xref: /openbmc/linux/mm/swap_state.c (revision 6774def6)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list.
27  */
28 static const struct address_space_operations swap_aops = {
29 	.writepage	= swap_writepage,
30 	.set_page_dirty	= swap_set_page_dirty,
31 #ifdef CONFIG_MIGRATION
32 	.migratepage	= migrate_page,
33 #endif
34 };
35 
36 static struct backing_dev_info swap_backing_dev_info = {
37 	.name		= "swap",
38 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
39 };
40 
41 struct address_space swapper_spaces[MAX_SWAPFILES] = {
42 	[0 ... MAX_SWAPFILES - 1] = {
43 		.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
44 		.i_mmap_writable = ATOMIC_INIT(0),
45 		.a_ops		= &swap_aops,
46 		.backing_dev_info = &swap_backing_dev_info,
47 	}
48 };
49 
50 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
51 
52 static struct {
53 	unsigned long add_total;
54 	unsigned long del_total;
55 	unsigned long find_success;
56 	unsigned long find_total;
57 } swap_cache_info;
58 
59 unsigned long total_swapcache_pages(void)
60 {
61 	int i;
62 	unsigned long ret = 0;
63 
64 	for (i = 0; i < MAX_SWAPFILES; i++)
65 		ret += swapper_spaces[i].nrpages;
66 	return ret;
67 }
68 
69 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
70 
71 void show_swap_cache_info(void)
72 {
73 	printk("%lu pages in swap cache\n", total_swapcache_pages());
74 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
75 		swap_cache_info.add_total, swap_cache_info.del_total,
76 		swap_cache_info.find_success, swap_cache_info.find_total);
77 	printk("Free swap  = %ldkB\n",
78 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
79 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
80 }
81 
82 /*
83  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
84  * but sets SwapCache flag and private instead of mapping and index.
85  */
86 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
87 {
88 	int error;
89 	struct address_space *address_space;
90 
91 	VM_BUG_ON_PAGE(!PageLocked(page), page);
92 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
93 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
94 
95 	page_cache_get(page);
96 	SetPageSwapCache(page);
97 	set_page_private(page, entry.val);
98 
99 	address_space = swap_address_space(entry);
100 	spin_lock_irq(&address_space->tree_lock);
101 	error = radix_tree_insert(&address_space->page_tree,
102 					entry.val, page);
103 	if (likely(!error)) {
104 		address_space->nrpages++;
105 		__inc_zone_page_state(page, NR_FILE_PAGES);
106 		INC_CACHE_INFO(add_total);
107 	}
108 	spin_unlock_irq(&address_space->tree_lock);
109 
110 	if (unlikely(error)) {
111 		/*
112 		 * Only the context which have set SWAP_HAS_CACHE flag
113 		 * would call add_to_swap_cache().
114 		 * So add_to_swap_cache() doesn't returns -EEXIST.
115 		 */
116 		VM_BUG_ON(error == -EEXIST);
117 		set_page_private(page, 0UL);
118 		ClearPageSwapCache(page);
119 		page_cache_release(page);
120 	}
121 
122 	return error;
123 }
124 
125 
126 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
127 {
128 	int error;
129 
130 	error = radix_tree_maybe_preload(gfp_mask);
131 	if (!error) {
132 		error = __add_to_swap_cache(page, entry);
133 		radix_tree_preload_end();
134 	}
135 	return error;
136 }
137 
138 /*
139  * This must be called only on pages that have
140  * been verified to be in the swap cache.
141  */
142 void __delete_from_swap_cache(struct page *page)
143 {
144 	swp_entry_t entry;
145 	struct address_space *address_space;
146 
147 	VM_BUG_ON_PAGE(!PageLocked(page), page);
148 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
149 	VM_BUG_ON_PAGE(PageWriteback(page), page);
150 
151 	entry.val = page_private(page);
152 	address_space = swap_address_space(entry);
153 	radix_tree_delete(&address_space->page_tree, page_private(page));
154 	set_page_private(page, 0);
155 	ClearPageSwapCache(page);
156 	address_space->nrpages--;
157 	__dec_zone_page_state(page, NR_FILE_PAGES);
158 	INC_CACHE_INFO(del_total);
159 }
160 
161 /**
162  * add_to_swap - allocate swap space for a page
163  * @page: page we want to move to swap
164  *
165  * Allocate swap space for the page and add the page to the
166  * swap cache.  Caller needs to hold the page lock.
167  */
168 int add_to_swap(struct page *page, struct list_head *list)
169 {
170 	swp_entry_t entry;
171 	int err;
172 
173 	VM_BUG_ON_PAGE(!PageLocked(page), page);
174 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
175 
176 	entry = get_swap_page();
177 	if (!entry.val)
178 		return 0;
179 
180 	if (unlikely(PageTransHuge(page)))
181 		if (unlikely(split_huge_page_to_list(page, list))) {
182 			swapcache_free(entry);
183 			return 0;
184 		}
185 
186 	/*
187 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
188 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
189 	 * stops emergency reserves from being allocated.
190 	 *
191 	 * TODO: this could cause a theoretical memory reclaim
192 	 * deadlock in the swap out path.
193 	 */
194 	/*
195 	 * Add it to the swap cache and mark it dirty
196 	 */
197 	err = add_to_swap_cache(page, entry,
198 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
199 
200 	if (!err) {	/* Success */
201 		SetPageDirty(page);
202 		return 1;
203 	} else {	/* -ENOMEM radix-tree allocation failure */
204 		/*
205 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 		 * clear SWAP_HAS_CACHE flag.
207 		 */
208 		swapcache_free(entry);
209 		return 0;
210 	}
211 }
212 
213 /*
214  * This must be called only on pages that have
215  * been verified to be in the swap cache and locked.
216  * It will never put the page into the free list,
217  * the caller has a reference on the page.
218  */
219 void delete_from_swap_cache(struct page *page)
220 {
221 	swp_entry_t entry;
222 	struct address_space *address_space;
223 
224 	entry.val = page_private(page);
225 
226 	address_space = swap_address_space(entry);
227 	spin_lock_irq(&address_space->tree_lock);
228 	__delete_from_swap_cache(page);
229 	spin_unlock_irq(&address_space->tree_lock);
230 
231 	swapcache_free(entry);
232 	page_cache_release(page);
233 }
234 
235 /*
236  * If we are the only user, then try to free up the swap cache.
237  *
238  * Its ok to check for PageSwapCache without the page lock
239  * here because we are going to recheck again inside
240  * try_to_free_swap() _with_ the lock.
241  * 					- Marcelo
242  */
243 static inline void free_swap_cache(struct page *page)
244 {
245 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
246 		try_to_free_swap(page);
247 		unlock_page(page);
248 	}
249 }
250 
251 /*
252  * Perform a free_page(), also freeing any swap cache associated with
253  * this page if it is the last user of the page.
254  */
255 void free_page_and_swap_cache(struct page *page)
256 {
257 	free_swap_cache(page);
258 	page_cache_release(page);
259 }
260 
261 /*
262  * Passed an array of pages, drop them all from swapcache and then release
263  * them.  They are removed from the LRU and freed if this is their last use.
264  */
265 void free_pages_and_swap_cache(struct page **pages, int nr)
266 {
267 	struct page **pagep = pages;
268 	int i;
269 
270 	lru_add_drain();
271 	for (i = 0; i < nr; i++)
272 		free_swap_cache(pagep[i]);
273 	release_pages(pagep, nr, false);
274 }
275 
276 /*
277  * Lookup a swap entry in the swap cache. A found page will be returned
278  * unlocked and with its refcount incremented - we rely on the kernel
279  * lock getting page table operations atomic even if we drop the page
280  * lock before returning.
281  */
282 struct page * lookup_swap_cache(swp_entry_t entry)
283 {
284 	struct page *page;
285 
286 	page = find_get_page(swap_address_space(entry), entry.val);
287 
288 	if (page) {
289 		INC_CACHE_INFO(find_success);
290 		if (TestClearPageReadahead(page))
291 			atomic_inc(&swapin_readahead_hits);
292 	}
293 
294 	INC_CACHE_INFO(find_total);
295 	return page;
296 }
297 
298 /*
299  * Locate a page of swap in physical memory, reserving swap cache space
300  * and reading the disk if it is not already cached.
301  * A failure return means that either the page allocation failed or that
302  * the swap entry is no longer in use.
303  */
304 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
305 			struct vm_area_struct *vma, unsigned long addr)
306 {
307 	struct page *found_page, *new_page = NULL;
308 	int err;
309 
310 	do {
311 		/*
312 		 * First check the swap cache.  Since this is normally
313 		 * called after lookup_swap_cache() failed, re-calling
314 		 * that would confuse statistics.
315 		 */
316 		found_page = find_get_page(swap_address_space(entry),
317 					entry.val);
318 		if (found_page)
319 			break;
320 
321 		/*
322 		 * Get a new page to read into from swap.
323 		 */
324 		if (!new_page) {
325 			new_page = alloc_page_vma(gfp_mask, vma, addr);
326 			if (!new_page)
327 				break;		/* Out of memory */
328 		}
329 
330 		/*
331 		 * call radix_tree_preload() while we can wait.
332 		 */
333 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
334 		if (err)
335 			break;
336 
337 		/*
338 		 * Swap entry may have been freed since our caller observed it.
339 		 */
340 		err = swapcache_prepare(entry);
341 		if (err == -EEXIST) {
342 			radix_tree_preload_end();
343 			/*
344 			 * We might race against get_swap_page() and stumble
345 			 * across a SWAP_HAS_CACHE swap_map entry whose page
346 			 * has not been brought into the swapcache yet, while
347 			 * the other end is scheduled away waiting on discard
348 			 * I/O completion at scan_swap_map().
349 			 *
350 			 * In order to avoid turning this transitory state
351 			 * into a permanent loop around this -EEXIST case
352 			 * if !CONFIG_PREEMPT and the I/O completion happens
353 			 * to be waiting on the CPU waitqueue where we are now
354 			 * busy looping, we just conditionally invoke the
355 			 * scheduler here, if there are some more important
356 			 * tasks to run.
357 			 */
358 			cond_resched();
359 			continue;
360 		}
361 		if (err) {		/* swp entry is obsolete ? */
362 			radix_tree_preload_end();
363 			break;
364 		}
365 
366 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
367 		__set_page_locked(new_page);
368 		SetPageSwapBacked(new_page);
369 		err = __add_to_swap_cache(new_page, entry);
370 		if (likely(!err)) {
371 			radix_tree_preload_end();
372 			/*
373 			 * Initiate read into locked page and return.
374 			 */
375 			lru_cache_add_anon(new_page);
376 			swap_readpage(new_page);
377 			return new_page;
378 		}
379 		radix_tree_preload_end();
380 		ClearPageSwapBacked(new_page);
381 		__clear_page_locked(new_page);
382 		/*
383 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
384 		 * clear SWAP_HAS_CACHE flag.
385 		 */
386 		swapcache_free(entry);
387 	} while (err != -ENOMEM);
388 
389 	if (new_page)
390 		page_cache_release(new_page);
391 	return found_page;
392 }
393 
394 static unsigned long swapin_nr_pages(unsigned long offset)
395 {
396 	static unsigned long prev_offset;
397 	unsigned int pages, max_pages, last_ra;
398 	static atomic_t last_readahead_pages;
399 
400 	max_pages = 1 << ACCESS_ONCE(page_cluster);
401 	if (max_pages <= 1)
402 		return 1;
403 
404 	/*
405 	 * This heuristic has been found to work well on both sequential and
406 	 * random loads, swapping to hard disk or to SSD: please don't ask
407 	 * what the "+ 2" means, it just happens to work well, that's all.
408 	 */
409 	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
410 	if (pages == 2) {
411 		/*
412 		 * We can have no readahead hits to judge by: but must not get
413 		 * stuck here forever, so check for an adjacent offset instead
414 		 * (and don't even bother to check whether swap type is same).
415 		 */
416 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
417 			pages = 1;
418 		prev_offset = offset;
419 	} else {
420 		unsigned int roundup = 4;
421 		while (roundup < pages)
422 			roundup <<= 1;
423 		pages = roundup;
424 	}
425 
426 	if (pages > max_pages)
427 		pages = max_pages;
428 
429 	/* Don't shrink readahead too fast */
430 	last_ra = atomic_read(&last_readahead_pages) / 2;
431 	if (pages < last_ra)
432 		pages = last_ra;
433 	atomic_set(&last_readahead_pages, pages);
434 
435 	return pages;
436 }
437 
438 /**
439  * swapin_readahead - swap in pages in hope we need them soon
440  * @entry: swap entry of this memory
441  * @gfp_mask: memory allocation flags
442  * @vma: user vma this address belongs to
443  * @addr: target address for mempolicy
444  *
445  * Returns the struct page for entry and addr, after queueing swapin.
446  *
447  * Primitive swap readahead code. We simply read an aligned block of
448  * (1 << page_cluster) entries in the swap area. This method is chosen
449  * because it doesn't cost us any seek time.  We also make sure to queue
450  * the 'original' request together with the readahead ones...
451  *
452  * This has been extended to use the NUMA policies from the mm triggering
453  * the readahead.
454  *
455  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
456  */
457 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
458 			struct vm_area_struct *vma, unsigned long addr)
459 {
460 	struct page *page;
461 	unsigned long entry_offset = swp_offset(entry);
462 	unsigned long offset = entry_offset;
463 	unsigned long start_offset, end_offset;
464 	unsigned long mask;
465 	struct blk_plug plug;
466 
467 	mask = swapin_nr_pages(offset) - 1;
468 	if (!mask)
469 		goto skip;
470 
471 	/* Read a page_cluster sized and aligned cluster around offset. */
472 	start_offset = offset & ~mask;
473 	end_offset = offset | mask;
474 	if (!start_offset)	/* First page is swap header. */
475 		start_offset++;
476 
477 	blk_start_plug(&plug);
478 	for (offset = start_offset; offset <= end_offset ; offset++) {
479 		/* Ok, do the async read-ahead now */
480 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
481 						gfp_mask, vma, addr);
482 		if (!page)
483 			continue;
484 		if (offset != entry_offset)
485 			SetPageReadahead(page);
486 		page_cache_release(page);
487 	}
488 	blk_finish_plug(&plug);
489 
490 	lru_add_drain();	/* Push any new pages onto the LRU now */
491 skip:
492 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
493 }
494