means, it just happens to work well, that's all. 556 */ 557 pages = hits + 2; 558 if (pages == 2) { 559 /* 560 * We can have no readahead hits to judge by: but must not get 561 * stuck here forever, so check for an adjacent offset instead 562 * (and don't even bother to check whether swap type is same). 563 */ 564 if (offset != prev_offset + 1 && offset != prev_offset - 1) 565 pages = 1; 566 } else { 567 unsigned int roundup = 4; 568 while (roundup < pages) 569 roundup <<= 1; 570 pages = roundup; 571 } 572 573 if (pages > max_pages) 574 pages = max_pages; 575 576 /* Don't shrink readahead too fast */ 577 last_ra = prev_win / 2; 578 if (pages < last_ra) 579 pages = last_ra; 580 581 return pages; 582 } 583 584 static unsigned long swapin_nr_pages(unsigned long offset) 585 { 586 static unsigned long prev_offset; 587 unsigned int hits, pages, max_pages; 588 static atomic_t last_readahead_pages; 589 590 max_pages = 1 << READ_ONCE(page_cluster); 591 if (max_pages <= 1) 592 return 1; 593 594 hits = atomic_xchg(&swapin_readahead_hits, 0); 595 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 596 max_pages, 597 atomic_read(&last_readahead_pages)); 598 if (!hits) 599 WRITE_ONCE(prev_offset, offset); 600 atomic_set(&last_readahead_pages, pages); 601 602 return pages; 603 } 604 605 /** 606 * swap_cluster_readahead - swap in pages in hope we need them soon 607 * @entry: swap entry of this memory 608 * @gfp_mask: memory allocation flags 609 * @vmf: fault information 610 * 611 * Returns the struct page for entry and addr, after queueing swapin. 612 * 613 * Primitive swap readahead code. We simply read an aligned block of 614 * (1 << page_cluster) entries in the swap area. This method is chosen 615 * because it doesn't cost us any seek time. We also make sure to queue 616 * the 'original' request together with the readahead ones... 617 * 618 * This has been extended to use the NUMA policies from the mm triggering 619 * the readahead. 620 * 621 * Caller must hold read mmap_lock if vmf->vma is not NULL. 622 */ 623 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 624 struct vm_fault *vmf) 625 { 626 struct page *page; 627 unsigned long entry_offset = swp_offset(entry); 628 unsigned long offset = entry_offset; 629 unsigned long start_offset, end_offset; 630 unsigned long mask; 631 struct swap_info_struct *si = swp_swap_info(entry); 632 struct blk_plug plug; 633 struct swap_iocb *splug = NULL; 634 bool do_poll = true, page_allocated; 635 struct vm_area_struct *vma = vmf->vma; 636 unsigned long addr = vmf->address; 637 638 mask = swapin_nr_pages(offset) - 1; 639 if (!mask) 640 goto skip; 641 642 do_poll = false; 643 /* Read a page_cluster sized and aligned cluster around offset. */ 644 start_offset = offset & ~mask; 645 end_offset = offset | mask; 646 if (!start_offset) /* First page is swap header. */ 647 start_offset++; 648 if (end_offset >= si->max) 649 end_offset = si->max - 1; 650 651 blk_start_plug(&plug); 652 for (offset = start_offset; offset <= end_offset ; offset++) { 653 /* Ok, do the async read-ahead now */ 654 page = __read_swap_cache_async( 655 swp_entry(swp_type(entry), offset), 656 gfp_mask, vma, addr, &page_allocated); 657 if (!page) 658 continue; 659 if (page_allocated) { 660 swap_readpage(page, false, &splug); 661 if (offset != entry_offset) { 662 SetPageReadahead(page); 663 count_vm_event(SWAP_RA); 664 } 665 } 666 put_page(page); 667 } 668 blk_finish_plug(&plug); 669 swap_read_unplug(splug); 670 671 lru_add_drain(); /* Push any new pages onto the LRU now */ 672 skip: 673 /* The page was likely read above, so no need for plugging here */ 674 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); 675 } 676 677 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 678 { 679 struct address_space *spaces, *space; 680 unsigned int i, nr; 681 682 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 683 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 684 if (!spaces) 685 return -ENOMEM; 686 for (i = 0; i < nr; i++) { 687 space = spaces + i; 688 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 689 atomic_set(&space->i_mmap_writable, 0); 690 space->a_ops = &swap_aops; 691 /* swap cache doesn't use writeback related tags */ 692 mapping_set_no_writeback_tags(space); 693 } 694 nr_swapper_spaces[type] = nr; 695 swapper_spaces[type] = spaces; 696 697 return 0; 698 } 699 700 void exit_swap_address_space(unsigned int type) 701 { 702 int i; 703 struct address_space *spaces = swapper_spaces[type]; 704 705 for (i = 0; i < nr_swapper_spaces[type]; i++) 706 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 707 kvfree(spaces); 708 nr_swapper_spaces[type] = 0; 709 swapper_spaces[type] = NULL; 710 } 711 712 #define SWAP_RA_ORDER_CEILING 5 713 714 struct vma_swap_readahead { 715 unsigned short win; 716 unsigned short offset; 717 unsigned short nr_pte; 718 }; 719 720 static void swap_ra_info(struct vm_fault *vmf, 721 struct vma_swap_readahead *ra_info) 722 { 723 struct vm_area_struct *vma = vmf->vma; 724 unsigned long ra_val; 725 unsigned long faddr, pfn, fpfn, lpfn, rpfn; 726 unsigned long start, end; 727 unsigned int max_win, hits, prev_win, win; 728 729 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 730 SWAP_RA_ORDER_CEILING); 731 if (max_win == 1) { 732 ra_info->win = 1; 733 return; 734 } 735 736 faddr = vmf->address; 737 fpfn = PFN_DOWN(faddr); 738 ra_val = GET_SWAP_RA_VAL(vma); 739 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 740 prev_win = SWAP_RA_WIN(ra_val); 741 hits = SWAP_RA_HITS(ra_val); 742 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 743 max_win, prev_win); 744 atomic_long_set(&vma->swap_readahead_info, 745 SWAP_RA_VAL(faddr, win, 0)); 746 if (win == 1) 747 return; 748 749 if (fpfn == pfn + 1) { 750 lpfn = fpfn; 751 rpfn = fpfn + win; 752 } else if (pfn == fpfn + 1) { 753 lpfn = fpfn - win + 1; 754 rpfn = fpfn + 1; 755 } else { 756 unsigned int left = (win - 1) / 2; 757 758 lpfn = fpfn - left; 759 rpfn = fpfn + win - left; 760 } 761 start = max3(lpfn, PFN_DOWN(vma->vm_start), 762 PFN_DOWN(faddr & PMD_MASK)); 763 end = min3(rpfn, PFN_DOWN(vma->vm_end), 764 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 765 766 ra_info->nr_pte = end - start; 767 ra_info->offset = fpfn - start; 768 } 769 770 /** 771 * swap_vma_readahead - swap in pages in hope we need them soon 772 * @fentry: swap entry of this memory 773 * @gfp_mask: memory allocation flags 774 * @vmf: fault information 775 * 776 * Returns the struct page for entry and addr, after queueing swapin. 777 * 778 * Primitive swap readahead code. We simply read in a few pages whose 779 * virtual addresses are around the fault address in the same vma. 780 * 781 * Caller must hold read mmap_lock if vmf->vma is not NULL. 782 * 783 */ 784 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 785 struct vm_fault *vmf) 786 { 787 struct blk_plug plug; 788 struct swap_iocb *splug = NULL; 789 struct vm_area_struct *vma = vmf->vma; 790 struct page *page; 791 pte_t *pte = NULL, pentry; 792 unsigned long addr; 793 swp_entry_t entry; 794 unsigned int i; 795 bool page_allocated; 796 struct vma_swap_readahead ra_info = { 797 .win = 1, 798 }; 799 800 swap_ra_info(vmf, &ra_info); 801 if (ra_info.win == 1) 802 goto skip; 803 804 addr = vmf->address - (ra_info.offset * PAGE_SIZE); 805 806 blk_start_plug(&plug); 807 for (i = 0; i < ra_info.nr_pte; i++, addr += PAGE_SIZE) { 808 if (!pte++) { 809 pte = pte_offset_map(vmf->pmd, addr); 810 if (!pte) 811 break; 812 } 813 pentry = ptep_get_lockless(pte); 814 if (!is_swap_pte(pentry)) 815 continue; 816 entry = pte_to_swp_entry(pentry); 817 if (unlikely(non_swap_entry(entry))) 818 continue; 819 pte_unmap(pte); 820 pte = NULL; 821 page = __read_swap_cache_async(entry, gfp_mask, vma, 822 addr, &page_allocated); 823 if (!page) 824 continue; 825 if (page_allocated) { 826 swap_readpage(page, false, &splug); 827 if (i != ra_info.offset) { 828 SetPageReadahead(page); 829 count_vm_event(SWAP_RA); 830 } 831 } 832 put_page(page); 833 } 834 if (pte) 835 pte_unmap(pte); 836 blk_finish_plug(&plug); 837 swap_read_unplug(splug); 838 lru_add_drain(); 839 skip: 840 /* The page was likely read above, so no need for plugging here */ 841 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 842 ra_info.win == 1, NULL); 843 } 844 845 /** 846 * swapin_readahead - swap in pages in hope we need them soon 847 * @entry: swap entry of this memory 848 * @gfp_mask: memory allocation flags 849 * @vmf: fault information 850 * 851 * Returns the struct page for entry and addr, after queueing swapin. 852 * 853 * It's a main entry function for swap readahead. By the configuration, 854 * it will read ahead blocks by cluster-based(ie, physical disk based) 855 * or vma-based(ie, virtual address based on faulty address) readahead. 856 */ 857 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 858 struct vm_fault *vmf) 859 { 860 return swap_use_vma_readahead() ? 861 swap_vma_readahead(entry, gfp_mask, vmf) : 862 swap_cluster_readahead(entry, gfp_mask, vmf); 863 } 864 865 #ifdef CONFIG_SYSFS 866 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 867 struct kobj_attribute *attr, char *buf) 868 { 869 return sysfs_emit(buf, "%s\n", 870 enable_vma_readahead ? "true" : "false"); 871 } 872 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 873 struct kobj_attribute *attr, 874 const char *buf, size_t count) 875 { 876 ssize_t ret; 877 878 ret = kstrtobool(buf, &enable_vma_readahead); 879 if (ret) 880 return ret; 881 882 return count; 883 } 884 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 885 886 static struct attribute *swap_attrs[] = { 887 &vma_ra_enabled_attr.attr, 888 NULL, 889 }; 890 891 static const struct attribute_group swap_attr_group = { 892 .attrs = swap_attrs, 893 }; 894 895 static int __init swap_init_sysfs(void) 896 { 897 int err; 898 struct kobject *swap_kobj; 899 900 swap_kobj = kobject_create_and_add("swap", mm_kobj); 901 if (!swap_kobj) { 902 pr_err("failed to create swap kobject\n"); 903 return -ENOMEM; 904 } 905 err = sysfs_create_group(swap_kobj, &swap_attr_group); 906 if (err) { 907 pr_err("failed to register swap group\n"); 908 goto delete_obj; 909 } 910 return 0; 911 912 delete_obj: 913 kobject_put(swap_kobj); 914 return err; 915 } 916 subsys_initcall(swap_init_sysfs); 917 #endif 918