xref: /openbmc/linux/mm/swap_state.c (revision 65abc8ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32 	.writepage	= swap_writepage,
33 	.set_page_dirty	= swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 	.migratepage	= migrate_page,
36 #endif
37 };
38 
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42 
43 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 
48 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51 
52 #define SWAP_RA_VAL(addr, win, hits)				\
53 	(((addr) & PAGE_MASK) |					\
54 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55 	 ((hits) & SWAP_RA_HITS_MASK))
56 
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)					\
59 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 
61 #define INC_CACHE_INFO(x)	data_race(swap_cache_info.x++)
62 #define ADD_CACHE_INFO(x, nr)	data_race(swap_cache_info.x += (nr))
63 
64 static struct {
65 	unsigned long add_total;
66 	unsigned long del_total;
67 	unsigned long find_success;
68 	unsigned long find_total;
69 } swap_cache_info;
70 
71 unsigned long total_swapcache_pages(void)
72 {
73 	unsigned int i, j, nr;
74 	unsigned long ret = 0;
75 	struct address_space *spaces;
76 	struct swap_info_struct *si;
77 
78 	for (i = 0; i < MAX_SWAPFILES; i++) {
79 		swp_entry_t entry = swp_entry(i, 1);
80 
81 		/* Avoid get_swap_device() to warn for bad swap entry */
82 		if (!swp_swap_info(entry))
83 			continue;
84 		/* Prevent swapoff to free swapper_spaces */
85 		si = get_swap_device(entry);
86 		if (!si)
87 			continue;
88 		nr = nr_swapper_spaces[i];
89 		spaces = swapper_spaces[i];
90 		for (j = 0; j < nr; j++)
91 			ret += spaces[j].nrpages;
92 		put_swap_device(si);
93 	}
94 	return ret;
95 }
96 
97 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
98 
99 void show_swap_cache_info(void)
100 {
101 	printk("%lu pages in swap cache\n", total_swapcache_pages());
102 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
103 		swap_cache_info.add_total, swap_cache_info.del_total,
104 		swap_cache_info.find_success, swap_cache_info.find_total);
105 	printk("Free swap  = %ldkB\n",
106 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
107 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
108 }
109 
110 void *get_shadow_from_swap_cache(swp_entry_t entry)
111 {
112 	struct address_space *address_space = swap_address_space(entry);
113 	pgoff_t idx = swp_offset(entry);
114 	struct page *page;
115 
116 	page = find_get_entry(address_space, idx);
117 	if (xa_is_value(page))
118 		return page;
119 	if (page)
120 		put_page(page);
121 	return NULL;
122 }
123 
124 /*
125  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
126  * but sets SwapCache flag and private instead of mapping and index.
127  */
128 int add_to_swap_cache(struct page *page, swp_entry_t entry,
129 			gfp_t gfp, void **shadowp)
130 {
131 	struct address_space *address_space = swap_address_space(entry);
132 	pgoff_t idx = swp_offset(entry);
133 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
134 	unsigned long i, nr = thp_nr_pages(page);
135 	void *old;
136 
137 	VM_BUG_ON_PAGE(!PageLocked(page), page);
138 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
139 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
140 
141 	page_ref_add(page, nr);
142 	SetPageSwapCache(page);
143 
144 	do {
145 		unsigned long nr_shadows = 0;
146 
147 		xas_lock_irq(&xas);
148 		xas_create_range(&xas);
149 		if (xas_error(&xas))
150 			goto unlock;
151 		for (i = 0; i < nr; i++) {
152 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
153 			old = xas_load(&xas);
154 			if (xa_is_value(old)) {
155 				nr_shadows++;
156 				if (shadowp)
157 					*shadowp = old;
158 			}
159 			set_page_private(page + i, entry.val + i);
160 			xas_store(&xas, page);
161 			xas_next(&xas);
162 		}
163 		address_space->nrexceptional -= nr_shadows;
164 		address_space->nrpages += nr;
165 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
166 		ADD_CACHE_INFO(add_total, nr);
167 unlock:
168 		xas_unlock_irq(&xas);
169 	} while (xas_nomem(&xas, gfp));
170 
171 	if (!xas_error(&xas))
172 		return 0;
173 
174 	ClearPageSwapCache(page);
175 	page_ref_sub(page, nr);
176 	return xas_error(&xas);
177 }
178 
179 /*
180  * This must be called only on pages that have
181  * been verified to be in the swap cache.
182  */
183 void __delete_from_swap_cache(struct page *page,
184 			swp_entry_t entry, void *shadow)
185 {
186 	struct address_space *address_space = swap_address_space(entry);
187 	int i, nr = thp_nr_pages(page);
188 	pgoff_t idx = swp_offset(entry);
189 	XA_STATE(xas, &address_space->i_pages, idx);
190 
191 	VM_BUG_ON_PAGE(!PageLocked(page), page);
192 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
193 	VM_BUG_ON_PAGE(PageWriteback(page), page);
194 
195 	for (i = 0; i < nr; i++) {
196 		void *entry = xas_store(&xas, shadow);
197 		VM_BUG_ON_PAGE(entry != page, entry);
198 		set_page_private(page + i, 0);
199 		xas_next(&xas);
200 	}
201 	ClearPageSwapCache(page);
202 	if (shadow)
203 		address_space->nrexceptional += nr;
204 	address_space->nrpages -= nr;
205 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
206 	ADD_CACHE_INFO(del_total, nr);
207 }
208 
209 /**
210  * add_to_swap - allocate swap space for a page
211  * @page: page we want to move to swap
212  *
213  * Allocate swap space for the page and add the page to the
214  * swap cache.  Caller needs to hold the page lock.
215  */
216 int add_to_swap(struct page *page)
217 {
218 	swp_entry_t entry;
219 	int err;
220 
221 	VM_BUG_ON_PAGE(!PageLocked(page), page);
222 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
223 
224 	entry = get_swap_page(page);
225 	if (!entry.val)
226 		return 0;
227 
228 	/*
229 	 * XArray node allocations from PF_MEMALLOC contexts could
230 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
231 	 * stops emergency reserves from being allocated.
232 	 *
233 	 * TODO: this could cause a theoretical memory reclaim
234 	 * deadlock in the swap out path.
235 	 */
236 	/*
237 	 * Add it to the swap cache.
238 	 */
239 	err = add_to_swap_cache(page, entry,
240 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
241 	if (err)
242 		/*
243 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
244 		 * clear SWAP_HAS_CACHE flag.
245 		 */
246 		goto fail;
247 	/*
248 	 * Normally the page will be dirtied in unmap because its pte should be
249 	 * dirty. A special case is MADV_FREE page. The page's pte could have
250 	 * dirty bit cleared but the page's SwapBacked bit is still set because
251 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
252 	 * such page, unmap will not set dirty bit for it, so page reclaim will
253 	 * not write the page out. This can cause data corruption when the page
254 	 * is swap in later. Always setting the dirty bit for the page solves
255 	 * the problem.
256 	 */
257 	set_page_dirty(page);
258 
259 	return 1;
260 
261 fail:
262 	put_swap_page(page, entry);
263 	return 0;
264 }
265 
266 /*
267  * This must be called only on pages that have
268  * been verified to be in the swap cache and locked.
269  * It will never put the page into the free list,
270  * the caller has a reference on the page.
271  */
272 void delete_from_swap_cache(struct page *page)
273 {
274 	swp_entry_t entry = { .val = page_private(page) };
275 	struct address_space *address_space = swap_address_space(entry);
276 
277 	xa_lock_irq(&address_space->i_pages);
278 	__delete_from_swap_cache(page, entry, NULL);
279 	xa_unlock_irq(&address_space->i_pages);
280 
281 	put_swap_page(page, entry);
282 	page_ref_sub(page, thp_nr_pages(page));
283 }
284 
285 void clear_shadow_from_swap_cache(int type, unsigned long begin,
286 				unsigned long end)
287 {
288 	unsigned long curr = begin;
289 	void *old;
290 
291 	for (;;) {
292 		unsigned long nr_shadows = 0;
293 		swp_entry_t entry = swp_entry(type, curr);
294 		struct address_space *address_space = swap_address_space(entry);
295 		XA_STATE(xas, &address_space->i_pages, curr);
296 
297 		xa_lock_irq(&address_space->i_pages);
298 		xas_for_each(&xas, old, end) {
299 			if (!xa_is_value(old))
300 				continue;
301 			xas_store(&xas, NULL);
302 			nr_shadows++;
303 		}
304 		address_space->nrexceptional -= nr_shadows;
305 		xa_unlock_irq(&address_space->i_pages);
306 
307 		/* search the next swapcache until we meet end */
308 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
309 		curr++;
310 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
311 		if (curr > end)
312 			break;
313 	}
314 }
315 
316 /*
317  * If we are the only user, then try to free up the swap cache.
318  *
319  * Its ok to check for PageSwapCache without the page lock
320  * here because we are going to recheck again inside
321  * try_to_free_swap() _with_ the lock.
322  * 					- Marcelo
323  */
324 static inline void free_swap_cache(struct page *page)
325 {
326 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
327 		try_to_free_swap(page);
328 		unlock_page(page);
329 	}
330 }
331 
332 /*
333  * Perform a free_page(), also freeing any swap cache associated with
334  * this page if it is the last user of the page.
335  */
336 void free_page_and_swap_cache(struct page *page)
337 {
338 	free_swap_cache(page);
339 	if (!is_huge_zero_page(page))
340 		put_page(page);
341 }
342 
343 /*
344  * Passed an array of pages, drop them all from swapcache and then release
345  * them.  They are removed from the LRU and freed if this is their last use.
346  */
347 void free_pages_and_swap_cache(struct page **pages, int nr)
348 {
349 	struct page **pagep = pages;
350 	int i;
351 
352 	lru_add_drain();
353 	for (i = 0; i < nr; i++)
354 		free_swap_cache(pagep[i]);
355 	release_pages(pagep, nr);
356 }
357 
358 static inline bool swap_use_vma_readahead(void)
359 {
360 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
361 }
362 
363 /*
364  * Lookup a swap entry in the swap cache. A found page will be returned
365  * unlocked and with its refcount incremented - we rely on the kernel
366  * lock getting page table operations atomic even if we drop the page
367  * lock before returning.
368  */
369 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
370 			       unsigned long addr)
371 {
372 	struct page *page;
373 	struct swap_info_struct *si;
374 
375 	si = get_swap_device(entry);
376 	if (!si)
377 		return NULL;
378 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
379 	put_swap_device(si);
380 
381 	INC_CACHE_INFO(find_total);
382 	if (page) {
383 		bool vma_ra = swap_use_vma_readahead();
384 		bool readahead;
385 
386 		INC_CACHE_INFO(find_success);
387 		/*
388 		 * At the moment, we don't support PG_readahead for anon THP
389 		 * so let's bail out rather than confusing the readahead stat.
390 		 */
391 		if (unlikely(PageTransCompound(page)))
392 			return page;
393 
394 		readahead = TestClearPageReadahead(page);
395 		if (vma && vma_ra) {
396 			unsigned long ra_val;
397 			int win, hits;
398 
399 			ra_val = GET_SWAP_RA_VAL(vma);
400 			win = SWAP_RA_WIN(ra_val);
401 			hits = SWAP_RA_HITS(ra_val);
402 			if (readahead)
403 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
404 			atomic_long_set(&vma->swap_readahead_info,
405 					SWAP_RA_VAL(addr, win, hits));
406 		}
407 
408 		if (readahead) {
409 			count_vm_event(SWAP_RA_HIT);
410 			if (!vma || !vma_ra)
411 				atomic_inc(&swapin_readahead_hits);
412 		}
413 	}
414 
415 	return page;
416 }
417 
418 /**
419  * find_get_incore_page - Find and get a page from the page or swap caches.
420  * @mapping: The address_space to search.
421  * @index: The page cache index.
422  *
423  * This differs from find_get_page() in that it will also look for the
424  * page in the swap cache.
425  *
426  * Return: The found page or %NULL.
427  */
428 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
429 {
430 	swp_entry_t swp;
431 	struct swap_info_struct *si;
432 	struct page *page = find_get_entry(mapping, index);
433 
434 	if (!page)
435 		return page;
436 	if (!xa_is_value(page))
437 		return find_subpage(page, index);
438 	if (!shmem_mapping(mapping))
439 		return NULL;
440 
441 	swp = radix_to_swp_entry(page);
442 	/* Prevent swapoff from happening to us */
443 	si = get_swap_device(swp);
444 	if (!si)
445 		return NULL;
446 	page = find_get_page(swap_address_space(swp), swp_offset(swp));
447 	put_swap_device(si);
448 	return page;
449 }
450 
451 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
452 			struct vm_area_struct *vma, unsigned long addr,
453 			bool *new_page_allocated)
454 {
455 	struct swap_info_struct *si;
456 	struct page *page;
457 	void *shadow = NULL;
458 
459 	*new_page_allocated = false;
460 
461 	for (;;) {
462 		int err;
463 		/*
464 		 * First check the swap cache.  Since this is normally
465 		 * called after lookup_swap_cache() failed, re-calling
466 		 * that would confuse statistics.
467 		 */
468 		si = get_swap_device(entry);
469 		if (!si)
470 			return NULL;
471 		page = find_get_page(swap_address_space(entry),
472 				     swp_offset(entry));
473 		put_swap_device(si);
474 		if (page)
475 			return page;
476 
477 		/*
478 		 * Just skip read ahead for unused swap slot.
479 		 * During swap_off when swap_slot_cache is disabled,
480 		 * we have to handle the race between putting
481 		 * swap entry in swap cache and marking swap slot
482 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
483 		 * else swap_off will be aborted if we return NULL.
484 		 */
485 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
486 			return NULL;
487 
488 		/*
489 		 * Get a new page to read into from swap.  Allocate it now,
490 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
491 		 * cause any racers to loop around until we add it to cache.
492 		 */
493 		page = alloc_page_vma(gfp_mask, vma, addr);
494 		if (!page)
495 			return NULL;
496 
497 		/*
498 		 * Swap entry may have been freed since our caller observed it.
499 		 */
500 		err = swapcache_prepare(entry);
501 		if (!err)
502 			break;
503 
504 		put_page(page);
505 		if (err != -EEXIST)
506 			return NULL;
507 
508 		/*
509 		 * We might race against __delete_from_swap_cache(), and
510 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
511 		 * has not yet been cleared.  Or race against another
512 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
513 		 * in swap_map, but not yet added its page to swap cache.
514 		 */
515 		cond_resched();
516 	}
517 
518 	/*
519 	 * The swap entry is ours to swap in. Prepare the new page.
520 	 */
521 
522 	__SetPageLocked(page);
523 	__SetPageSwapBacked(page);
524 
525 	/* May fail (-ENOMEM) if XArray node allocation failed. */
526 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) {
527 		put_swap_page(page, entry);
528 		goto fail_unlock;
529 	}
530 
531 	if (mem_cgroup_charge(page, NULL, gfp_mask)) {
532 		delete_from_swap_cache(page);
533 		goto fail_unlock;
534 	}
535 
536 	if (shadow)
537 		workingset_refault(page, shadow);
538 
539 	/* Caller will initiate read into locked page */
540 	SetPageWorkingset(page);
541 	lru_cache_add(page);
542 	*new_page_allocated = true;
543 	return page;
544 
545 fail_unlock:
546 	unlock_page(page);
547 	put_page(page);
548 	return NULL;
549 }
550 
551 /*
552  * Locate a page of swap in physical memory, reserving swap cache space
553  * and reading the disk if it is not already cached.
554  * A failure return means that either the page allocation failed or that
555  * the swap entry is no longer in use.
556  */
557 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
558 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
559 {
560 	bool page_was_allocated;
561 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
562 			vma, addr, &page_was_allocated);
563 
564 	if (page_was_allocated)
565 		swap_readpage(retpage, do_poll);
566 
567 	return retpage;
568 }
569 
570 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
571 				      unsigned long offset,
572 				      int hits,
573 				      int max_pages,
574 				      int prev_win)
575 {
576 	unsigned int pages, last_ra;
577 
578 	/*
579 	 * This heuristic has been found to work well on both sequential and
580 	 * random loads, swapping to hard disk or to SSD: please don't ask
581 	 * what the "+ 2" means, it just happens to work well, that's all.
582 	 */
583 	pages = hits + 2;
584 	if (pages == 2) {
585 		/*
586 		 * We can have no readahead hits to judge by: but must not get
587 		 * stuck here forever, so check for an adjacent offset instead
588 		 * (and don't even bother to check whether swap type is same).
589 		 */
590 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
591 			pages = 1;
592 	} else {
593 		unsigned int roundup = 4;
594 		while (roundup < pages)
595 			roundup <<= 1;
596 		pages = roundup;
597 	}
598 
599 	if (pages > max_pages)
600 		pages = max_pages;
601 
602 	/* Don't shrink readahead too fast */
603 	last_ra = prev_win / 2;
604 	if (pages < last_ra)
605 		pages = last_ra;
606 
607 	return pages;
608 }
609 
610 static unsigned long swapin_nr_pages(unsigned long offset)
611 {
612 	static unsigned long prev_offset;
613 	unsigned int hits, pages, max_pages;
614 	static atomic_t last_readahead_pages;
615 
616 	max_pages = 1 << READ_ONCE(page_cluster);
617 	if (max_pages <= 1)
618 		return 1;
619 
620 	hits = atomic_xchg(&swapin_readahead_hits, 0);
621 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
622 				  max_pages,
623 				  atomic_read(&last_readahead_pages));
624 	if (!hits)
625 		WRITE_ONCE(prev_offset, offset);
626 	atomic_set(&last_readahead_pages, pages);
627 
628 	return pages;
629 }
630 
631 /**
632  * swap_cluster_readahead - swap in pages in hope we need them soon
633  * @entry: swap entry of this memory
634  * @gfp_mask: memory allocation flags
635  * @vmf: fault information
636  *
637  * Returns the struct page for entry and addr, after queueing swapin.
638  *
639  * Primitive swap readahead code. We simply read an aligned block of
640  * (1 << page_cluster) entries in the swap area. This method is chosen
641  * because it doesn't cost us any seek time.  We also make sure to queue
642  * the 'original' request together with the readahead ones...
643  *
644  * This has been extended to use the NUMA policies from the mm triggering
645  * the readahead.
646  *
647  * Caller must hold read mmap_lock if vmf->vma is not NULL.
648  */
649 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
650 				struct vm_fault *vmf)
651 {
652 	struct page *page;
653 	unsigned long entry_offset = swp_offset(entry);
654 	unsigned long offset = entry_offset;
655 	unsigned long start_offset, end_offset;
656 	unsigned long mask;
657 	struct swap_info_struct *si = swp_swap_info(entry);
658 	struct blk_plug plug;
659 	bool do_poll = true, page_allocated;
660 	struct vm_area_struct *vma = vmf->vma;
661 	unsigned long addr = vmf->address;
662 
663 	mask = swapin_nr_pages(offset) - 1;
664 	if (!mask)
665 		goto skip;
666 
667 	/* Test swap type to make sure the dereference is safe */
668 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
669 		struct inode *inode = si->swap_file->f_mapping->host;
670 		if (inode_read_congested(inode))
671 			goto skip;
672 	}
673 
674 	do_poll = false;
675 	/* Read a page_cluster sized and aligned cluster around offset. */
676 	start_offset = offset & ~mask;
677 	end_offset = offset | mask;
678 	if (!start_offset)	/* First page is swap header. */
679 		start_offset++;
680 	if (end_offset >= si->max)
681 		end_offset = si->max - 1;
682 
683 	blk_start_plug(&plug);
684 	for (offset = start_offset; offset <= end_offset ; offset++) {
685 		/* Ok, do the async read-ahead now */
686 		page = __read_swap_cache_async(
687 			swp_entry(swp_type(entry), offset),
688 			gfp_mask, vma, addr, &page_allocated);
689 		if (!page)
690 			continue;
691 		if (page_allocated) {
692 			swap_readpage(page, false);
693 			if (offset != entry_offset) {
694 				SetPageReadahead(page);
695 				count_vm_event(SWAP_RA);
696 			}
697 		}
698 		put_page(page);
699 	}
700 	blk_finish_plug(&plug);
701 
702 	lru_add_drain();	/* Push any new pages onto the LRU now */
703 skip:
704 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
705 }
706 
707 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
708 {
709 	struct address_space *spaces, *space;
710 	unsigned int i, nr;
711 
712 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
713 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
714 	if (!spaces)
715 		return -ENOMEM;
716 	for (i = 0; i < nr; i++) {
717 		space = spaces + i;
718 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
719 		atomic_set(&space->i_mmap_writable, 0);
720 		space->a_ops = &swap_aops;
721 		/* swap cache doesn't use writeback related tags */
722 		mapping_set_no_writeback_tags(space);
723 	}
724 	nr_swapper_spaces[type] = nr;
725 	swapper_spaces[type] = spaces;
726 
727 	return 0;
728 }
729 
730 void exit_swap_address_space(unsigned int type)
731 {
732 	kvfree(swapper_spaces[type]);
733 	nr_swapper_spaces[type] = 0;
734 	swapper_spaces[type] = NULL;
735 }
736 
737 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
738 				     unsigned long faddr,
739 				     unsigned long lpfn,
740 				     unsigned long rpfn,
741 				     unsigned long *start,
742 				     unsigned long *end)
743 {
744 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
745 		      PFN_DOWN(faddr & PMD_MASK));
746 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
747 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
748 }
749 
750 static void swap_ra_info(struct vm_fault *vmf,
751 			struct vma_swap_readahead *ra_info)
752 {
753 	struct vm_area_struct *vma = vmf->vma;
754 	unsigned long ra_val;
755 	swp_entry_t entry;
756 	unsigned long faddr, pfn, fpfn;
757 	unsigned long start, end;
758 	pte_t *pte, *orig_pte;
759 	unsigned int max_win, hits, prev_win, win, left;
760 #ifndef CONFIG_64BIT
761 	pte_t *tpte;
762 #endif
763 
764 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
765 			     SWAP_RA_ORDER_CEILING);
766 	if (max_win == 1) {
767 		ra_info->win = 1;
768 		return;
769 	}
770 
771 	faddr = vmf->address;
772 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
773 	entry = pte_to_swp_entry(*pte);
774 	if ((unlikely(non_swap_entry(entry)))) {
775 		pte_unmap(orig_pte);
776 		return;
777 	}
778 
779 	fpfn = PFN_DOWN(faddr);
780 	ra_val = GET_SWAP_RA_VAL(vma);
781 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
782 	prev_win = SWAP_RA_WIN(ra_val);
783 	hits = SWAP_RA_HITS(ra_val);
784 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
785 					       max_win, prev_win);
786 	atomic_long_set(&vma->swap_readahead_info,
787 			SWAP_RA_VAL(faddr, win, 0));
788 
789 	if (win == 1) {
790 		pte_unmap(orig_pte);
791 		return;
792 	}
793 
794 	/* Copy the PTEs because the page table may be unmapped */
795 	if (fpfn == pfn + 1)
796 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
797 	else if (pfn == fpfn + 1)
798 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
799 				  &start, &end);
800 	else {
801 		left = (win - 1) / 2;
802 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
803 				  &start, &end);
804 	}
805 	ra_info->nr_pte = end - start;
806 	ra_info->offset = fpfn - start;
807 	pte -= ra_info->offset;
808 #ifdef CONFIG_64BIT
809 	ra_info->ptes = pte;
810 #else
811 	tpte = ra_info->ptes;
812 	for (pfn = start; pfn != end; pfn++)
813 		*tpte++ = *pte++;
814 #endif
815 	pte_unmap(orig_pte);
816 }
817 
818 /**
819  * swap_vma_readahead - swap in pages in hope we need them soon
820  * @fentry: swap entry of this memory
821  * @gfp_mask: memory allocation flags
822  * @vmf: fault information
823  *
824  * Returns the struct page for entry and addr, after queueing swapin.
825  *
826  * Primitive swap readahead code. We simply read in a few pages whoes
827  * virtual addresses are around the fault address in the same vma.
828  *
829  * Caller must hold read mmap_lock if vmf->vma is not NULL.
830  *
831  */
832 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
833 				       struct vm_fault *vmf)
834 {
835 	struct blk_plug plug;
836 	struct vm_area_struct *vma = vmf->vma;
837 	struct page *page;
838 	pte_t *pte, pentry;
839 	swp_entry_t entry;
840 	unsigned int i;
841 	bool page_allocated;
842 	struct vma_swap_readahead ra_info = {0,};
843 
844 	swap_ra_info(vmf, &ra_info);
845 	if (ra_info.win == 1)
846 		goto skip;
847 
848 	blk_start_plug(&plug);
849 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
850 	     i++, pte++) {
851 		pentry = *pte;
852 		if (pte_none(pentry))
853 			continue;
854 		if (pte_present(pentry))
855 			continue;
856 		entry = pte_to_swp_entry(pentry);
857 		if (unlikely(non_swap_entry(entry)))
858 			continue;
859 		page = __read_swap_cache_async(entry, gfp_mask, vma,
860 					       vmf->address, &page_allocated);
861 		if (!page)
862 			continue;
863 		if (page_allocated) {
864 			swap_readpage(page, false);
865 			if (i != ra_info.offset) {
866 				SetPageReadahead(page);
867 				count_vm_event(SWAP_RA);
868 			}
869 		}
870 		put_page(page);
871 	}
872 	blk_finish_plug(&plug);
873 	lru_add_drain();
874 skip:
875 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
876 				     ra_info.win == 1);
877 }
878 
879 /**
880  * swapin_readahead - swap in pages in hope we need them soon
881  * @entry: swap entry of this memory
882  * @gfp_mask: memory allocation flags
883  * @vmf: fault information
884  *
885  * Returns the struct page for entry and addr, after queueing swapin.
886  *
887  * It's a main entry function for swap readahead. By the configuration,
888  * it will read ahead blocks by cluster-based(ie, physical disk based)
889  * or vma-based(ie, virtual address based on faulty address) readahead.
890  */
891 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
892 				struct vm_fault *vmf)
893 {
894 	return swap_use_vma_readahead() ?
895 			swap_vma_readahead(entry, gfp_mask, vmf) :
896 			swap_cluster_readahead(entry, gfp_mask, vmf);
897 }
898 
899 #ifdef CONFIG_SYSFS
900 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
901 				     struct kobj_attribute *attr, char *buf)
902 {
903 	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
904 }
905 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
906 				      struct kobj_attribute *attr,
907 				      const char *buf, size_t count)
908 {
909 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
910 		enable_vma_readahead = true;
911 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
912 		enable_vma_readahead = false;
913 	else
914 		return -EINVAL;
915 
916 	return count;
917 }
918 static struct kobj_attribute vma_ra_enabled_attr =
919 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
920 	       vma_ra_enabled_store);
921 
922 static struct attribute *swap_attrs[] = {
923 	&vma_ra_enabled_attr.attr,
924 	NULL,
925 };
926 
927 static struct attribute_group swap_attr_group = {
928 	.attrs = swap_attrs,
929 };
930 
931 static int __init swap_init_sysfs(void)
932 {
933 	int err;
934 	struct kobject *swap_kobj;
935 
936 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
937 	if (!swap_kobj) {
938 		pr_err("failed to create swap kobject\n");
939 		return -ENOMEM;
940 	}
941 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
942 	if (err) {
943 		pr_err("failed to register swap group\n");
944 		goto delete_obj;
945 	}
946 	return 0;
947 
948 delete_obj:
949 	kobject_put(swap_kobj);
950 	return err;
951 }
952 subsys_initcall(swap_init_sysfs);
953 #endif
954