xref: /openbmc/linux/mm/swap_state.c (revision 62a9bbf2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migrate_folio	= migrate_folio,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 
49 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52 
53 #define SWAP_RA_VAL(addr, win, hits)				\
54 	(((addr) & PAGE_MASK) |					\
55 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56 	 ((hits) & SWAP_RA_HITS_MASK))
57 
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)					\
60 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63 
64 void show_swap_cache_info(void)
65 {
66 	printk("%lu pages in swap cache\n", total_swapcache_pages());
67 	printk("Free swap  = %ldkB\n",
68 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
70 }
71 
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
73 {
74 	struct address_space *address_space = swap_address_space(entry);
75 	pgoff_t idx = swp_offset(entry);
76 	struct page *page;
77 
78 	page = xa_load(&address_space->i_pages, idx);
79 	if (xa_is_value(page))
80 		return page;
81 	return NULL;
82 }
83 
84 /*
85  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86  * but sets SwapCache flag and private instead of mapping and index.
87  */
88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
89 			gfp_t gfp, void **shadowp)
90 {
91 	struct address_space *address_space = swap_address_space(entry);
92 	pgoff_t idx = swp_offset(entry);
93 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
94 	unsigned long i, nr = folio_nr_pages(folio);
95 	void *old;
96 
97 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
98 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
99 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
100 
101 	folio_ref_add(folio, nr);
102 	folio_set_swapcache(folio);
103 
104 	do {
105 		xas_lock_irq(&xas);
106 		xas_create_range(&xas);
107 		if (xas_error(&xas))
108 			goto unlock;
109 		for (i = 0; i < nr; i++) {
110 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
111 			old = xas_load(&xas);
112 			if (xa_is_value(old)) {
113 				if (shadowp)
114 					*shadowp = old;
115 			}
116 			set_page_private(folio_page(folio, i), entry.val + i);
117 			xas_store(&xas, folio);
118 			xas_next(&xas);
119 		}
120 		address_space->nrpages += nr;
121 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
122 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
123 unlock:
124 		xas_unlock_irq(&xas);
125 	} while (xas_nomem(&xas, gfp));
126 
127 	if (!xas_error(&xas))
128 		return 0;
129 
130 	folio_clear_swapcache(folio);
131 	folio_ref_sub(folio, nr);
132 	return xas_error(&xas);
133 }
134 
135 /*
136  * This must be called only on folios that have
137  * been verified to be in the swap cache.
138  */
139 void __delete_from_swap_cache(struct folio *folio,
140 			swp_entry_t entry, void *shadow)
141 {
142 	struct address_space *address_space = swap_address_space(entry);
143 	int i;
144 	long nr = folio_nr_pages(folio);
145 	pgoff_t idx = swp_offset(entry);
146 	XA_STATE(xas, &address_space->i_pages, idx);
147 
148 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
149 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
150 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
151 
152 	for (i = 0; i < nr; i++) {
153 		void *entry = xas_store(&xas, shadow);
154 		VM_BUG_ON_PAGE(entry != folio, entry);
155 		set_page_private(folio_page(folio, i), 0);
156 		xas_next(&xas);
157 	}
158 	folio_clear_swapcache(folio);
159 	address_space->nrpages -= nr;
160 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
161 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
162 }
163 
164 /**
165  * add_to_swap - allocate swap space for a folio
166  * @folio: folio we want to move to swap
167  *
168  * Allocate swap space for the folio and add the folio to the
169  * swap cache.
170  *
171  * Context: Caller needs to hold the folio lock.
172  * Return: Whether the folio was added to the swap cache.
173  */
174 bool add_to_swap(struct folio *folio)
175 {
176 	swp_entry_t entry;
177 	int err;
178 
179 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
180 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
181 
182 	entry = folio_alloc_swap(folio);
183 	if (!entry.val)
184 		return false;
185 
186 	/*
187 	 * XArray node allocations from PF_MEMALLOC contexts could
188 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
189 	 * stops emergency reserves from being allocated.
190 	 *
191 	 * TODO: this could cause a theoretical memory reclaim
192 	 * deadlock in the swap out path.
193 	 */
194 	/*
195 	 * Add it to the swap cache.
196 	 */
197 	err = add_to_swap_cache(folio, entry,
198 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
199 	if (err)
200 		/*
201 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
202 		 * clear SWAP_HAS_CACHE flag.
203 		 */
204 		goto fail;
205 	/*
206 	 * Normally the folio will be dirtied in unmap because its
207 	 * pte should be dirty. A special case is MADV_FREE page. The
208 	 * page's pte could have dirty bit cleared but the folio's
209 	 * SwapBacked flag is still set because clearing the dirty bit
210 	 * and SwapBacked flag has no lock protected. For such folio,
211 	 * unmap will not set dirty bit for it, so folio reclaim will
212 	 * not write the folio out. This can cause data corruption when
213 	 * the folio is swapped in later. Always setting the dirty flag
214 	 * for the folio solves the problem.
215 	 */
216 	folio_mark_dirty(folio);
217 
218 	return true;
219 
220 fail:
221 	put_swap_folio(folio, entry);
222 	return false;
223 }
224 
225 /*
226  * This must be called only on folios that have
227  * been verified to be in the swap cache and locked.
228  * It will never put the folio into the free list,
229  * the caller has a reference on the folio.
230  */
231 void delete_from_swap_cache(struct folio *folio)
232 {
233 	swp_entry_t entry = folio_swap_entry(folio);
234 	struct address_space *address_space = swap_address_space(entry);
235 
236 	xa_lock_irq(&address_space->i_pages);
237 	__delete_from_swap_cache(folio, entry, NULL);
238 	xa_unlock_irq(&address_space->i_pages);
239 
240 	put_swap_folio(folio, entry);
241 	folio_ref_sub(folio, folio_nr_pages(folio));
242 }
243 
244 void clear_shadow_from_swap_cache(int type, unsigned long begin,
245 				unsigned long end)
246 {
247 	unsigned long curr = begin;
248 	void *old;
249 
250 	for (;;) {
251 		swp_entry_t entry = swp_entry(type, curr);
252 		struct address_space *address_space = swap_address_space(entry);
253 		XA_STATE(xas, &address_space->i_pages, curr);
254 
255 		xa_lock_irq(&address_space->i_pages);
256 		xas_for_each(&xas, old, end) {
257 			if (!xa_is_value(old))
258 				continue;
259 			xas_store(&xas, NULL);
260 		}
261 		xa_unlock_irq(&address_space->i_pages);
262 
263 		/* search the next swapcache until we meet end */
264 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
265 		curr++;
266 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
267 		if (curr > end)
268 			break;
269 	}
270 }
271 
272 /*
273  * If we are the only user, then try to free up the swap cache.
274  *
275  * Its ok to check the swapcache flag without the folio lock
276  * here because we are going to recheck again inside
277  * folio_free_swap() _with_ the lock.
278  * 					- Marcelo
279  */
280 void free_swap_cache(struct page *page)
281 {
282 	struct folio *folio = page_folio(page);
283 
284 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
285 	    folio_trylock(folio)) {
286 		folio_free_swap(folio);
287 		folio_unlock(folio);
288 	}
289 }
290 
291 /*
292  * Perform a free_page(), also freeing any swap cache associated with
293  * this page if it is the last user of the page.
294  */
295 void free_page_and_swap_cache(struct page *page)
296 {
297 	free_swap_cache(page);
298 	if (!is_huge_zero_page(page))
299 		put_page(page);
300 }
301 
302 /*
303  * Passed an array of pages, drop them all from swapcache and then release
304  * them.  They are removed from the LRU and freed if this is their last use.
305  */
306 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
307 {
308 	lru_add_drain();
309 	for (int i = 0; i < nr; i++)
310 		free_swap_cache(encoded_page_ptr(pages[i]));
311 	release_pages(pages, nr);
312 }
313 
314 static inline bool swap_use_vma_readahead(void)
315 {
316 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
317 }
318 
319 /*
320  * Lookup a swap entry in the swap cache. A found folio will be returned
321  * unlocked and with its refcount incremented - we rely on the kernel
322  * lock getting page table operations atomic even if we drop the folio
323  * lock before returning.
324  *
325  * Caller must lock the swap device or hold a reference to keep it valid.
326  */
327 struct folio *swap_cache_get_folio(swp_entry_t entry,
328 		struct vm_area_struct *vma, unsigned long addr)
329 {
330 	struct folio *folio;
331 
332 	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
333 	if (folio) {
334 		bool vma_ra = swap_use_vma_readahead();
335 		bool readahead;
336 
337 		/*
338 		 * At the moment, we don't support PG_readahead for anon THP
339 		 * so let's bail out rather than confusing the readahead stat.
340 		 */
341 		if (unlikely(folio_test_large(folio)))
342 			return folio;
343 
344 		readahead = folio_test_clear_readahead(folio);
345 		if (vma && vma_ra) {
346 			unsigned long ra_val;
347 			int win, hits;
348 
349 			ra_val = GET_SWAP_RA_VAL(vma);
350 			win = SWAP_RA_WIN(ra_val);
351 			hits = SWAP_RA_HITS(ra_val);
352 			if (readahead)
353 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
354 			atomic_long_set(&vma->swap_readahead_info,
355 					SWAP_RA_VAL(addr, win, hits));
356 		}
357 
358 		if (readahead) {
359 			count_vm_event(SWAP_RA_HIT);
360 			if (!vma || !vma_ra)
361 				atomic_inc(&swapin_readahead_hits);
362 		}
363 	}
364 
365 	return folio;
366 }
367 
368 /**
369  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
370  * @mapping: The address_space to search.
371  * @index: The page cache index.
372  *
373  * This differs from filemap_get_folio() in that it will also look for the
374  * folio in the swap cache.
375  *
376  * Return: The found folio or %NULL.
377  */
378 struct folio *filemap_get_incore_folio(struct address_space *mapping,
379 		pgoff_t index)
380 {
381 	swp_entry_t swp;
382 	struct swap_info_struct *si;
383 	struct folio *folio = __filemap_get_folio(mapping, index, FGP_ENTRY, 0);
384 
385 	if (!xa_is_value(folio))
386 		goto out;
387 	if (!shmem_mapping(mapping))
388 		return NULL;
389 
390 	swp = radix_to_swp_entry(folio);
391 	/* There might be swapin error entries in shmem mapping. */
392 	if (non_swap_entry(swp))
393 		return NULL;
394 	/* Prevent swapoff from happening to us */
395 	si = get_swap_device(swp);
396 	if (!si)
397 		return NULL;
398 	index = swp_offset(swp);
399 	folio = filemap_get_folio(swap_address_space(swp), index);
400 	put_swap_device(si);
401 out:
402 	return folio;
403 }
404 
405 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
406 			struct vm_area_struct *vma, unsigned long addr,
407 			bool *new_page_allocated)
408 {
409 	struct swap_info_struct *si;
410 	struct folio *folio;
411 	void *shadow = NULL;
412 
413 	*new_page_allocated = false;
414 
415 	for (;;) {
416 		int err;
417 		/*
418 		 * First check the swap cache.  Since this is normally
419 		 * called after swap_cache_get_folio() failed, re-calling
420 		 * that would confuse statistics.
421 		 */
422 		si = get_swap_device(entry);
423 		if (!si)
424 			return NULL;
425 		folio = filemap_get_folio(swap_address_space(entry),
426 						swp_offset(entry));
427 		put_swap_device(si);
428 		if (folio)
429 			return folio_file_page(folio, swp_offset(entry));
430 
431 		/*
432 		 * Just skip read ahead for unused swap slot.
433 		 * During swap_off when swap_slot_cache is disabled,
434 		 * we have to handle the race between putting
435 		 * swap entry in swap cache and marking swap slot
436 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
437 		 * else swap_off will be aborted if we return NULL.
438 		 */
439 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
440 			return NULL;
441 
442 		/*
443 		 * Get a new page to read into from swap.  Allocate it now,
444 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
445 		 * cause any racers to loop around until we add it to cache.
446 		 */
447 		folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
448 		if (!folio)
449 			return NULL;
450 
451 		/*
452 		 * Swap entry may have been freed since our caller observed it.
453 		 */
454 		err = swapcache_prepare(entry);
455 		if (!err)
456 			break;
457 
458 		folio_put(folio);
459 		if (err != -EEXIST)
460 			return NULL;
461 
462 		/*
463 		 * We might race against __delete_from_swap_cache(), and
464 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
465 		 * has not yet been cleared.  Or race against another
466 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
467 		 * in swap_map, but not yet added its page to swap cache.
468 		 */
469 		schedule_timeout_uninterruptible(1);
470 	}
471 
472 	/*
473 	 * The swap entry is ours to swap in. Prepare the new page.
474 	 */
475 
476 	__folio_set_locked(folio);
477 	__folio_set_swapbacked(folio);
478 
479 	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
480 		goto fail_unlock;
481 
482 	/* May fail (-ENOMEM) if XArray node allocation failed. */
483 	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
484 		goto fail_unlock;
485 
486 	mem_cgroup_swapin_uncharge_swap(entry);
487 
488 	if (shadow)
489 		workingset_refault(folio, shadow);
490 
491 	/* Caller will initiate read into locked folio */
492 	folio_add_lru(folio);
493 	*new_page_allocated = true;
494 	return &folio->page;
495 
496 fail_unlock:
497 	put_swap_folio(folio, entry);
498 	folio_unlock(folio);
499 	folio_put(folio);
500 	return NULL;
501 }
502 
503 /*
504  * Locate a page of swap in physical memory, reserving swap cache space
505  * and reading the disk if it is not already cached.
506  * A failure return means that either the page allocation failed or that
507  * the swap entry is no longer in use.
508  */
509 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
510 				   struct vm_area_struct *vma,
511 				   unsigned long addr, bool do_poll,
512 				   struct swap_iocb **plug)
513 {
514 	bool page_was_allocated;
515 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
516 			vma, addr, &page_was_allocated);
517 
518 	if (page_was_allocated)
519 		swap_readpage(retpage, do_poll, plug);
520 
521 	return retpage;
522 }
523 
524 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
525 				      unsigned long offset,
526 				      int hits,
527 				      int max_pages,
528 				      int prev_win)
529 {
530 	unsigned int pages, last_ra;
531 
532 	/*
533 	 * This heuristic has been found to work well on both sequential and
534 	 * random loads, swapping to hard disk or to SSD: please don't ask
535 	 * what the "+ 2" means, it just happens to work well, that's all.
536 	 */
537 	pages = hits + 2;
538 	if (pages == 2) {
539 		/*
540 		 * We can have no readahead hits to judge by: but must not get
541 		 * stuck here forever, so check for an adjacent offset instead
542 		 * (and don't even bother to check whether swap type is same).
543 		 */
544 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
545 			pages = 1;
546 	} else {
547 		unsigned int roundup = 4;
548 		while (roundup < pages)
549 			roundup <<= 1;
550 		pages = roundup;
551 	}
552 
553 	if (pages > max_pages)
554 		pages = max_pages;
555 
556 	/* Don't shrink readahead too fast */
557 	last_ra = prev_win / 2;
558 	if (pages < last_ra)
559 		pages = last_ra;
560 
561 	return pages;
562 }
563 
564 static unsigned long swapin_nr_pages(unsigned long offset)
565 {
566 	static unsigned long prev_offset;
567 	unsigned int hits, pages, max_pages;
568 	static atomic_t last_readahead_pages;
569 
570 	max_pages = 1 << READ_ONCE(page_cluster);
571 	if (max_pages <= 1)
572 		return 1;
573 
574 	hits = atomic_xchg(&swapin_readahead_hits, 0);
575 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
576 				  max_pages,
577 				  atomic_read(&last_readahead_pages));
578 	if (!hits)
579 		WRITE_ONCE(prev_offset, offset);
580 	atomic_set(&last_readahead_pages, pages);
581 
582 	return pages;
583 }
584 
585 /**
586  * swap_cluster_readahead - swap in pages in hope we need them soon
587  * @entry: swap entry of this memory
588  * @gfp_mask: memory allocation flags
589  * @vmf: fault information
590  *
591  * Returns the struct page for entry and addr, after queueing swapin.
592  *
593  * Primitive swap readahead code. We simply read an aligned block of
594  * (1 << page_cluster) entries in the swap area. This method is chosen
595  * because it doesn't cost us any seek time.  We also make sure to queue
596  * the 'original' request together with the readahead ones...
597  *
598  * This has been extended to use the NUMA policies from the mm triggering
599  * the readahead.
600  *
601  * Caller must hold read mmap_lock if vmf->vma is not NULL.
602  */
603 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
604 				struct vm_fault *vmf)
605 {
606 	struct page *page;
607 	unsigned long entry_offset = swp_offset(entry);
608 	unsigned long offset = entry_offset;
609 	unsigned long start_offset, end_offset;
610 	unsigned long mask;
611 	struct swap_info_struct *si = swp_swap_info(entry);
612 	struct blk_plug plug;
613 	struct swap_iocb *splug = NULL;
614 	bool do_poll = true, page_allocated;
615 	struct vm_area_struct *vma = vmf->vma;
616 	unsigned long addr = vmf->address;
617 
618 	mask = swapin_nr_pages(offset) - 1;
619 	if (!mask)
620 		goto skip;
621 
622 	do_poll = false;
623 	/* Read a page_cluster sized and aligned cluster around offset. */
624 	start_offset = offset & ~mask;
625 	end_offset = offset | mask;
626 	if (!start_offset)	/* First page is swap header. */
627 		start_offset++;
628 	if (end_offset >= si->max)
629 		end_offset = si->max - 1;
630 
631 	blk_start_plug(&plug);
632 	for (offset = start_offset; offset <= end_offset ; offset++) {
633 		/* Ok, do the async read-ahead now */
634 		page = __read_swap_cache_async(
635 			swp_entry(swp_type(entry), offset),
636 			gfp_mask, vma, addr, &page_allocated);
637 		if (!page)
638 			continue;
639 		if (page_allocated) {
640 			swap_readpage(page, false, &splug);
641 			if (offset != entry_offset) {
642 				SetPageReadahead(page);
643 				count_vm_event(SWAP_RA);
644 			}
645 		}
646 		put_page(page);
647 	}
648 	blk_finish_plug(&plug);
649 	swap_read_unplug(splug);
650 
651 	lru_add_drain();	/* Push any new pages onto the LRU now */
652 skip:
653 	/* The page was likely read above, so no need for plugging here */
654 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
655 }
656 
657 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
658 {
659 	struct address_space *spaces, *space;
660 	unsigned int i, nr;
661 
662 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
663 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
664 	if (!spaces)
665 		return -ENOMEM;
666 	for (i = 0; i < nr; i++) {
667 		space = spaces + i;
668 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
669 		atomic_set(&space->i_mmap_writable, 0);
670 		space->a_ops = &swap_aops;
671 		/* swap cache doesn't use writeback related tags */
672 		mapping_set_no_writeback_tags(space);
673 	}
674 	nr_swapper_spaces[type] = nr;
675 	swapper_spaces[type] = spaces;
676 
677 	return 0;
678 }
679 
680 void exit_swap_address_space(unsigned int type)
681 {
682 	int i;
683 	struct address_space *spaces = swapper_spaces[type];
684 
685 	for (i = 0; i < nr_swapper_spaces[type]; i++)
686 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
687 	kvfree(spaces);
688 	nr_swapper_spaces[type] = 0;
689 	swapper_spaces[type] = NULL;
690 }
691 
692 static void swap_ra_info(struct vm_fault *vmf,
693 			 struct vma_swap_readahead *ra_info)
694 {
695 	struct vm_area_struct *vma = vmf->vma;
696 	unsigned long ra_val;
697 	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
698 	unsigned long start, end;
699 	pte_t *pte, *orig_pte;
700 	unsigned int max_win, hits, prev_win, win;
701 #ifndef CONFIG_64BIT
702 	pte_t *tpte;
703 #endif
704 
705 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
706 			     SWAP_RA_ORDER_CEILING);
707 	if (max_win == 1) {
708 		ra_info->win = 1;
709 		return;
710 	}
711 
712 	faddr = vmf->address;
713 	fpfn = PFN_DOWN(faddr);
714 	ra_val = GET_SWAP_RA_VAL(vma);
715 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
716 	prev_win = SWAP_RA_WIN(ra_val);
717 	hits = SWAP_RA_HITS(ra_val);
718 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
719 					       max_win, prev_win);
720 	atomic_long_set(&vma->swap_readahead_info,
721 			SWAP_RA_VAL(faddr, win, 0));
722 
723 	if (win == 1)
724 		return;
725 
726 	/* Copy the PTEs because the page table may be unmapped */
727 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
728 	if (fpfn == pfn + 1) {
729 		lpfn = fpfn;
730 		rpfn = fpfn + win;
731 	} else if (pfn == fpfn + 1) {
732 		lpfn = fpfn - win + 1;
733 		rpfn = fpfn + 1;
734 	} else {
735 		unsigned int left = (win - 1) / 2;
736 
737 		lpfn = fpfn - left;
738 		rpfn = fpfn + win - left;
739 	}
740 	start = max3(lpfn, PFN_DOWN(vma->vm_start),
741 		     PFN_DOWN(faddr & PMD_MASK));
742 	end = min3(rpfn, PFN_DOWN(vma->vm_end),
743 		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
744 
745 	ra_info->nr_pte = end - start;
746 	ra_info->offset = fpfn - start;
747 	pte -= ra_info->offset;
748 #ifdef CONFIG_64BIT
749 	ra_info->ptes = pte;
750 #else
751 	tpte = ra_info->ptes;
752 	for (pfn = start; pfn != end; pfn++)
753 		*tpte++ = *pte++;
754 #endif
755 	pte_unmap(orig_pte);
756 }
757 
758 /**
759  * swap_vma_readahead - swap in pages in hope we need them soon
760  * @fentry: swap entry of this memory
761  * @gfp_mask: memory allocation flags
762  * @vmf: fault information
763  *
764  * Returns the struct page for entry and addr, after queueing swapin.
765  *
766  * Primitive swap readahead code. We simply read in a few pages whose
767  * virtual addresses are around the fault address in the same vma.
768  *
769  * Caller must hold read mmap_lock if vmf->vma is not NULL.
770  *
771  */
772 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
773 				       struct vm_fault *vmf)
774 {
775 	struct blk_plug plug;
776 	struct swap_iocb *splug = NULL;
777 	struct vm_area_struct *vma = vmf->vma;
778 	struct page *page;
779 	pte_t *pte, pentry;
780 	swp_entry_t entry;
781 	unsigned int i;
782 	bool page_allocated;
783 	struct vma_swap_readahead ra_info = {
784 		.win = 1,
785 	};
786 
787 	swap_ra_info(vmf, &ra_info);
788 	if (ra_info.win == 1)
789 		goto skip;
790 
791 	blk_start_plug(&plug);
792 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
793 	     i++, pte++) {
794 		pentry = *pte;
795 		if (!is_swap_pte(pentry))
796 			continue;
797 		entry = pte_to_swp_entry(pentry);
798 		if (unlikely(non_swap_entry(entry)))
799 			continue;
800 		page = __read_swap_cache_async(entry, gfp_mask, vma,
801 					       vmf->address, &page_allocated);
802 		if (!page)
803 			continue;
804 		if (page_allocated) {
805 			swap_readpage(page, false, &splug);
806 			if (i != ra_info.offset) {
807 				SetPageReadahead(page);
808 				count_vm_event(SWAP_RA);
809 			}
810 		}
811 		put_page(page);
812 	}
813 	blk_finish_plug(&plug);
814 	swap_read_unplug(splug);
815 	lru_add_drain();
816 skip:
817 	/* The page was likely read above, so no need for plugging here */
818 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
819 				     ra_info.win == 1, NULL);
820 }
821 
822 /**
823  * swapin_readahead - swap in pages in hope we need them soon
824  * @entry: swap entry of this memory
825  * @gfp_mask: memory allocation flags
826  * @vmf: fault information
827  *
828  * Returns the struct page for entry and addr, after queueing swapin.
829  *
830  * It's a main entry function for swap readahead. By the configuration,
831  * it will read ahead blocks by cluster-based(ie, physical disk based)
832  * or vma-based(ie, virtual address based on faulty address) readahead.
833  */
834 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
835 				struct vm_fault *vmf)
836 {
837 	return swap_use_vma_readahead() ?
838 			swap_vma_readahead(entry, gfp_mask, vmf) :
839 			swap_cluster_readahead(entry, gfp_mask, vmf);
840 }
841 
842 #ifdef CONFIG_SYSFS
843 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
844 				     struct kobj_attribute *attr, char *buf)
845 {
846 	return sysfs_emit(buf, "%s\n",
847 			  enable_vma_readahead ? "true" : "false");
848 }
849 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
850 				      struct kobj_attribute *attr,
851 				      const char *buf, size_t count)
852 {
853 	ssize_t ret;
854 
855 	ret = kstrtobool(buf, &enable_vma_readahead);
856 	if (ret)
857 		return ret;
858 
859 	return count;
860 }
861 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
862 
863 static struct attribute *swap_attrs[] = {
864 	&vma_ra_enabled_attr.attr,
865 	NULL,
866 };
867 
868 static const struct attribute_group swap_attr_group = {
869 	.attrs = swap_attrs,
870 };
871 
872 static int __init swap_init_sysfs(void)
873 {
874 	int err;
875 	struct kobject *swap_kobj;
876 
877 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
878 	if (!swap_kobj) {
879 		pr_err("failed to create swap kobject\n");
880 		return -ENOMEM;
881 	}
882 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
883 	if (err) {
884 		pr_err("failed to register swap group\n");
885 		goto delete_obj;
886 	}
887 	return 0;
888 
889 delete_obj:
890 	kobject_put(swap_kobj);
891 	return err;
892 }
893 subsys_initcall(swap_init_sysfs);
894 #endif
895