xref: /openbmc/linux/mm/swap_state.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32 	.writepage	= swap_writepage,
33 	.set_page_dirty	= swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 	.migratepage	= migrate_page,
36 #endif
37 };
38 
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42 
43 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 
48 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51 
52 #define SWAP_RA_VAL(addr, win, hits)				\
53 	(((addr) & PAGE_MASK) |					\
54 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55 	 ((hits) & SWAP_RA_HITS_MASK))
56 
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)					\
59 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 
61 #define INC_CACHE_INFO(x)	data_race(swap_cache_info.x++)
62 #define ADD_CACHE_INFO(x, nr)	data_race(swap_cache_info.x += (nr))
63 
64 static struct {
65 	unsigned long add_total;
66 	unsigned long del_total;
67 	unsigned long find_success;
68 	unsigned long find_total;
69 } swap_cache_info;
70 
71 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
72 
73 void show_swap_cache_info(void)
74 {
75 	printk("%lu pages in swap cache\n", total_swapcache_pages());
76 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
77 		swap_cache_info.add_total, swap_cache_info.del_total,
78 		swap_cache_info.find_success, swap_cache_info.find_total);
79 	printk("Free swap  = %ldkB\n",
80 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
81 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82 }
83 
84 void *get_shadow_from_swap_cache(swp_entry_t entry)
85 {
86 	struct address_space *address_space = swap_address_space(entry);
87 	pgoff_t idx = swp_offset(entry);
88 	struct page *page;
89 
90 	page = xa_load(&address_space->i_pages, idx);
91 	if (xa_is_value(page))
92 		return page;
93 	return NULL;
94 }
95 
96 /*
97  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
98  * but sets SwapCache flag and private instead of mapping and index.
99  */
100 int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 			gfp_t gfp, void **shadowp)
102 {
103 	struct address_space *address_space = swap_address_space(entry);
104 	pgoff_t idx = swp_offset(entry);
105 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
106 	unsigned long i, nr = thp_nr_pages(page);
107 	void *old;
108 
109 	VM_BUG_ON_PAGE(!PageLocked(page), page);
110 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
112 
113 	page_ref_add(page, nr);
114 	SetPageSwapCache(page);
115 
116 	do {
117 		unsigned long nr_shadows = 0;
118 
119 		xas_lock_irq(&xas);
120 		xas_create_range(&xas);
121 		if (xas_error(&xas))
122 			goto unlock;
123 		for (i = 0; i < nr; i++) {
124 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
125 			old = xas_load(&xas);
126 			if (xa_is_value(old)) {
127 				nr_shadows++;
128 				if (shadowp)
129 					*shadowp = old;
130 			}
131 			set_page_private(page + i, entry.val + i);
132 			xas_store(&xas, page);
133 			xas_next(&xas);
134 		}
135 		address_space->nrexceptional -= nr_shadows;
136 		address_space->nrpages += nr;
137 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138 		__mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
139 		ADD_CACHE_INFO(add_total, nr);
140 unlock:
141 		xas_unlock_irq(&xas);
142 	} while (xas_nomem(&xas, gfp));
143 
144 	if (!xas_error(&xas))
145 		return 0;
146 
147 	ClearPageSwapCache(page);
148 	page_ref_sub(page, nr);
149 	return xas_error(&xas);
150 }
151 
152 /*
153  * This must be called only on pages that have
154  * been verified to be in the swap cache.
155  */
156 void __delete_from_swap_cache(struct page *page,
157 			swp_entry_t entry, void *shadow)
158 {
159 	struct address_space *address_space = swap_address_space(entry);
160 	int i, nr = thp_nr_pages(page);
161 	pgoff_t idx = swp_offset(entry);
162 	XA_STATE(xas, &address_space->i_pages, idx);
163 
164 	VM_BUG_ON_PAGE(!PageLocked(page), page);
165 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 	VM_BUG_ON_PAGE(PageWriteback(page), page);
167 
168 	for (i = 0; i < nr; i++) {
169 		void *entry = xas_store(&xas, shadow);
170 		VM_BUG_ON_PAGE(entry != page, entry);
171 		set_page_private(page + i, 0);
172 		xas_next(&xas);
173 	}
174 	ClearPageSwapCache(page);
175 	if (shadow)
176 		address_space->nrexceptional += nr;
177 	address_space->nrpages -= nr;
178 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
179 	__mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
180 	ADD_CACHE_INFO(del_total, nr);
181 }
182 
183 /**
184  * add_to_swap - allocate swap space for a page
185  * @page: page we want to move to swap
186  *
187  * Allocate swap space for the page and add the page to the
188  * swap cache.  Caller needs to hold the page lock.
189  */
190 int add_to_swap(struct page *page)
191 {
192 	swp_entry_t entry;
193 	int err;
194 
195 	VM_BUG_ON_PAGE(!PageLocked(page), page);
196 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
197 
198 	entry = get_swap_page(page);
199 	if (!entry.val)
200 		return 0;
201 
202 	/*
203 	 * XArray node allocations from PF_MEMALLOC contexts could
204 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
205 	 * stops emergency reserves from being allocated.
206 	 *
207 	 * TODO: this could cause a theoretical memory reclaim
208 	 * deadlock in the swap out path.
209 	 */
210 	/*
211 	 * Add it to the swap cache.
212 	 */
213 	err = add_to_swap_cache(page, entry,
214 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
215 	if (err)
216 		/*
217 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
218 		 * clear SWAP_HAS_CACHE flag.
219 		 */
220 		goto fail;
221 	/*
222 	 * Normally the page will be dirtied in unmap because its pte should be
223 	 * dirty. A special case is MADV_FREE page. The page's pte could have
224 	 * dirty bit cleared but the page's SwapBacked bit is still set because
225 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
226 	 * such page, unmap will not set dirty bit for it, so page reclaim will
227 	 * not write the page out. This can cause data corruption when the page
228 	 * is swap in later. Always setting the dirty bit for the page solves
229 	 * the problem.
230 	 */
231 	set_page_dirty(page);
232 
233 	return 1;
234 
235 fail:
236 	put_swap_page(page, entry);
237 	return 0;
238 }
239 
240 /*
241  * This must be called only on pages that have
242  * been verified to be in the swap cache and locked.
243  * It will never put the page into the free list,
244  * the caller has a reference on the page.
245  */
246 void delete_from_swap_cache(struct page *page)
247 {
248 	swp_entry_t entry = { .val = page_private(page) };
249 	struct address_space *address_space = swap_address_space(entry);
250 
251 	xa_lock_irq(&address_space->i_pages);
252 	__delete_from_swap_cache(page, entry, NULL);
253 	xa_unlock_irq(&address_space->i_pages);
254 
255 	put_swap_page(page, entry);
256 	page_ref_sub(page, thp_nr_pages(page));
257 }
258 
259 void clear_shadow_from_swap_cache(int type, unsigned long begin,
260 				unsigned long end)
261 {
262 	unsigned long curr = begin;
263 	void *old;
264 
265 	for (;;) {
266 		unsigned long nr_shadows = 0;
267 		swp_entry_t entry = swp_entry(type, curr);
268 		struct address_space *address_space = swap_address_space(entry);
269 		XA_STATE(xas, &address_space->i_pages, curr);
270 
271 		xa_lock_irq(&address_space->i_pages);
272 		xas_for_each(&xas, old, end) {
273 			if (!xa_is_value(old))
274 				continue;
275 			xas_store(&xas, NULL);
276 			nr_shadows++;
277 		}
278 		address_space->nrexceptional -= nr_shadows;
279 		xa_unlock_irq(&address_space->i_pages);
280 
281 		/* search the next swapcache until we meet end */
282 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
283 		curr++;
284 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
285 		if (curr > end)
286 			break;
287 	}
288 }
289 
290 /*
291  * If we are the only user, then try to free up the swap cache.
292  *
293  * Its ok to check for PageSwapCache without the page lock
294  * here because we are going to recheck again inside
295  * try_to_free_swap() _with_ the lock.
296  * 					- Marcelo
297  */
298 static inline void free_swap_cache(struct page *page)
299 {
300 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
301 		try_to_free_swap(page);
302 		unlock_page(page);
303 	}
304 }
305 
306 /*
307  * Perform a free_page(), also freeing any swap cache associated with
308  * this page if it is the last user of the page.
309  */
310 void free_page_and_swap_cache(struct page *page)
311 {
312 	free_swap_cache(page);
313 	if (!is_huge_zero_page(page))
314 		put_page(page);
315 }
316 
317 /*
318  * Passed an array of pages, drop them all from swapcache and then release
319  * them.  They are removed from the LRU and freed if this is their last use.
320  */
321 void free_pages_and_swap_cache(struct page **pages, int nr)
322 {
323 	struct page **pagep = pages;
324 	int i;
325 
326 	lru_add_drain();
327 	for (i = 0; i < nr; i++)
328 		free_swap_cache(pagep[i]);
329 	release_pages(pagep, nr);
330 }
331 
332 static inline bool swap_use_vma_readahead(void)
333 {
334 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
335 }
336 
337 /*
338  * Lookup a swap entry in the swap cache. A found page will be returned
339  * unlocked and with its refcount incremented - we rely on the kernel
340  * lock getting page table operations atomic even if we drop the page
341  * lock before returning.
342  */
343 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
344 			       unsigned long addr)
345 {
346 	struct page *page;
347 	struct swap_info_struct *si;
348 
349 	si = get_swap_device(entry);
350 	if (!si)
351 		return NULL;
352 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
353 	put_swap_device(si);
354 
355 	INC_CACHE_INFO(find_total);
356 	if (page) {
357 		bool vma_ra = swap_use_vma_readahead();
358 		bool readahead;
359 
360 		INC_CACHE_INFO(find_success);
361 		/*
362 		 * At the moment, we don't support PG_readahead for anon THP
363 		 * so let's bail out rather than confusing the readahead stat.
364 		 */
365 		if (unlikely(PageTransCompound(page)))
366 			return page;
367 
368 		readahead = TestClearPageReadahead(page);
369 		if (vma && vma_ra) {
370 			unsigned long ra_val;
371 			int win, hits;
372 
373 			ra_val = GET_SWAP_RA_VAL(vma);
374 			win = SWAP_RA_WIN(ra_val);
375 			hits = SWAP_RA_HITS(ra_val);
376 			if (readahead)
377 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
378 			atomic_long_set(&vma->swap_readahead_info,
379 					SWAP_RA_VAL(addr, win, hits));
380 		}
381 
382 		if (readahead) {
383 			count_vm_event(SWAP_RA_HIT);
384 			if (!vma || !vma_ra)
385 				atomic_inc(&swapin_readahead_hits);
386 		}
387 	}
388 
389 	return page;
390 }
391 
392 /**
393  * find_get_incore_page - Find and get a page from the page or swap caches.
394  * @mapping: The address_space to search.
395  * @index: The page cache index.
396  *
397  * This differs from find_get_page() in that it will also look for the
398  * page in the swap cache.
399  *
400  * Return: The found page or %NULL.
401  */
402 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
403 {
404 	swp_entry_t swp;
405 	struct swap_info_struct *si;
406 	struct page *page = pagecache_get_page(mapping, index,
407 						FGP_ENTRY | FGP_HEAD, 0);
408 
409 	if (!page)
410 		return page;
411 	if (!xa_is_value(page))
412 		return find_subpage(page, index);
413 	if (!shmem_mapping(mapping))
414 		return NULL;
415 
416 	swp = radix_to_swp_entry(page);
417 	/* Prevent swapoff from happening to us */
418 	si = get_swap_device(swp);
419 	if (!si)
420 		return NULL;
421 	page = find_get_page(swap_address_space(swp), swp_offset(swp));
422 	put_swap_device(si);
423 	return page;
424 }
425 
426 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
427 			struct vm_area_struct *vma, unsigned long addr,
428 			bool *new_page_allocated)
429 {
430 	struct swap_info_struct *si;
431 	struct page *page;
432 	void *shadow = NULL;
433 
434 	*new_page_allocated = false;
435 
436 	for (;;) {
437 		int err;
438 		/*
439 		 * First check the swap cache.  Since this is normally
440 		 * called after lookup_swap_cache() failed, re-calling
441 		 * that would confuse statistics.
442 		 */
443 		si = get_swap_device(entry);
444 		if (!si)
445 			return NULL;
446 		page = find_get_page(swap_address_space(entry),
447 				     swp_offset(entry));
448 		put_swap_device(si);
449 		if (page)
450 			return page;
451 
452 		/*
453 		 * Just skip read ahead for unused swap slot.
454 		 * During swap_off when swap_slot_cache is disabled,
455 		 * we have to handle the race between putting
456 		 * swap entry in swap cache and marking swap slot
457 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
458 		 * else swap_off will be aborted if we return NULL.
459 		 */
460 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
461 			return NULL;
462 
463 		/*
464 		 * Get a new page to read into from swap.  Allocate it now,
465 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
466 		 * cause any racers to loop around until we add it to cache.
467 		 */
468 		page = alloc_page_vma(gfp_mask, vma, addr);
469 		if (!page)
470 			return NULL;
471 
472 		/*
473 		 * Swap entry may have been freed since our caller observed it.
474 		 */
475 		err = swapcache_prepare(entry);
476 		if (!err)
477 			break;
478 
479 		put_page(page);
480 		if (err != -EEXIST)
481 			return NULL;
482 
483 		/*
484 		 * We might race against __delete_from_swap_cache(), and
485 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
486 		 * has not yet been cleared.  Or race against another
487 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
488 		 * in swap_map, but not yet added its page to swap cache.
489 		 */
490 		cond_resched();
491 	}
492 
493 	/*
494 	 * The swap entry is ours to swap in. Prepare the new page.
495 	 */
496 
497 	__SetPageLocked(page);
498 	__SetPageSwapBacked(page);
499 
500 	/* May fail (-ENOMEM) if XArray node allocation failed. */
501 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) {
502 		put_swap_page(page, entry);
503 		goto fail_unlock;
504 	}
505 
506 	if (mem_cgroup_charge(page, NULL, gfp_mask)) {
507 		delete_from_swap_cache(page);
508 		goto fail_unlock;
509 	}
510 
511 	if (shadow)
512 		workingset_refault(page, shadow);
513 
514 	/* Caller will initiate read into locked page */
515 	lru_cache_add(page);
516 	*new_page_allocated = true;
517 	return page;
518 
519 fail_unlock:
520 	unlock_page(page);
521 	put_page(page);
522 	return NULL;
523 }
524 
525 /*
526  * Locate a page of swap in physical memory, reserving swap cache space
527  * and reading the disk if it is not already cached.
528  * A failure return means that either the page allocation failed or that
529  * the swap entry is no longer in use.
530  */
531 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
532 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
533 {
534 	bool page_was_allocated;
535 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
536 			vma, addr, &page_was_allocated);
537 
538 	if (page_was_allocated)
539 		swap_readpage(retpage, do_poll);
540 
541 	return retpage;
542 }
543 
544 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
545 				      unsigned long offset,
546 				      int hits,
547 				      int max_pages,
548 				      int prev_win)
549 {
550 	unsigned int pages, last_ra;
551 
552 	/*
553 	 * This heuristic has been found to work well on both sequential and
554 	 * random loads, swapping to hard disk or to SSD: please don't ask
555 	 * what the "+ 2" means, it just happens to work well, that's all.
556 	 */
557 	pages = hits + 2;
558 	if (pages == 2) {
559 		/*
560 		 * We can have no readahead hits to judge by: but must not get
561 		 * stuck here forever, so check for an adjacent offset instead
562 		 * (and don't even bother to check whether swap type is same).
563 		 */
564 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
565 			pages = 1;
566 	} else {
567 		unsigned int roundup = 4;
568 		while (roundup < pages)
569 			roundup <<= 1;
570 		pages = roundup;
571 	}
572 
573 	if (pages > max_pages)
574 		pages = max_pages;
575 
576 	/* Don't shrink readahead too fast */
577 	last_ra = prev_win / 2;
578 	if (pages < last_ra)
579 		pages = last_ra;
580 
581 	return pages;
582 }
583 
584 static unsigned long swapin_nr_pages(unsigned long offset)
585 {
586 	static unsigned long prev_offset;
587 	unsigned int hits, pages, max_pages;
588 	static atomic_t last_readahead_pages;
589 
590 	max_pages = 1 << READ_ONCE(page_cluster);
591 	if (max_pages <= 1)
592 		return 1;
593 
594 	hits = atomic_xchg(&swapin_readahead_hits, 0);
595 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
596 				  max_pages,
597 				  atomic_read(&last_readahead_pages));
598 	if (!hits)
599 		WRITE_ONCE(prev_offset, offset);
600 	atomic_set(&last_readahead_pages, pages);
601 
602 	return pages;
603 }
604 
605 /**
606  * swap_cluster_readahead - swap in pages in hope we need them soon
607  * @entry: swap entry of this memory
608  * @gfp_mask: memory allocation flags
609  * @vmf: fault information
610  *
611  * Returns the struct page for entry and addr, after queueing swapin.
612  *
613  * Primitive swap readahead code. We simply read an aligned block of
614  * (1 << page_cluster) entries in the swap area. This method is chosen
615  * because it doesn't cost us any seek time.  We also make sure to queue
616  * the 'original' request together with the readahead ones...
617  *
618  * This has been extended to use the NUMA policies from the mm triggering
619  * the readahead.
620  *
621  * Caller must hold read mmap_lock if vmf->vma is not NULL.
622  */
623 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
624 				struct vm_fault *vmf)
625 {
626 	struct page *page;
627 	unsigned long entry_offset = swp_offset(entry);
628 	unsigned long offset = entry_offset;
629 	unsigned long start_offset, end_offset;
630 	unsigned long mask;
631 	struct swap_info_struct *si = swp_swap_info(entry);
632 	struct blk_plug plug;
633 	bool do_poll = true, page_allocated;
634 	struct vm_area_struct *vma = vmf->vma;
635 	unsigned long addr = vmf->address;
636 
637 	mask = swapin_nr_pages(offset) - 1;
638 	if (!mask)
639 		goto skip;
640 
641 	/* Test swap type to make sure the dereference is safe */
642 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
643 		struct inode *inode = si->swap_file->f_mapping->host;
644 		if (inode_read_congested(inode))
645 			goto skip;
646 	}
647 
648 	do_poll = false;
649 	/* Read a page_cluster sized and aligned cluster around offset. */
650 	start_offset = offset & ~mask;
651 	end_offset = offset | mask;
652 	if (!start_offset)	/* First page is swap header. */
653 		start_offset++;
654 	if (end_offset >= si->max)
655 		end_offset = si->max - 1;
656 
657 	blk_start_plug(&plug);
658 	for (offset = start_offset; offset <= end_offset ; offset++) {
659 		/* Ok, do the async read-ahead now */
660 		page = __read_swap_cache_async(
661 			swp_entry(swp_type(entry), offset),
662 			gfp_mask, vma, addr, &page_allocated);
663 		if (!page)
664 			continue;
665 		if (page_allocated) {
666 			swap_readpage(page, false);
667 			if (offset != entry_offset) {
668 				SetPageReadahead(page);
669 				count_vm_event(SWAP_RA);
670 			}
671 		}
672 		put_page(page);
673 	}
674 	blk_finish_plug(&plug);
675 
676 	lru_add_drain();	/* Push any new pages onto the LRU now */
677 skip:
678 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
679 }
680 
681 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
682 {
683 	struct address_space *spaces, *space;
684 	unsigned int i, nr;
685 
686 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
687 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
688 	if (!spaces)
689 		return -ENOMEM;
690 	for (i = 0; i < nr; i++) {
691 		space = spaces + i;
692 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
693 		atomic_set(&space->i_mmap_writable, 0);
694 		space->a_ops = &swap_aops;
695 		/* swap cache doesn't use writeback related tags */
696 		mapping_set_no_writeback_tags(space);
697 	}
698 	nr_swapper_spaces[type] = nr;
699 	swapper_spaces[type] = spaces;
700 
701 	return 0;
702 }
703 
704 void exit_swap_address_space(unsigned int type)
705 {
706 	kvfree(swapper_spaces[type]);
707 	nr_swapper_spaces[type] = 0;
708 	swapper_spaces[type] = NULL;
709 }
710 
711 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
712 				     unsigned long faddr,
713 				     unsigned long lpfn,
714 				     unsigned long rpfn,
715 				     unsigned long *start,
716 				     unsigned long *end)
717 {
718 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
719 		      PFN_DOWN(faddr & PMD_MASK));
720 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
721 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
722 }
723 
724 static void swap_ra_info(struct vm_fault *vmf,
725 			struct vma_swap_readahead *ra_info)
726 {
727 	struct vm_area_struct *vma = vmf->vma;
728 	unsigned long ra_val;
729 	swp_entry_t entry;
730 	unsigned long faddr, pfn, fpfn;
731 	unsigned long start, end;
732 	pte_t *pte, *orig_pte;
733 	unsigned int max_win, hits, prev_win, win, left;
734 #ifndef CONFIG_64BIT
735 	pte_t *tpte;
736 #endif
737 
738 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
739 			     SWAP_RA_ORDER_CEILING);
740 	if (max_win == 1) {
741 		ra_info->win = 1;
742 		return;
743 	}
744 
745 	faddr = vmf->address;
746 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
747 	entry = pte_to_swp_entry(*pte);
748 	if ((unlikely(non_swap_entry(entry)))) {
749 		pte_unmap(orig_pte);
750 		return;
751 	}
752 
753 	fpfn = PFN_DOWN(faddr);
754 	ra_val = GET_SWAP_RA_VAL(vma);
755 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
756 	prev_win = SWAP_RA_WIN(ra_val);
757 	hits = SWAP_RA_HITS(ra_val);
758 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
759 					       max_win, prev_win);
760 	atomic_long_set(&vma->swap_readahead_info,
761 			SWAP_RA_VAL(faddr, win, 0));
762 
763 	if (win == 1) {
764 		pte_unmap(orig_pte);
765 		return;
766 	}
767 
768 	/* Copy the PTEs because the page table may be unmapped */
769 	if (fpfn == pfn + 1)
770 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
771 	else if (pfn == fpfn + 1)
772 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
773 				  &start, &end);
774 	else {
775 		left = (win - 1) / 2;
776 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
777 				  &start, &end);
778 	}
779 	ra_info->nr_pte = end - start;
780 	ra_info->offset = fpfn - start;
781 	pte -= ra_info->offset;
782 #ifdef CONFIG_64BIT
783 	ra_info->ptes = pte;
784 #else
785 	tpte = ra_info->ptes;
786 	for (pfn = start; pfn != end; pfn++)
787 		*tpte++ = *pte++;
788 #endif
789 	pte_unmap(orig_pte);
790 }
791 
792 /**
793  * swap_vma_readahead - swap in pages in hope we need them soon
794  * @fentry: swap entry of this memory
795  * @gfp_mask: memory allocation flags
796  * @vmf: fault information
797  *
798  * Returns the struct page for entry and addr, after queueing swapin.
799  *
800  * Primitive swap readahead code. We simply read in a few pages whoes
801  * virtual addresses are around the fault address in the same vma.
802  *
803  * Caller must hold read mmap_lock if vmf->vma is not NULL.
804  *
805  */
806 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
807 				       struct vm_fault *vmf)
808 {
809 	struct blk_plug plug;
810 	struct vm_area_struct *vma = vmf->vma;
811 	struct page *page;
812 	pte_t *pte, pentry;
813 	swp_entry_t entry;
814 	unsigned int i;
815 	bool page_allocated;
816 	struct vma_swap_readahead ra_info = {
817 		.win = 1,
818 	};
819 
820 	swap_ra_info(vmf, &ra_info);
821 	if (ra_info.win == 1)
822 		goto skip;
823 
824 	blk_start_plug(&plug);
825 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
826 	     i++, pte++) {
827 		pentry = *pte;
828 		if (pte_none(pentry))
829 			continue;
830 		if (pte_present(pentry))
831 			continue;
832 		entry = pte_to_swp_entry(pentry);
833 		if (unlikely(non_swap_entry(entry)))
834 			continue;
835 		page = __read_swap_cache_async(entry, gfp_mask, vma,
836 					       vmf->address, &page_allocated);
837 		if (!page)
838 			continue;
839 		if (page_allocated) {
840 			swap_readpage(page, false);
841 			if (i != ra_info.offset) {
842 				SetPageReadahead(page);
843 				count_vm_event(SWAP_RA);
844 			}
845 		}
846 		put_page(page);
847 	}
848 	blk_finish_plug(&plug);
849 	lru_add_drain();
850 skip:
851 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
852 				     ra_info.win == 1);
853 }
854 
855 /**
856  * swapin_readahead - swap in pages in hope we need them soon
857  * @entry: swap entry of this memory
858  * @gfp_mask: memory allocation flags
859  * @vmf: fault information
860  *
861  * Returns the struct page for entry and addr, after queueing swapin.
862  *
863  * It's a main entry function for swap readahead. By the configuration,
864  * it will read ahead blocks by cluster-based(ie, physical disk based)
865  * or vma-based(ie, virtual address based on faulty address) readahead.
866  */
867 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
868 				struct vm_fault *vmf)
869 {
870 	return swap_use_vma_readahead() ?
871 			swap_vma_readahead(entry, gfp_mask, vmf) :
872 			swap_cluster_readahead(entry, gfp_mask, vmf);
873 }
874 
875 #ifdef CONFIG_SYSFS
876 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
877 				     struct kobj_attribute *attr, char *buf)
878 {
879 	return sysfs_emit(buf, "%s\n",
880 			  enable_vma_readahead ? "true" : "false");
881 }
882 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
883 				      struct kobj_attribute *attr,
884 				      const char *buf, size_t count)
885 {
886 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
887 		enable_vma_readahead = true;
888 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
889 		enable_vma_readahead = false;
890 	else
891 		return -EINVAL;
892 
893 	return count;
894 }
895 static struct kobj_attribute vma_ra_enabled_attr =
896 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
897 	       vma_ra_enabled_store);
898 
899 static struct attribute *swap_attrs[] = {
900 	&vma_ra_enabled_attr.attr,
901 	NULL,
902 };
903 
904 static const struct attribute_group swap_attr_group = {
905 	.attrs = swap_attrs,
906 };
907 
908 static int __init swap_init_sysfs(void)
909 {
910 	int err;
911 	struct kobject *swap_kobj;
912 
913 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
914 	if (!swap_kobj) {
915 		pr_err("failed to create swap kobject\n");
916 		return -ENOMEM;
917 	}
918 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
919 	if (err) {
920 		pr_err("failed to register swap group\n");
921 		goto delete_obj;
922 	}
923 	return 0;
924 
925 delete_obj:
926 	kobject_put(swap_kobj);
927 	return err;
928 }
929 subsys_initcall(swap_init_sysfs);
930 #endif
931