1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_page_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .writepage = swap_writepage, 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migrate_folio = migrate_folio, 37 #endif 38 }; 39 40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static bool enable_vma_readahead __read_mostly = true; 43 44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 48 49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 52 53 #define SWAP_RA_VAL(addr, win, hits) \ 54 (((addr) & PAGE_MASK) | \ 55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 56 ((hits) & SWAP_RA_HITS_MASK)) 57 58 /* Initial readahead hits is 4 to start up with a small window */ 59 #define GET_SWAP_RA_VAL(vma) \ 60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 61 62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 63 64 void show_swap_cache_info(void) 65 { 66 printk("%lu pages in swap cache\n", total_swapcache_pages()); 67 printk("Free swap = %ldkB\n", 68 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 69 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 70 } 71 72 void *get_shadow_from_swap_cache(swp_entry_t entry) 73 { 74 struct address_space *address_space = swap_address_space(entry); 75 pgoff_t idx = swp_offset(entry); 76 struct page *page; 77 78 page = xa_load(&address_space->i_pages, idx); 79 if (xa_is_value(page)) 80 return page; 81 return NULL; 82 } 83 84 /* 85 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 86 * but sets SwapCache flag and private instead of mapping and index. 87 */ 88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 89 gfp_t gfp, void **shadowp) 90 { 91 struct address_space *address_space = swap_address_space(entry); 92 pgoff_t idx = swp_offset(entry); 93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 94 unsigned long i, nr = folio_nr_pages(folio); 95 void *old; 96 97 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 98 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 99 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 100 101 folio_ref_add(folio, nr); 102 folio_set_swapcache(folio); 103 104 do { 105 xas_lock_irq(&xas); 106 xas_create_range(&xas); 107 if (xas_error(&xas)) 108 goto unlock; 109 for (i = 0; i < nr; i++) { 110 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 111 old = xas_load(&xas); 112 if (xa_is_value(old)) { 113 if (shadowp) 114 *shadowp = old; 115 } 116 set_page_private(folio_page(folio, i), entry.val + i); 117 xas_store(&xas, folio); 118 xas_next(&xas); 119 } 120 address_space->nrpages += nr; 121 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 122 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 123 unlock: 124 xas_unlock_irq(&xas); 125 } while (xas_nomem(&xas, gfp)); 126 127 if (!xas_error(&xas)) 128 return 0; 129 130 folio_clear_swapcache(folio); 131 folio_ref_sub(folio, nr); 132 return xas_error(&xas); 133 } 134 135 /* 136 * This must be called only on folios that have 137 * been verified to be in the swap cache. 138 */ 139 void __delete_from_swap_cache(struct folio *folio, 140 swp_entry_t entry, void *shadow) 141 { 142 struct address_space *address_space = swap_address_space(entry); 143 int i; 144 long nr = folio_nr_pages(folio); 145 pgoff_t idx = swp_offset(entry); 146 XA_STATE(xas, &address_space->i_pages, idx); 147 148 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 149 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 150 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 151 152 for (i = 0; i < nr; i++) { 153 void *entry = xas_store(&xas, shadow); 154 VM_BUG_ON_PAGE(entry != folio, entry); 155 set_page_private(folio_page(folio, i), 0); 156 xas_next(&xas); 157 } 158 folio_clear_swapcache(folio); 159 address_space->nrpages -= nr; 160 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 161 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 162 } 163 164 /** 165 * add_to_swap - allocate swap space for a folio 166 * @folio: folio we want to move to swap 167 * 168 * Allocate swap space for the folio and add the folio to the 169 * swap cache. 170 * 171 * Context: Caller needs to hold the folio lock. 172 * Return: Whether the folio was added to the swap cache. 173 */ 174 bool add_to_swap(struct folio *folio) 175 { 176 swp_entry_t entry; 177 int err; 178 179 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 180 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 181 182 entry = folio_alloc_swap(folio); 183 if (!entry.val) 184 return false; 185 186 /* 187 * XArray node allocations from PF_MEMALLOC contexts could 188 * completely exhaust the page allocator. __GFP_NOMEMALLOC 189 * stops emergency reserves from being allocated. 190 * 191 * TODO: this could cause a theoretical memory reclaim 192 * deadlock in the swap out path. 193 */ 194 /* 195 * Add it to the swap cache. 196 */ 197 err = add_to_swap_cache(folio, entry, 198 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 199 if (err) 200 /* 201 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 202 * clear SWAP_HAS_CACHE flag. 203 */ 204 goto fail; 205 /* 206 * Normally the folio will be dirtied in unmap because its 207 * pte should be dirty. A special case is MADV_FREE page. The 208 * page's pte could have dirty bit cleared but the folio's 209 * SwapBacked flag is still set because clearing the dirty bit 210 * and SwapBacked flag has no lock protected. For such folio, 211 * unmap will not set dirty bit for it, so folio reclaim will 212 * not write the folio out. This can cause data corruption when 213 * the folio is swapped in later. Always setting the dirty flag 214 * for the folio solves the problem. 215 */ 216 folio_mark_dirty(folio); 217 218 return true; 219 220 fail: 221 put_swap_folio(folio, entry); 222 return false; 223 } 224 225 /* 226 * This must be called only on folios that have 227 * been verified to be in the swap cache and locked. 228 * It will never put the folio into the free list, 229 * the caller has a reference on the folio. 230 */ 231 void delete_from_swap_cache(struct folio *folio) 232 { 233 swp_entry_t entry = folio_swap_entry(folio); 234 struct address_space *address_space = swap_address_space(entry); 235 236 xa_lock_irq(&address_space->i_pages); 237 __delete_from_swap_cache(folio, entry, NULL); 238 xa_unlock_irq(&address_space->i_pages); 239 240 put_swap_folio(folio, entry); 241 folio_ref_sub(folio, folio_nr_pages(folio)); 242 } 243 244 void clear_shadow_from_swap_cache(int type, unsigned long begin, 245 unsigned long end) 246 { 247 unsigned long curr = begin; 248 void *old; 249 250 for (;;) { 251 swp_entry_t entry = swp_entry(type, curr); 252 struct address_space *address_space = swap_address_space(entry); 253 XA_STATE(xas, &address_space->i_pages, curr); 254 255 xa_lock_irq(&address_space->i_pages); 256 xas_for_each(&xas, old, end) { 257 if (!xa_is_value(old)) 258 continue; 259 xas_store(&xas, NULL); 260 } 261 xa_unlock_irq(&address_space->i_pages); 262 263 /* search the next swapcache until we meet end */ 264 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 265 curr++; 266 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 267 if (curr > end) 268 break; 269 } 270 } 271 272 /* 273 * If we are the only user, then try to free up the swap cache. 274 * 275 * Its ok to check the swapcache flag without the folio lock 276 * here because we are going to recheck again inside 277 * folio_free_swap() _with_ the lock. 278 * - Marcelo 279 */ 280 void free_swap_cache(struct page *page) 281 { 282 struct folio *folio = page_folio(page); 283 284 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 285 folio_trylock(folio)) { 286 folio_free_swap(folio); 287 folio_unlock(folio); 288 } 289 } 290 291 /* 292 * Perform a free_page(), also freeing any swap cache associated with 293 * this page if it is the last user of the page. 294 */ 295 void free_page_and_swap_cache(struct page *page) 296 { 297 free_swap_cache(page); 298 if (!is_huge_zero_page(page)) 299 put_page(page); 300 } 301 302 /* 303 * Passed an array of pages, drop them all from swapcache and then release 304 * them. They are removed from the LRU and freed if this is their last use. 305 */ 306 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 307 { 308 lru_add_drain(); 309 for (int i = 0; i < nr; i++) 310 free_swap_cache(encoded_page_ptr(pages[i])); 311 release_pages(pages, nr); 312 } 313 314 static inline bool swap_use_vma_readahead(void) 315 { 316 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 317 } 318 319 /* 320 * Lookup a swap entry in the swap cache. A found folio will be returned 321 * unlocked and with its refcount incremented - we rely on the kernel 322 * lock getting page table operations atomic even if we drop the folio 323 * lock before returning. 324 * 325 * Caller must lock the swap device or hold a reference to keep it valid. 326 */ 327 struct folio *swap_cache_get_folio(swp_entry_t entry, 328 struct vm_area_struct *vma, unsigned long addr) 329 { 330 struct folio *folio; 331 332 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry)); 333 if (folio) { 334 bool vma_ra = swap_use_vma_readahead(); 335 bool readahead; 336 337 /* 338 * At the moment, we don't support PG_readahead for anon THP 339 * so let's bail out rather than confusing the readahead stat. 340 */ 341 if (unlikely(folio_test_large(folio))) 342 return folio; 343 344 readahead = folio_test_clear_readahead(folio); 345 if (vma && vma_ra) { 346 unsigned long ra_val; 347 int win, hits; 348 349 ra_val = GET_SWAP_RA_VAL(vma); 350 win = SWAP_RA_WIN(ra_val); 351 hits = SWAP_RA_HITS(ra_val); 352 if (readahead) 353 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 354 atomic_long_set(&vma->swap_readahead_info, 355 SWAP_RA_VAL(addr, win, hits)); 356 } 357 358 if (readahead) { 359 count_vm_event(SWAP_RA_HIT); 360 if (!vma || !vma_ra) 361 atomic_inc(&swapin_readahead_hits); 362 } 363 } 364 365 return folio; 366 } 367 368 /** 369 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 370 * @mapping: The address_space to search. 371 * @index: The page cache index. 372 * 373 * This differs from filemap_get_folio() in that it will also look for the 374 * folio in the swap cache. 375 * 376 * Return: The found folio or %NULL. 377 */ 378 struct folio *filemap_get_incore_folio(struct address_space *mapping, 379 pgoff_t index) 380 { 381 swp_entry_t swp; 382 struct swap_info_struct *si; 383 struct folio *folio = __filemap_get_folio(mapping, index, FGP_ENTRY, 0); 384 385 if (!xa_is_value(folio)) 386 goto out; 387 if (!shmem_mapping(mapping)) 388 return NULL; 389 390 swp = radix_to_swp_entry(folio); 391 /* There might be swapin error entries in shmem mapping. */ 392 if (non_swap_entry(swp)) 393 return NULL; 394 /* Prevent swapoff from happening to us */ 395 si = get_swap_device(swp); 396 if (!si) 397 return NULL; 398 index = swp_offset(swp); 399 folio = filemap_get_folio(swap_address_space(swp), index); 400 put_swap_device(si); 401 out: 402 return folio; 403 } 404 405 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 406 struct vm_area_struct *vma, unsigned long addr, 407 bool *new_page_allocated) 408 { 409 struct swap_info_struct *si; 410 struct folio *folio; 411 void *shadow = NULL; 412 413 *new_page_allocated = false; 414 415 for (;;) { 416 int err; 417 /* 418 * First check the swap cache. Since this is normally 419 * called after swap_cache_get_folio() failed, re-calling 420 * that would confuse statistics. 421 */ 422 si = get_swap_device(entry); 423 if (!si) 424 return NULL; 425 folio = filemap_get_folio(swap_address_space(entry), 426 swp_offset(entry)); 427 put_swap_device(si); 428 if (folio) 429 return folio_file_page(folio, swp_offset(entry)); 430 431 /* 432 * Just skip read ahead for unused swap slot. 433 * During swap_off when swap_slot_cache is disabled, 434 * we have to handle the race between putting 435 * swap entry in swap cache and marking swap slot 436 * as SWAP_HAS_CACHE. That's done in later part of code or 437 * else swap_off will be aborted if we return NULL. 438 */ 439 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 440 return NULL; 441 442 /* 443 * Get a new page to read into from swap. Allocate it now, 444 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 445 * cause any racers to loop around until we add it to cache. 446 */ 447 folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false); 448 if (!folio) 449 return NULL; 450 451 /* 452 * Swap entry may have been freed since our caller observed it. 453 */ 454 err = swapcache_prepare(entry); 455 if (!err) 456 break; 457 458 folio_put(folio); 459 if (err != -EEXIST) 460 return NULL; 461 462 /* 463 * We might race against __delete_from_swap_cache(), and 464 * stumble across a swap_map entry whose SWAP_HAS_CACHE 465 * has not yet been cleared. Or race against another 466 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 467 * in swap_map, but not yet added its page to swap cache. 468 */ 469 schedule_timeout_uninterruptible(1); 470 } 471 472 /* 473 * The swap entry is ours to swap in. Prepare the new page. 474 */ 475 476 __folio_set_locked(folio); 477 __folio_set_swapbacked(folio); 478 479 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) 480 goto fail_unlock; 481 482 /* May fail (-ENOMEM) if XArray node allocation failed. */ 483 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 484 goto fail_unlock; 485 486 mem_cgroup_swapin_uncharge_swap(entry); 487 488 if (shadow) 489 workingset_refault(folio, shadow); 490 491 /* Caller will initiate read into locked folio */ 492 folio_add_lru(folio); 493 *new_page_allocated = true; 494 return &folio->page; 495 496 fail_unlock: 497 put_swap_folio(folio, entry); 498 folio_unlock(folio); 499 folio_put(folio); 500 return NULL; 501 } 502 503 /* 504 * Locate a page of swap in physical memory, reserving swap cache space 505 * and reading the disk if it is not already cached. 506 * A failure return means that either the page allocation failed or that 507 * the swap entry is no longer in use. 508 */ 509 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 510 struct vm_area_struct *vma, 511 unsigned long addr, bool do_poll, 512 struct swap_iocb **plug) 513 { 514 bool page_was_allocated; 515 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 516 vma, addr, &page_was_allocated); 517 518 if (page_was_allocated) 519 swap_readpage(retpage, do_poll, plug); 520 521 return retpage; 522 } 523 524 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 525 unsigned long offset, 526 int hits, 527 int max_pages, 528 int prev_win) 529 { 530 unsigned int pages, last_ra; 531 532 /* 533 * This heuristic has been found to work well on both sequential and 534 * random loads, swapping to hard disk or to SSD: please don't ask 535 * what the "+ 2" means, it just happens to work well, that's all. 536 */ 537 pages = hits + 2; 538 if (pages == 2) { 539 /* 540 * We can have no readahead hits to judge by: but must not get 541 * stuck here forever, so check for an adjacent offset instead 542 * (and don't even bother to check whether swap type is same). 543 */ 544 if (offset != prev_offset + 1 && offset != prev_offset - 1) 545 pages = 1; 546 } else { 547 unsigned int roundup = 4; 548 while (roundup < pages) 549 roundup <<= 1; 550 pages = roundup; 551 } 552 553 if (pages > max_pages) 554 pages = max_pages; 555 556 /* Don't shrink readahead too fast */ 557 last_ra = prev_win / 2; 558 if (pages < last_ra) 559 pages = last_ra; 560 561 return pages; 562 } 563 564 static unsigned long swapin_nr_pages(unsigned long offset) 565 { 566 static unsigned long prev_offset; 567 unsigned int hits, pages, max_pages; 568 static atomic_t last_readahead_pages; 569 570 max_pages = 1 << READ_ONCE(page_cluster); 571 if (max_pages <= 1) 572 return 1; 573 574 hits = atomic_xchg(&swapin_readahead_hits, 0); 575 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 576 max_pages, 577 atomic_read(&last_readahead_pages)); 578 if (!hits) 579 WRITE_ONCE(prev_offset, offset); 580 atomic_set(&last_readahead_pages, pages); 581 582 return pages; 583 } 584 585 /** 586 * swap_cluster_readahead - swap in pages in hope we need them soon 587 * @entry: swap entry of this memory 588 * @gfp_mask: memory allocation flags 589 * @vmf: fault information 590 * 591 * Returns the struct page for entry and addr, after queueing swapin. 592 * 593 * Primitive swap readahead code. We simply read an aligned block of 594 * (1 << page_cluster) entries in the swap area. This method is chosen 595 * because it doesn't cost us any seek time. We also make sure to queue 596 * the 'original' request together with the readahead ones... 597 * 598 * This has been extended to use the NUMA policies from the mm triggering 599 * the readahead. 600 * 601 * Caller must hold read mmap_lock if vmf->vma is not NULL. 602 */ 603 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 604 struct vm_fault *vmf) 605 { 606 struct page *page; 607 unsigned long entry_offset = swp_offset(entry); 608 unsigned long offset = entry_offset; 609 unsigned long start_offset, end_offset; 610 unsigned long mask; 611 struct swap_info_struct *si = swp_swap_info(entry); 612 struct blk_plug plug; 613 struct swap_iocb *splug = NULL; 614 bool do_poll = true, page_allocated; 615 struct vm_area_struct *vma = vmf->vma; 616 unsigned long addr = vmf->address; 617 618 mask = swapin_nr_pages(offset) - 1; 619 if (!mask) 620 goto skip; 621 622 do_poll = false; 623 /* Read a page_cluster sized and aligned cluster around offset. */ 624 start_offset = offset & ~mask; 625 end_offset = offset | mask; 626 if (!start_offset) /* First page is swap header. */ 627 start_offset++; 628 if (end_offset >= si->max) 629 end_offset = si->max - 1; 630 631 blk_start_plug(&plug); 632 for (offset = start_offset; offset <= end_offset ; offset++) { 633 /* Ok, do the async read-ahead now */ 634 page = __read_swap_cache_async( 635 swp_entry(swp_type(entry), offset), 636 gfp_mask, vma, addr, &page_allocated); 637 if (!page) 638 continue; 639 if (page_allocated) { 640 swap_readpage(page, false, &splug); 641 if (offset != entry_offset) { 642 SetPageReadahead(page); 643 count_vm_event(SWAP_RA); 644 } 645 } 646 put_page(page); 647 } 648 blk_finish_plug(&plug); 649 swap_read_unplug(splug); 650 651 lru_add_drain(); /* Push any new pages onto the LRU now */ 652 skip: 653 /* The page was likely read above, so no need for plugging here */ 654 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); 655 } 656 657 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 658 { 659 struct address_space *spaces, *space; 660 unsigned int i, nr; 661 662 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 663 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 664 if (!spaces) 665 return -ENOMEM; 666 for (i = 0; i < nr; i++) { 667 space = spaces + i; 668 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 669 atomic_set(&space->i_mmap_writable, 0); 670 space->a_ops = &swap_aops; 671 /* swap cache doesn't use writeback related tags */ 672 mapping_set_no_writeback_tags(space); 673 } 674 nr_swapper_spaces[type] = nr; 675 swapper_spaces[type] = spaces; 676 677 return 0; 678 } 679 680 void exit_swap_address_space(unsigned int type) 681 { 682 int i; 683 struct address_space *spaces = swapper_spaces[type]; 684 685 for (i = 0; i < nr_swapper_spaces[type]; i++) 686 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 687 kvfree(spaces); 688 nr_swapper_spaces[type] = 0; 689 swapper_spaces[type] = NULL; 690 } 691 692 static void swap_ra_info(struct vm_fault *vmf, 693 struct vma_swap_readahead *ra_info) 694 { 695 struct vm_area_struct *vma = vmf->vma; 696 unsigned long ra_val; 697 unsigned long faddr, pfn, fpfn, lpfn, rpfn; 698 unsigned long start, end; 699 pte_t *pte, *orig_pte; 700 unsigned int max_win, hits, prev_win, win; 701 #ifndef CONFIG_64BIT 702 pte_t *tpte; 703 #endif 704 705 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 706 SWAP_RA_ORDER_CEILING); 707 if (max_win == 1) { 708 ra_info->win = 1; 709 return; 710 } 711 712 faddr = vmf->address; 713 fpfn = PFN_DOWN(faddr); 714 ra_val = GET_SWAP_RA_VAL(vma); 715 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 716 prev_win = SWAP_RA_WIN(ra_val); 717 hits = SWAP_RA_HITS(ra_val); 718 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 719 max_win, prev_win); 720 atomic_long_set(&vma->swap_readahead_info, 721 SWAP_RA_VAL(faddr, win, 0)); 722 723 if (win == 1) 724 return; 725 726 /* Copy the PTEs because the page table may be unmapped */ 727 orig_pte = pte = pte_offset_map(vmf->pmd, faddr); 728 if (fpfn == pfn + 1) { 729 lpfn = fpfn; 730 rpfn = fpfn + win; 731 } else if (pfn == fpfn + 1) { 732 lpfn = fpfn - win + 1; 733 rpfn = fpfn + 1; 734 } else { 735 unsigned int left = (win - 1) / 2; 736 737 lpfn = fpfn - left; 738 rpfn = fpfn + win - left; 739 } 740 start = max3(lpfn, PFN_DOWN(vma->vm_start), 741 PFN_DOWN(faddr & PMD_MASK)); 742 end = min3(rpfn, PFN_DOWN(vma->vm_end), 743 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 744 745 ra_info->nr_pte = end - start; 746 ra_info->offset = fpfn - start; 747 pte -= ra_info->offset; 748 #ifdef CONFIG_64BIT 749 ra_info->ptes = pte; 750 #else 751 tpte = ra_info->ptes; 752 for (pfn = start; pfn != end; pfn++) 753 *tpte++ = *pte++; 754 #endif 755 pte_unmap(orig_pte); 756 } 757 758 /** 759 * swap_vma_readahead - swap in pages in hope we need them soon 760 * @fentry: swap entry of this memory 761 * @gfp_mask: memory allocation flags 762 * @vmf: fault information 763 * 764 * Returns the struct page for entry and addr, after queueing swapin. 765 * 766 * Primitive swap readahead code. We simply read in a few pages whose 767 * virtual addresses are around the fault address in the same vma. 768 * 769 * Caller must hold read mmap_lock if vmf->vma is not NULL. 770 * 771 */ 772 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 773 struct vm_fault *vmf) 774 { 775 struct blk_plug plug; 776 struct swap_iocb *splug = NULL; 777 struct vm_area_struct *vma = vmf->vma; 778 struct page *page; 779 pte_t *pte, pentry; 780 swp_entry_t entry; 781 unsigned int i; 782 bool page_allocated; 783 struct vma_swap_readahead ra_info = { 784 .win = 1, 785 }; 786 787 swap_ra_info(vmf, &ra_info); 788 if (ra_info.win == 1) 789 goto skip; 790 791 blk_start_plug(&plug); 792 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; 793 i++, pte++) { 794 pentry = *pte; 795 if (!is_swap_pte(pentry)) 796 continue; 797 entry = pte_to_swp_entry(pentry); 798 if (unlikely(non_swap_entry(entry))) 799 continue; 800 page = __read_swap_cache_async(entry, gfp_mask, vma, 801 vmf->address, &page_allocated); 802 if (!page) 803 continue; 804 if (page_allocated) { 805 swap_readpage(page, false, &splug); 806 if (i != ra_info.offset) { 807 SetPageReadahead(page); 808 count_vm_event(SWAP_RA); 809 } 810 } 811 put_page(page); 812 } 813 blk_finish_plug(&plug); 814 swap_read_unplug(splug); 815 lru_add_drain(); 816 skip: 817 /* The page was likely read above, so no need for plugging here */ 818 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 819 ra_info.win == 1, NULL); 820 } 821 822 /** 823 * swapin_readahead - swap in pages in hope we need them soon 824 * @entry: swap entry of this memory 825 * @gfp_mask: memory allocation flags 826 * @vmf: fault information 827 * 828 * Returns the struct page for entry and addr, after queueing swapin. 829 * 830 * It's a main entry function for swap readahead. By the configuration, 831 * it will read ahead blocks by cluster-based(ie, physical disk based) 832 * or vma-based(ie, virtual address based on faulty address) readahead. 833 */ 834 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 835 struct vm_fault *vmf) 836 { 837 return swap_use_vma_readahead() ? 838 swap_vma_readahead(entry, gfp_mask, vmf) : 839 swap_cluster_readahead(entry, gfp_mask, vmf); 840 } 841 842 #ifdef CONFIG_SYSFS 843 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 844 struct kobj_attribute *attr, char *buf) 845 { 846 return sysfs_emit(buf, "%s\n", 847 enable_vma_readahead ? "true" : "false"); 848 } 849 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 850 struct kobj_attribute *attr, 851 const char *buf, size_t count) 852 { 853 ssize_t ret; 854 855 ret = kstrtobool(buf, &enable_vma_readahead); 856 if (ret) 857 return ret; 858 859 return count; 860 } 861 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 862 863 static struct attribute *swap_attrs[] = { 864 &vma_ra_enabled_attr.attr, 865 NULL, 866 }; 867 868 static const struct attribute_group swap_attr_group = { 869 .attrs = swap_attrs, 870 }; 871 872 static int __init swap_init_sysfs(void) 873 { 874 int err; 875 struct kobject *swap_kobj; 876 877 swap_kobj = kobject_create_and_add("swap", mm_kobj); 878 if (!swap_kobj) { 879 pr_err("failed to create swap kobject\n"); 880 return -ENOMEM; 881 } 882 err = sysfs_create_group(swap_kobj, &swap_attr_group); 883 if (err) { 884 pr_err("failed to register swap group\n"); 885 goto delete_obj; 886 } 887 return 0; 888 889 delete_obj: 890 kobject_put(swap_kobj); 891 return err; 892 } 893 subsys_initcall(swap_init_sysfs); 894 #endif 895