xref: /openbmc/linux/mm/swap_state.c (revision 7211ec63)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 #include <linux/huge_mm.h>
23 
24 #include <asm/pgtable.h>
25 
26 /*
27  * swapper_space is a fiction, retained to simplify the path through
28  * vmscan's shrink_page_list.
29  */
30 static const struct address_space_operations swap_aops = {
31 	.writepage	= swap_writepage,
32 	.set_page_dirty	= swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 	.migratepage	= migrate_page,
35 #endif
36 };
37 
38 struct address_space *swapper_spaces[MAX_SWAPFILES];
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40 bool swap_vma_readahead = true;
41 
42 #define SWAP_RA_MAX_ORDER_DEFAULT	3
43 
44 static int swap_ra_max_order = SWAP_RA_MAX_ORDER_DEFAULT;
45 
46 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
47 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
48 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
49 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
50 
51 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
52 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
53 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
54 
55 #define SWAP_RA_VAL(addr, win, hits)				\
56 	(((addr) & PAGE_MASK) |					\
57 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
58 	 ((hits) & SWAP_RA_HITS_MASK))
59 
60 /* Initial readahead hits is 4 to start up with a small window */
61 #define GET_SWAP_RA_VAL(vma)					\
62 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
63 
64 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
65 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
66 
67 static struct {
68 	unsigned long add_total;
69 	unsigned long del_total;
70 	unsigned long find_success;
71 	unsigned long find_total;
72 } swap_cache_info;
73 
74 unsigned long total_swapcache_pages(void)
75 {
76 	unsigned int i, j, nr;
77 	unsigned long ret = 0;
78 	struct address_space *spaces;
79 
80 	rcu_read_lock();
81 	for (i = 0; i < MAX_SWAPFILES; i++) {
82 		/*
83 		 * The corresponding entries in nr_swapper_spaces and
84 		 * swapper_spaces will be reused only after at least
85 		 * one grace period.  So it is impossible for them
86 		 * belongs to different usage.
87 		 */
88 		nr = nr_swapper_spaces[i];
89 		spaces = rcu_dereference(swapper_spaces[i]);
90 		if (!nr || !spaces)
91 			continue;
92 		for (j = 0; j < nr; j++)
93 			ret += spaces[j].nrpages;
94 	}
95 	rcu_read_unlock();
96 	return ret;
97 }
98 
99 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
100 
101 void show_swap_cache_info(void)
102 {
103 	printk("%lu pages in swap cache\n", total_swapcache_pages());
104 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
105 		swap_cache_info.add_total, swap_cache_info.del_total,
106 		swap_cache_info.find_success, swap_cache_info.find_total);
107 	printk("Free swap  = %ldkB\n",
108 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
109 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
110 }
111 
112 /*
113  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
114  * but sets SwapCache flag and private instead of mapping and index.
115  */
116 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
117 {
118 	int error, i, nr = hpage_nr_pages(page);
119 	struct address_space *address_space;
120 	pgoff_t idx = swp_offset(entry);
121 
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
124 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
125 
126 	page_ref_add(page, nr);
127 	SetPageSwapCache(page);
128 
129 	address_space = swap_address_space(entry);
130 	spin_lock_irq(&address_space->tree_lock);
131 	for (i = 0; i < nr; i++) {
132 		set_page_private(page + i, entry.val + i);
133 		error = radix_tree_insert(&address_space->page_tree,
134 					  idx + i, page + i);
135 		if (unlikely(error))
136 			break;
137 	}
138 	if (likely(!error)) {
139 		address_space->nrpages += nr;
140 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
141 		ADD_CACHE_INFO(add_total, nr);
142 	} else {
143 		/*
144 		 * Only the context which have set SWAP_HAS_CACHE flag
145 		 * would call add_to_swap_cache().
146 		 * So add_to_swap_cache() doesn't returns -EEXIST.
147 		 */
148 		VM_BUG_ON(error == -EEXIST);
149 		set_page_private(page + i, 0UL);
150 		while (i--) {
151 			radix_tree_delete(&address_space->page_tree, idx + i);
152 			set_page_private(page + i, 0UL);
153 		}
154 		ClearPageSwapCache(page);
155 		page_ref_sub(page, nr);
156 	}
157 	spin_unlock_irq(&address_space->tree_lock);
158 
159 	return error;
160 }
161 
162 
163 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
164 {
165 	int error;
166 
167 	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
168 	if (!error) {
169 		error = __add_to_swap_cache(page, entry);
170 		radix_tree_preload_end();
171 	}
172 	return error;
173 }
174 
175 /*
176  * This must be called only on pages that have
177  * been verified to be in the swap cache.
178  */
179 void __delete_from_swap_cache(struct page *page)
180 {
181 	struct address_space *address_space;
182 	int i, nr = hpage_nr_pages(page);
183 	swp_entry_t entry;
184 	pgoff_t idx;
185 
186 	VM_BUG_ON_PAGE(!PageLocked(page), page);
187 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
188 	VM_BUG_ON_PAGE(PageWriteback(page), page);
189 
190 	entry.val = page_private(page);
191 	address_space = swap_address_space(entry);
192 	idx = swp_offset(entry);
193 	for (i = 0; i < nr; i++) {
194 		radix_tree_delete(&address_space->page_tree, idx + i);
195 		set_page_private(page + i, 0);
196 	}
197 	ClearPageSwapCache(page);
198 	address_space->nrpages -= nr;
199 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 	ADD_CACHE_INFO(del_total, nr);
201 }
202 
203 /**
204  * add_to_swap - allocate swap space for a page
205  * @page: page we want to move to swap
206  *
207  * Allocate swap space for the page and add the page to the
208  * swap cache.  Caller needs to hold the page lock.
209  */
210 int add_to_swap(struct page *page)
211 {
212 	swp_entry_t entry;
213 	int err;
214 
215 	VM_BUG_ON_PAGE(!PageLocked(page), page);
216 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
217 
218 	entry = get_swap_page(page);
219 	if (!entry.val)
220 		return 0;
221 
222 	if (mem_cgroup_try_charge_swap(page, entry))
223 		goto fail;
224 
225 	/*
226 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
227 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
228 	 * stops emergency reserves from being allocated.
229 	 *
230 	 * TODO: this could cause a theoretical memory reclaim
231 	 * deadlock in the swap out path.
232 	 */
233 	/*
234 	 * Add it to the swap cache.
235 	 */
236 	err = add_to_swap_cache(page, entry,
237 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
238 	/* -ENOMEM radix-tree allocation failure */
239 	if (err)
240 		/*
241 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
242 		 * clear SWAP_HAS_CACHE flag.
243 		 */
244 		goto fail;
245 	/*
246 	 * Normally the page will be dirtied in unmap because its pte should be
247 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
248 	 * dirty bit cleared but the page's SwapBacked bit is still set because
249 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
250 	 * such page, unmap will not set dirty bit for it, so page reclaim will
251 	 * not write the page out. This can cause data corruption when the page
252 	 * is swap in later. Always setting the dirty bit for the page solves
253 	 * the problem.
254 	 */
255 	set_page_dirty(page);
256 
257 	return 1;
258 
259 fail:
260 	put_swap_page(page, entry);
261 	return 0;
262 }
263 
264 /*
265  * This must be called only on pages that have
266  * been verified to be in the swap cache and locked.
267  * It will never put the page into the free list,
268  * the caller has a reference on the page.
269  */
270 void delete_from_swap_cache(struct page *page)
271 {
272 	swp_entry_t entry;
273 	struct address_space *address_space;
274 
275 	entry.val = page_private(page);
276 
277 	address_space = swap_address_space(entry);
278 	spin_lock_irq(&address_space->tree_lock);
279 	__delete_from_swap_cache(page);
280 	spin_unlock_irq(&address_space->tree_lock);
281 
282 	put_swap_page(page, entry);
283 	page_ref_sub(page, hpage_nr_pages(page));
284 }
285 
286 /*
287  * If we are the only user, then try to free up the swap cache.
288  *
289  * Its ok to check for PageSwapCache without the page lock
290  * here because we are going to recheck again inside
291  * try_to_free_swap() _with_ the lock.
292  * 					- Marcelo
293  */
294 static inline void free_swap_cache(struct page *page)
295 {
296 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
297 		try_to_free_swap(page);
298 		unlock_page(page);
299 	}
300 }
301 
302 /*
303  * Perform a free_page(), also freeing any swap cache associated with
304  * this page if it is the last user of the page.
305  */
306 void free_page_and_swap_cache(struct page *page)
307 {
308 	free_swap_cache(page);
309 	if (!is_huge_zero_page(page))
310 		put_page(page);
311 }
312 
313 /*
314  * Passed an array of pages, drop them all from swapcache and then release
315  * them.  They are removed from the LRU and freed if this is their last use.
316  */
317 void free_pages_and_swap_cache(struct page **pages, int nr)
318 {
319 	struct page **pagep = pages;
320 	int i;
321 
322 	lru_add_drain();
323 	for (i = 0; i < nr; i++)
324 		free_swap_cache(pagep[i]);
325 	release_pages(pagep, nr, false);
326 }
327 
328 /*
329  * Lookup a swap entry in the swap cache. A found page will be returned
330  * unlocked and with its refcount incremented - we rely on the kernel
331  * lock getting page table operations atomic even if we drop the page
332  * lock before returning.
333  */
334 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
335 			       unsigned long addr)
336 {
337 	struct page *page;
338 	unsigned long ra_info;
339 	int win, hits, readahead;
340 
341 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
342 
343 	INC_CACHE_INFO(find_total);
344 	if (page) {
345 		INC_CACHE_INFO(find_success);
346 		if (unlikely(PageTransCompound(page)))
347 			return page;
348 		readahead = TestClearPageReadahead(page);
349 		if (vma) {
350 			ra_info = GET_SWAP_RA_VAL(vma);
351 			win = SWAP_RA_WIN(ra_info);
352 			hits = SWAP_RA_HITS(ra_info);
353 			if (readahead)
354 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
355 			atomic_long_set(&vma->swap_readahead_info,
356 					SWAP_RA_VAL(addr, win, hits));
357 		}
358 		if (readahead) {
359 			count_vm_event(SWAP_RA_HIT);
360 			if (!vma)
361 				atomic_inc(&swapin_readahead_hits);
362 		}
363 	}
364 	return page;
365 }
366 
367 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
368 			struct vm_area_struct *vma, unsigned long addr,
369 			bool *new_page_allocated)
370 {
371 	struct page *found_page, *new_page = NULL;
372 	struct address_space *swapper_space = swap_address_space(entry);
373 	int err;
374 	*new_page_allocated = false;
375 
376 	do {
377 		/*
378 		 * First check the swap cache.  Since this is normally
379 		 * called after lookup_swap_cache() failed, re-calling
380 		 * that would confuse statistics.
381 		 */
382 		found_page = find_get_page(swapper_space, swp_offset(entry));
383 		if (found_page)
384 			break;
385 
386 		/*
387 		 * Just skip read ahead for unused swap slot.
388 		 * During swap_off when swap_slot_cache is disabled,
389 		 * we have to handle the race between putting
390 		 * swap entry in swap cache and marking swap slot
391 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
392 		 * else swap_off will be aborted if we return NULL.
393 		 */
394 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
395 			break;
396 
397 		/*
398 		 * Get a new page to read into from swap.
399 		 */
400 		if (!new_page) {
401 			new_page = alloc_page_vma(gfp_mask, vma, addr);
402 			if (!new_page)
403 				break;		/* Out of memory */
404 		}
405 
406 		/*
407 		 * call radix_tree_preload() while we can wait.
408 		 */
409 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
410 		if (err)
411 			break;
412 
413 		/*
414 		 * Swap entry may have been freed since our caller observed it.
415 		 */
416 		err = swapcache_prepare(entry);
417 		if (err == -EEXIST) {
418 			radix_tree_preload_end();
419 			/*
420 			 * We might race against get_swap_page() and stumble
421 			 * across a SWAP_HAS_CACHE swap_map entry whose page
422 			 * has not been brought into the swapcache yet.
423 			 */
424 			cond_resched();
425 			continue;
426 		}
427 		if (err) {		/* swp entry is obsolete ? */
428 			radix_tree_preload_end();
429 			break;
430 		}
431 
432 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
433 		__SetPageLocked(new_page);
434 		__SetPageSwapBacked(new_page);
435 		err = __add_to_swap_cache(new_page, entry);
436 		if (likely(!err)) {
437 			radix_tree_preload_end();
438 			/*
439 			 * Initiate read into locked page and return.
440 			 */
441 			lru_cache_add_anon(new_page);
442 			*new_page_allocated = true;
443 			return new_page;
444 		}
445 		radix_tree_preload_end();
446 		__ClearPageLocked(new_page);
447 		/*
448 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
449 		 * clear SWAP_HAS_CACHE flag.
450 		 */
451 		put_swap_page(new_page, entry);
452 	} while (err != -ENOMEM);
453 
454 	if (new_page)
455 		put_page(new_page);
456 	return found_page;
457 }
458 
459 /*
460  * Locate a page of swap in physical memory, reserving swap cache space
461  * and reading the disk if it is not already cached.
462  * A failure return means that either the page allocation failed or that
463  * the swap entry is no longer in use.
464  */
465 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
466 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
467 {
468 	bool page_was_allocated;
469 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
470 			vma, addr, &page_was_allocated);
471 
472 	if (page_was_allocated)
473 		swap_readpage(retpage, do_poll);
474 
475 	return retpage;
476 }
477 
478 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
479 				      unsigned long offset,
480 				      int hits,
481 				      int max_pages,
482 				      int prev_win)
483 {
484 	unsigned int pages, last_ra;
485 
486 	/*
487 	 * This heuristic has been found to work well on both sequential and
488 	 * random loads, swapping to hard disk or to SSD: please don't ask
489 	 * what the "+ 2" means, it just happens to work well, that's all.
490 	 */
491 	pages = hits + 2;
492 	if (pages == 2) {
493 		/*
494 		 * We can have no readahead hits to judge by: but must not get
495 		 * stuck here forever, so check for an adjacent offset instead
496 		 * (and don't even bother to check whether swap type is same).
497 		 */
498 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
499 			pages = 1;
500 	} else {
501 		unsigned int roundup = 4;
502 		while (roundup < pages)
503 			roundup <<= 1;
504 		pages = roundup;
505 	}
506 
507 	if (pages > max_pages)
508 		pages = max_pages;
509 
510 	/* Don't shrink readahead too fast */
511 	last_ra = prev_win / 2;
512 	if (pages < last_ra)
513 		pages = last_ra;
514 
515 	return pages;
516 }
517 
518 static unsigned long swapin_nr_pages(unsigned long offset)
519 {
520 	static unsigned long prev_offset;
521 	unsigned int hits, pages, max_pages;
522 	static atomic_t last_readahead_pages;
523 
524 	max_pages = 1 << READ_ONCE(page_cluster);
525 	if (max_pages <= 1)
526 		return 1;
527 
528 	hits = atomic_xchg(&swapin_readahead_hits, 0);
529 	pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
530 				  atomic_read(&last_readahead_pages));
531 	if (!hits)
532 		prev_offset = offset;
533 	atomic_set(&last_readahead_pages, pages);
534 
535 	return pages;
536 }
537 
538 /**
539  * swapin_readahead - swap in pages in hope we need them soon
540  * @entry: swap entry of this memory
541  * @gfp_mask: memory allocation flags
542  * @vma: user vma this address belongs to
543  * @addr: target address for mempolicy
544  *
545  * Returns the struct page for entry and addr, after queueing swapin.
546  *
547  * Primitive swap readahead code. We simply read an aligned block of
548  * (1 << page_cluster) entries in the swap area. This method is chosen
549  * because it doesn't cost us any seek time.  We also make sure to queue
550  * the 'original' request together with the readahead ones...
551  *
552  * This has been extended to use the NUMA policies from the mm triggering
553  * the readahead.
554  *
555  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
556  */
557 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
558 			struct vm_area_struct *vma, unsigned long addr)
559 {
560 	struct page *page;
561 	unsigned long entry_offset = swp_offset(entry);
562 	unsigned long offset = entry_offset;
563 	unsigned long start_offset, end_offset;
564 	unsigned long mask;
565 	struct blk_plug plug;
566 	bool do_poll = true, page_allocated;
567 
568 	mask = swapin_nr_pages(offset) - 1;
569 	if (!mask)
570 		goto skip;
571 
572 	do_poll = false;
573 	/* Read a page_cluster sized and aligned cluster around offset. */
574 	start_offset = offset & ~mask;
575 	end_offset = offset | mask;
576 	if (!start_offset)	/* First page is swap header. */
577 		start_offset++;
578 
579 	blk_start_plug(&plug);
580 	for (offset = start_offset; offset <= end_offset ; offset++) {
581 		/* Ok, do the async read-ahead now */
582 		page = __read_swap_cache_async(
583 			swp_entry(swp_type(entry), offset),
584 			gfp_mask, vma, addr, &page_allocated);
585 		if (!page)
586 			continue;
587 		if (page_allocated) {
588 			swap_readpage(page, false);
589 			if (offset != entry_offset &&
590 			    likely(!PageTransCompound(page))) {
591 				SetPageReadahead(page);
592 				count_vm_event(SWAP_RA);
593 			}
594 		}
595 		put_page(page);
596 	}
597 	blk_finish_plug(&plug);
598 
599 	lru_add_drain();	/* Push any new pages onto the LRU now */
600 skip:
601 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
602 }
603 
604 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
605 {
606 	struct address_space *spaces, *space;
607 	unsigned int i, nr;
608 
609 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
610 	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
611 	if (!spaces)
612 		return -ENOMEM;
613 	for (i = 0; i < nr; i++) {
614 		space = spaces + i;
615 		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
616 		atomic_set(&space->i_mmap_writable, 0);
617 		space->a_ops = &swap_aops;
618 		/* swap cache doesn't use writeback related tags */
619 		mapping_set_no_writeback_tags(space);
620 		spin_lock_init(&space->tree_lock);
621 	}
622 	nr_swapper_spaces[type] = nr;
623 	rcu_assign_pointer(swapper_spaces[type], spaces);
624 
625 	return 0;
626 }
627 
628 void exit_swap_address_space(unsigned int type)
629 {
630 	struct address_space *spaces;
631 
632 	spaces = swapper_spaces[type];
633 	nr_swapper_spaces[type] = 0;
634 	rcu_assign_pointer(swapper_spaces[type], NULL);
635 	synchronize_rcu();
636 	kvfree(spaces);
637 }
638 
639 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
640 				     unsigned long faddr,
641 				     unsigned long lpfn,
642 				     unsigned long rpfn,
643 				     unsigned long *start,
644 				     unsigned long *end)
645 {
646 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
647 		      PFN_DOWN(faddr & PMD_MASK));
648 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
649 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
650 }
651 
652 struct page *swap_readahead_detect(struct vm_fault *vmf,
653 				   struct vma_swap_readahead *swap_ra)
654 {
655 	struct vm_area_struct *vma = vmf->vma;
656 	unsigned long swap_ra_info;
657 	struct page *page;
658 	swp_entry_t entry;
659 	unsigned long faddr, pfn, fpfn;
660 	unsigned long start, end;
661 	pte_t *pte;
662 	unsigned int max_win, hits, prev_win, win, left;
663 #ifndef CONFIG_64BIT
664 	pte_t *tpte;
665 #endif
666 
667 	faddr = vmf->address;
668 	entry = pte_to_swp_entry(vmf->orig_pte);
669 	if ((unlikely(non_swap_entry(entry))))
670 		return NULL;
671 	page = lookup_swap_cache(entry, vma, faddr);
672 	if (page)
673 		return page;
674 
675 	max_win = 1 << READ_ONCE(swap_ra_max_order);
676 	if (max_win == 1) {
677 		swap_ra->win = 1;
678 		return NULL;
679 	}
680 
681 	fpfn = PFN_DOWN(faddr);
682 	swap_ra_info = GET_SWAP_RA_VAL(vma);
683 	pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
684 	prev_win = SWAP_RA_WIN(swap_ra_info);
685 	hits = SWAP_RA_HITS(swap_ra_info);
686 	swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
687 					       max_win, prev_win);
688 	atomic_long_set(&vma->swap_readahead_info,
689 			SWAP_RA_VAL(faddr, win, 0));
690 
691 	if (win == 1)
692 		return NULL;
693 
694 	/* Copy the PTEs because the page table may be unmapped */
695 	if (fpfn == pfn + 1)
696 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
697 	else if (pfn == fpfn + 1)
698 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
699 				  &start, &end);
700 	else {
701 		left = (win - 1) / 2;
702 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
703 				  &start, &end);
704 	}
705 	swap_ra->nr_pte = end - start;
706 	swap_ra->offset = fpfn - start;
707 	pte = vmf->pte - swap_ra->offset;
708 #ifdef CONFIG_64BIT
709 	swap_ra->ptes = pte;
710 #else
711 	tpte = swap_ra->ptes;
712 	for (pfn = start; pfn != end; pfn++)
713 		*tpte++ = *pte++;
714 #endif
715 
716 	return NULL;
717 }
718 
719 struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
720 				    struct vm_fault *vmf,
721 				    struct vma_swap_readahead *swap_ra)
722 {
723 	struct blk_plug plug;
724 	struct vm_area_struct *vma = vmf->vma;
725 	struct page *page;
726 	pte_t *pte, pentry;
727 	swp_entry_t entry;
728 	unsigned int i;
729 	bool page_allocated;
730 
731 	if (swap_ra->win == 1)
732 		goto skip;
733 
734 	blk_start_plug(&plug);
735 	for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
736 	     i++, pte++) {
737 		pentry = *pte;
738 		if (pte_none(pentry))
739 			continue;
740 		if (pte_present(pentry))
741 			continue;
742 		entry = pte_to_swp_entry(pentry);
743 		if (unlikely(non_swap_entry(entry)))
744 			continue;
745 		page = __read_swap_cache_async(entry, gfp_mask, vma,
746 					       vmf->address, &page_allocated);
747 		if (!page)
748 			continue;
749 		if (page_allocated) {
750 			swap_readpage(page, false);
751 			if (i != swap_ra->offset &&
752 			    likely(!PageTransCompound(page))) {
753 				SetPageReadahead(page);
754 				count_vm_event(SWAP_RA);
755 			}
756 		}
757 		put_page(page);
758 	}
759 	blk_finish_plug(&plug);
760 	lru_add_drain();
761 skip:
762 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
763 				     swap_ra->win == 1);
764 }
765 
766 #ifdef CONFIG_SYSFS
767 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
768 				     struct kobj_attribute *attr, char *buf)
769 {
770 	return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
771 }
772 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
773 				      struct kobj_attribute *attr,
774 				      const char *buf, size_t count)
775 {
776 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
777 		swap_vma_readahead = true;
778 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
779 		swap_vma_readahead = false;
780 	else
781 		return -EINVAL;
782 
783 	return count;
784 }
785 static struct kobj_attribute vma_ra_enabled_attr =
786 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
787 	       vma_ra_enabled_store);
788 
789 static ssize_t vma_ra_max_order_show(struct kobject *kobj,
790 				     struct kobj_attribute *attr, char *buf)
791 {
792 	return sprintf(buf, "%d\n", swap_ra_max_order);
793 }
794 static ssize_t vma_ra_max_order_store(struct kobject *kobj,
795 				      struct kobj_attribute *attr,
796 				      const char *buf, size_t count)
797 {
798 	int err, v;
799 
800 	err = kstrtoint(buf, 10, &v);
801 	if (err || v > SWAP_RA_ORDER_CEILING || v <= 0)
802 		return -EINVAL;
803 
804 	swap_ra_max_order = v;
805 
806 	return count;
807 }
808 static struct kobj_attribute vma_ra_max_order_attr =
809 	__ATTR(vma_ra_max_order, 0644, vma_ra_max_order_show,
810 	       vma_ra_max_order_store);
811 
812 static struct attribute *swap_attrs[] = {
813 	&vma_ra_enabled_attr.attr,
814 	&vma_ra_max_order_attr.attr,
815 	NULL,
816 };
817 
818 static struct attribute_group swap_attr_group = {
819 	.attrs = swap_attrs,
820 };
821 
822 static int __init swap_init_sysfs(void)
823 {
824 	int err;
825 	struct kobject *swap_kobj;
826 
827 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
828 	if (!swap_kobj) {
829 		pr_err("failed to create swap kobject\n");
830 		return -ENOMEM;
831 	}
832 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
833 	if (err) {
834 		pr_err("failed to register swap group\n");
835 		goto delete_obj;
836 	}
837 	return 0;
838 
839 delete_obj:
840 	kobject_put(swap_kobj);
841 	return err;
842 }
843 subsys_initcall(swap_init_sysfs);
844 #endif
845