xref: /openbmc/linux/mm/swap_state.c (revision 6b5fc336)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 #include <linux/huge_mm.h>
23 
24 #include <asm/pgtable.h>
25 
26 /*
27  * swapper_space is a fiction, retained to simplify the path through
28  * vmscan's shrink_page_list.
29  */
30 static const struct address_space_operations swap_aops = {
31 	.writepage	= swap_writepage,
32 	.set_page_dirty	= swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 	.migratepage	= migrate_page,
35 #endif
36 };
37 
38 struct address_space *swapper_spaces[MAX_SWAPFILES];
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40 
41 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
42 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
43 
44 static struct {
45 	unsigned long add_total;
46 	unsigned long del_total;
47 	unsigned long find_success;
48 	unsigned long find_total;
49 } swap_cache_info;
50 
51 unsigned long total_swapcache_pages(void)
52 {
53 	unsigned int i, j, nr;
54 	unsigned long ret = 0;
55 	struct address_space *spaces;
56 
57 	rcu_read_lock();
58 	for (i = 0; i < MAX_SWAPFILES; i++) {
59 		/*
60 		 * The corresponding entries in nr_swapper_spaces and
61 		 * swapper_spaces will be reused only after at least
62 		 * one grace period.  So it is impossible for them
63 		 * belongs to different usage.
64 		 */
65 		nr = nr_swapper_spaces[i];
66 		spaces = rcu_dereference(swapper_spaces[i]);
67 		if (!nr || !spaces)
68 			continue;
69 		for (j = 0; j < nr; j++)
70 			ret += spaces[j].nrpages;
71 	}
72 	rcu_read_unlock();
73 	return ret;
74 }
75 
76 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
77 
78 void show_swap_cache_info(void)
79 {
80 	printk("%lu pages in swap cache\n", total_swapcache_pages());
81 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
82 		swap_cache_info.add_total, swap_cache_info.del_total,
83 		swap_cache_info.find_success, swap_cache_info.find_total);
84 	printk("Free swap  = %ldkB\n",
85 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
86 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
87 }
88 
89 /*
90  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
91  * but sets SwapCache flag and private instead of mapping and index.
92  */
93 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
94 {
95 	int error, i, nr = hpage_nr_pages(page);
96 	struct address_space *address_space;
97 	pgoff_t idx = swp_offset(entry);
98 
99 	VM_BUG_ON_PAGE(!PageLocked(page), page);
100 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
101 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
102 
103 	page_ref_add(page, nr);
104 	SetPageSwapCache(page);
105 
106 	address_space = swap_address_space(entry);
107 	spin_lock_irq(&address_space->tree_lock);
108 	for (i = 0; i < nr; i++) {
109 		set_page_private(page + i, entry.val + i);
110 		error = radix_tree_insert(&address_space->page_tree,
111 					  idx + i, page + i);
112 		if (unlikely(error))
113 			break;
114 	}
115 	if (likely(!error)) {
116 		address_space->nrpages += nr;
117 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
118 		ADD_CACHE_INFO(add_total, nr);
119 	} else {
120 		/*
121 		 * Only the context which have set SWAP_HAS_CACHE flag
122 		 * would call add_to_swap_cache().
123 		 * So add_to_swap_cache() doesn't returns -EEXIST.
124 		 */
125 		VM_BUG_ON(error == -EEXIST);
126 		set_page_private(page + i, 0UL);
127 		while (i--) {
128 			radix_tree_delete(&address_space->page_tree, idx + i);
129 			set_page_private(page + i, 0UL);
130 		}
131 		ClearPageSwapCache(page);
132 		page_ref_sub(page, nr);
133 	}
134 	spin_unlock_irq(&address_space->tree_lock);
135 
136 	return error;
137 }
138 
139 
140 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
141 {
142 	int error;
143 
144 	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
145 	if (!error) {
146 		error = __add_to_swap_cache(page, entry);
147 		radix_tree_preload_end();
148 	}
149 	return error;
150 }
151 
152 /*
153  * This must be called only on pages that have
154  * been verified to be in the swap cache.
155  */
156 void __delete_from_swap_cache(struct page *page)
157 {
158 	struct address_space *address_space;
159 	int i, nr = hpage_nr_pages(page);
160 	swp_entry_t entry;
161 	pgoff_t idx;
162 
163 	VM_BUG_ON_PAGE(!PageLocked(page), page);
164 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
165 	VM_BUG_ON_PAGE(PageWriteback(page), page);
166 
167 	entry.val = page_private(page);
168 	address_space = swap_address_space(entry);
169 	idx = swp_offset(entry);
170 	for (i = 0; i < nr; i++) {
171 		radix_tree_delete(&address_space->page_tree, idx + i);
172 		set_page_private(page + i, 0);
173 	}
174 	ClearPageSwapCache(page);
175 	address_space->nrpages -= nr;
176 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
177 	ADD_CACHE_INFO(del_total, nr);
178 }
179 
180 /**
181  * add_to_swap - allocate swap space for a page
182  * @page: page we want to move to swap
183  *
184  * Allocate swap space for the page and add the page to the
185  * swap cache.  Caller needs to hold the page lock.
186  */
187 int add_to_swap(struct page *page)
188 {
189 	swp_entry_t entry;
190 	int err;
191 
192 	VM_BUG_ON_PAGE(!PageLocked(page), page);
193 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
194 
195 	entry = get_swap_page(page);
196 	if (!entry.val)
197 		return 0;
198 
199 	if (mem_cgroup_try_charge_swap(page, entry))
200 		goto fail;
201 
202 	/*
203 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
204 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
205 	 * stops emergency reserves from being allocated.
206 	 *
207 	 * TODO: this could cause a theoretical memory reclaim
208 	 * deadlock in the swap out path.
209 	 */
210 	/*
211 	 * Add it to the swap cache.
212 	 */
213 	err = add_to_swap_cache(page, entry,
214 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
215 	/* -ENOMEM radix-tree allocation failure */
216 	if (err)
217 		/*
218 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
219 		 * clear SWAP_HAS_CACHE flag.
220 		 */
221 		goto fail;
222 
223 	return 1;
224 
225 fail:
226 	put_swap_page(page, entry);
227 	return 0;
228 }
229 
230 /*
231  * This must be called only on pages that have
232  * been verified to be in the swap cache and locked.
233  * It will never put the page into the free list,
234  * the caller has a reference on the page.
235  */
236 void delete_from_swap_cache(struct page *page)
237 {
238 	swp_entry_t entry;
239 	struct address_space *address_space;
240 
241 	entry.val = page_private(page);
242 
243 	address_space = swap_address_space(entry);
244 	spin_lock_irq(&address_space->tree_lock);
245 	__delete_from_swap_cache(page);
246 	spin_unlock_irq(&address_space->tree_lock);
247 
248 	put_swap_page(page, entry);
249 	page_ref_sub(page, hpage_nr_pages(page));
250 }
251 
252 /*
253  * If we are the only user, then try to free up the swap cache.
254  *
255  * Its ok to check for PageSwapCache without the page lock
256  * here because we are going to recheck again inside
257  * try_to_free_swap() _with_ the lock.
258  * 					- Marcelo
259  */
260 static inline void free_swap_cache(struct page *page)
261 {
262 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
263 		try_to_free_swap(page);
264 		unlock_page(page);
265 	}
266 }
267 
268 /*
269  * Perform a free_page(), also freeing any swap cache associated with
270  * this page if it is the last user of the page.
271  */
272 void free_page_and_swap_cache(struct page *page)
273 {
274 	free_swap_cache(page);
275 	if (!is_huge_zero_page(page))
276 		put_page(page);
277 }
278 
279 /*
280  * Passed an array of pages, drop them all from swapcache and then release
281  * them.  They are removed from the LRU and freed if this is their last use.
282  */
283 void free_pages_and_swap_cache(struct page **pages, int nr)
284 {
285 	struct page **pagep = pages;
286 	int i;
287 
288 	lru_add_drain();
289 	for (i = 0; i < nr; i++)
290 		free_swap_cache(pagep[i]);
291 	release_pages(pagep, nr, false);
292 }
293 
294 /*
295  * Lookup a swap entry in the swap cache. A found page will be returned
296  * unlocked and with its refcount incremented - we rely on the kernel
297  * lock getting page table operations atomic even if we drop the page
298  * lock before returning.
299  */
300 struct page * lookup_swap_cache(swp_entry_t entry)
301 {
302 	struct page *page;
303 
304 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
305 
306 	if (page && likely(!PageTransCompound(page))) {
307 		INC_CACHE_INFO(find_success);
308 		if (TestClearPageReadahead(page))
309 			atomic_inc(&swapin_readahead_hits);
310 	}
311 
312 	INC_CACHE_INFO(find_total);
313 	return page;
314 }
315 
316 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
317 			struct vm_area_struct *vma, unsigned long addr,
318 			bool *new_page_allocated)
319 {
320 	struct page *found_page, *new_page = NULL;
321 	struct address_space *swapper_space = swap_address_space(entry);
322 	int err;
323 	*new_page_allocated = false;
324 
325 	do {
326 		/*
327 		 * First check the swap cache.  Since this is normally
328 		 * called after lookup_swap_cache() failed, re-calling
329 		 * that would confuse statistics.
330 		 */
331 		found_page = find_get_page(swapper_space, swp_offset(entry));
332 		if (found_page)
333 			break;
334 
335 		/*
336 		 * Just skip read ahead for unused swap slot.
337 		 * During swap_off when swap_slot_cache is disabled,
338 		 * we have to handle the race between putting
339 		 * swap entry in swap cache and marking swap slot
340 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
341 		 * else swap_off will be aborted if we return NULL.
342 		 */
343 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
344 			break;
345 
346 		/*
347 		 * Get a new page to read into from swap.
348 		 */
349 		if (!new_page) {
350 			new_page = alloc_page_vma(gfp_mask, vma, addr);
351 			if (!new_page)
352 				break;		/* Out of memory */
353 		}
354 
355 		/*
356 		 * call radix_tree_preload() while we can wait.
357 		 */
358 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
359 		if (err)
360 			break;
361 
362 		/*
363 		 * Swap entry may have been freed since our caller observed it.
364 		 */
365 		err = swapcache_prepare(entry);
366 		if (err == -EEXIST) {
367 			radix_tree_preload_end();
368 			/*
369 			 * We might race against get_swap_page() and stumble
370 			 * across a SWAP_HAS_CACHE swap_map entry whose page
371 			 * has not been brought into the swapcache yet.
372 			 */
373 			cond_resched();
374 			continue;
375 		}
376 		if (err) {		/* swp entry is obsolete ? */
377 			radix_tree_preload_end();
378 			break;
379 		}
380 
381 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
382 		__SetPageLocked(new_page);
383 		__SetPageSwapBacked(new_page);
384 		err = __add_to_swap_cache(new_page, entry);
385 		if (likely(!err)) {
386 			radix_tree_preload_end();
387 			/*
388 			 * Initiate read into locked page and return.
389 			 */
390 			lru_cache_add_anon(new_page);
391 			*new_page_allocated = true;
392 			return new_page;
393 		}
394 		radix_tree_preload_end();
395 		__ClearPageLocked(new_page);
396 		/*
397 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
398 		 * clear SWAP_HAS_CACHE flag.
399 		 */
400 		put_swap_page(new_page, entry);
401 	} while (err != -ENOMEM);
402 
403 	if (new_page)
404 		put_page(new_page);
405 	return found_page;
406 }
407 
408 /*
409  * Locate a page of swap in physical memory, reserving swap cache space
410  * and reading the disk if it is not already cached.
411  * A failure return means that either the page allocation failed or that
412  * the swap entry is no longer in use.
413  */
414 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
415 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
416 {
417 	bool page_was_allocated;
418 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
419 			vma, addr, &page_was_allocated);
420 
421 	if (page_was_allocated)
422 		swap_readpage(retpage, do_poll);
423 
424 	return retpage;
425 }
426 
427 static unsigned long swapin_nr_pages(unsigned long offset)
428 {
429 	static unsigned long prev_offset;
430 	unsigned int pages, max_pages, last_ra;
431 	static atomic_t last_readahead_pages;
432 
433 	max_pages = 1 << READ_ONCE(page_cluster);
434 	if (max_pages <= 1)
435 		return 1;
436 
437 	/*
438 	 * This heuristic has been found to work well on both sequential and
439 	 * random loads, swapping to hard disk or to SSD: please don't ask
440 	 * what the "+ 2" means, it just happens to work well, that's all.
441 	 */
442 	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
443 	if (pages == 2) {
444 		/*
445 		 * We can have no readahead hits to judge by: but must not get
446 		 * stuck here forever, so check for an adjacent offset instead
447 		 * (and don't even bother to check whether swap type is same).
448 		 */
449 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
450 			pages = 1;
451 		prev_offset = offset;
452 	} else {
453 		unsigned int roundup = 4;
454 		while (roundup < pages)
455 			roundup <<= 1;
456 		pages = roundup;
457 	}
458 
459 	if (pages > max_pages)
460 		pages = max_pages;
461 
462 	/* Don't shrink readahead too fast */
463 	last_ra = atomic_read(&last_readahead_pages) / 2;
464 	if (pages < last_ra)
465 		pages = last_ra;
466 	atomic_set(&last_readahead_pages, pages);
467 
468 	return pages;
469 }
470 
471 /**
472  * swapin_readahead - swap in pages in hope we need them soon
473  * @entry: swap entry of this memory
474  * @gfp_mask: memory allocation flags
475  * @vma: user vma this address belongs to
476  * @addr: target address for mempolicy
477  *
478  * Returns the struct page for entry and addr, after queueing swapin.
479  *
480  * Primitive swap readahead code. We simply read an aligned block of
481  * (1 << page_cluster) entries in the swap area. This method is chosen
482  * because it doesn't cost us any seek time.  We also make sure to queue
483  * the 'original' request together with the readahead ones...
484  *
485  * This has been extended to use the NUMA policies from the mm triggering
486  * the readahead.
487  *
488  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
489  */
490 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
491 			struct vm_area_struct *vma, unsigned long addr)
492 {
493 	struct page *page;
494 	unsigned long entry_offset = swp_offset(entry);
495 	unsigned long offset = entry_offset;
496 	unsigned long start_offset, end_offset;
497 	unsigned long mask;
498 	struct blk_plug plug;
499 	bool do_poll = true;
500 
501 	mask = swapin_nr_pages(offset) - 1;
502 	if (!mask)
503 		goto skip;
504 
505 	do_poll = false;
506 	/* Read a page_cluster sized and aligned cluster around offset. */
507 	start_offset = offset & ~mask;
508 	end_offset = offset | mask;
509 	if (!start_offset)	/* First page is swap header. */
510 		start_offset++;
511 
512 	blk_start_plug(&plug);
513 	for (offset = start_offset; offset <= end_offset ; offset++) {
514 		/* Ok, do the async read-ahead now */
515 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
516 						gfp_mask, vma, addr, false);
517 		if (!page)
518 			continue;
519 		if (offset != entry_offset && likely(!PageTransCompound(page)))
520 			SetPageReadahead(page);
521 		put_page(page);
522 	}
523 	blk_finish_plug(&plug);
524 
525 	lru_add_drain();	/* Push any new pages onto the LRU now */
526 skip:
527 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
528 }
529 
530 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
531 {
532 	struct address_space *spaces, *space;
533 	unsigned int i, nr;
534 
535 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
536 	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
537 	if (!spaces)
538 		return -ENOMEM;
539 	for (i = 0; i < nr; i++) {
540 		space = spaces + i;
541 		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
542 		atomic_set(&space->i_mmap_writable, 0);
543 		space->a_ops = &swap_aops;
544 		/* swap cache doesn't use writeback related tags */
545 		mapping_set_no_writeback_tags(space);
546 		spin_lock_init(&space->tree_lock);
547 	}
548 	nr_swapper_spaces[type] = nr;
549 	rcu_assign_pointer(swapper_spaces[type], spaces);
550 
551 	return 0;
552 }
553 
554 void exit_swap_address_space(unsigned int type)
555 {
556 	struct address_space *spaces;
557 
558 	spaces = swapper_spaces[type];
559 	nr_swapper_spaces[type] = 0;
560 	rcu_assign_pointer(swapper_spaces[type], NULL);
561 	synchronize_rcu();
562 	kvfree(spaces);
563 }
564