1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/mm.h> 10 #include <linux/gfp.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev.h> 17 #include <linux/blkdev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 #include <linux/page_cgroup.h> 21 22 #include <asm/pgtable.h> 23 24 /* 25 * swapper_space is a fiction, retained to simplify the path through 26 * vmscan's shrink_page_list. 27 */ 28 static const struct address_space_operations swap_aops = { 29 .writepage = swap_writepage, 30 .set_page_dirty = swap_set_page_dirty, 31 .migratepage = migrate_page, 32 }; 33 34 static struct backing_dev_info swap_backing_dev_info = { 35 .name = "swap", 36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 37 }; 38 39 struct address_space swapper_spaces[MAX_SWAPFILES] = { 40 [0 ... MAX_SWAPFILES - 1] = { 41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 42 .a_ops = &swap_aops, 43 .backing_dev_info = &swap_backing_dev_info, 44 } 45 }; 46 47 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 48 49 static struct { 50 unsigned long add_total; 51 unsigned long del_total; 52 unsigned long find_success; 53 unsigned long find_total; 54 } swap_cache_info; 55 56 unsigned long total_swapcache_pages(void) 57 { 58 int i; 59 unsigned long ret = 0; 60 61 for (i = 0; i < MAX_SWAPFILES; i++) 62 ret += swapper_spaces[i].nrpages; 63 return ret; 64 } 65 66 void show_swap_cache_info(void) 67 { 68 printk("%lu pages in swap cache\n", total_swapcache_pages()); 69 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 70 swap_cache_info.add_total, swap_cache_info.del_total, 71 swap_cache_info.find_success, swap_cache_info.find_total); 72 printk("Free swap = %ldkB\n", 73 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 74 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 75 } 76 77 /* 78 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 79 * but sets SwapCache flag and private instead of mapping and index. 80 */ 81 int __add_to_swap_cache(struct page *page, swp_entry_t entry) 82 { 83 int error; 84 struct address_space *address_space; 85 86 VM_BUG_ON(!PageLocked(page)); 87 VM_BUG_ON(PageSwapCache(page)); 88 VM_BUG_ON(!PageSwapBacked(page)); 89 90 page_cache_get(page); 91 SetPageSwapCache(page); 92 set_page_private(page, entry.val); 93 94 address_space = swap_address_space(entry); 95 spin_lock_irq(&address_space->tree_lock); 96 error = radix_tree_insert(&address_space->page_tree, 97 entry.val, page); 98 if (likely(!error)) { 99 address_space->nrpages++; 100 __inc_zone_page_state(page, NR_FILE_PAGES); 101 INC_CACHE_INFO(add_total); 102 } 103 spin_unlock_irq(&address_space->tree_lock); 104 105 if (unlikely(error)) { 106 /* 107 * Only the context which have set SWAP_HAS_CACHE flag 108 * would call add_to_swap_cache(). 109 * So add_to_swap_cache() doesn't returns -EEXIST. 110 */ 111 VM_BUG_ON(error == -EEXIST); 112 set_page_private(page, 0UL); 113 ClearPageSwapCache(page); 114 page_cache_release(page); 115 } 116 117 return error; 118 } 119 120 121 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 122 { 123 int error; 124 125 error = radix_tree_maybe_preload(gfp_mask); 126 if (!error) { 127 error = __add_to_swap_cache(page, entry); 128 radix_tree_preload_end(); 129 } 130 return error; 131 } 132 133 /* 134 * This must be called only on pages that have 135 * been verified to be in the swap cache. 136 */ 137 void __delete_from_swap_cache(struct page *page) 138 { 139 swp_entry_t entry; 140 struct address_space *address_space; 141 142 VM_BUG_ON(!PageLocked(page)); 143 VM_BUG_ON(!PageSwapCache(page)); 144 VM_BUG_ON(PageWriteback(page)); 145 146 entry.val = page_private(page); 147 address_space = swap_address_space(entry); 148 radix_tree_delete(&address_space->page_tree, page_private(page)); 149 set_page_private(page, 0); 150 ClearPageSwapCache(page); 151 address_space->nrpages--; 152 __dec_zone_page_state(page, NR_FILE_PAGES); 153 INC_CACHE_INFO(del_total); 154 } 155 156 /** 157 * add_to_swap - allocate swap space for a page 158 * @page: page we want to move to swap 159 * 160 * Allocate swap space for the page and add the page to the 161 * swap cache. Caller needs to hold the page lock. 162 */ 163 int add_to_swap(struct page *page, struct list_head *list) 164 { 165 swp_entry_t entry; 166 int err; 167 168 VM_BUG_ON(!PageLocked(page)); 169 VM_BUG_ON(!PageUptodate(page)); 170 171 entry = get_swap_page(); 172 if (!entry.val) 173 return 0; 174 175 if (unlikely(PageTransHuge(page))) 176 if (unlikely(split_huge_page_to_list(page, list))) { 177 swapcache_free(entry, NULL); 178 return 0; 179 } 180 181 /* 182 * Radix-tree node allocations from PF_MEMALLOC contexts could 183 * completely exhaust the page allocator. __GFP_NOMEMALLOC 184 * stops emergency reserves from being allocated. 185 * 186 * TODO: this could cause a theoretical memory reclaim 187 * deadlock in the swap out path. 188 */ 189 /* 190 * Add it to the swap cache and mark it dirty 191 */ 192 err = add_to_swap_cache(page, entry, 193 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 194 195 if (!err) { /* Success */ 196 SetPageDirty(page); 197 return 1; 198 } else { /* -ENOMEM radix-tree allocation failure */ 199 /* 200 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 201 * clear SWAP_HAS_CACHE flag. 202 */ 203 swapcache_free(entry, NULL); 204 return 0; 205 } 206 } 207 208 /* 209 * This must be called only on pages that have 210 * been verified to be in the swap cache and locked. 211 * It will never put the page into the free list, 212 * the caller has a reference on the page. 213 */ 214 void delete_from_swap_cache(struct page *page) 215 { 216 swp_entry_t entry; 217 struct address_space *address_space; 218 219 entry.val = page_private(page); 220 221 address_space = swap_address_space(entry); 222 spin_lock_irq(&address_space->tree_lock); 223 __delete_from_swap_cache(page); 224 spin_unlock_irq(&address_space->tree_lock); 225 226 swapcache_free(entry, page); 227 page_cache_release(page); 228 } 229 230 /* 231 * If we are the only user, then try to free up the swap cache. 232 * 233 * Its ok to check for PageSwapCache without the page lock 234 * here because we are going to recheck again inside 235 * try_to_free_swap() _with_ the lock. 236 * - Marcelo 237 */ 238 static inline void free_swap_cache(struct page *page) 239 { 240 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 241 try_to_free_swap(page); 242 unlock_page(page); 243 } 244 } 245 246 /* 247 * Perform a free_page(), also freeing any swap cache associated with 248 * this page if it is the last user of the page. 249 */ 250 void free_page_and_swap_cache(struct page *page) 251 { 252 free_swap_cache(page); 253 page_cache_release(page); 254 } 255 256 /* 257 * Passed an array of pages, drop them all from swapcache and then release 258 * them. They are removed from the LRU and freed if this is their last use. 259 */ 260 void free_pages_and_swap_cache(struct page **pages, int nr) 261 { 262 struct page **pagep = pages; 263 264 lru_add_drain(); 265 while (nr) { 266 int todo = min(nr, PAGEVEC_SIZE); 267 int i; 268 269 for (i = 0; i < todo; i++) 270 free_swap_cache(pagep[i]); 271 release_pages(pagep, todo, 0); 272 pagep += todo; 273 nr -= todo; 274 } 275 } 276 277 /* 278 * Lookup a swap entry in the swap cache. A found page will be returned 279 * unlocked and with its refcount incremented - we rely on the kernel 280 * lock getting page table operations atomic even if we drop the page 281 * lock before returning. 282 */ 283 struct page * lookup_swap_cache(swp_entry_t entry) 284 { 285 struct page *page; 286 287 page = find_get_page(swap_address_space(entry), entry.val); 288 289 if (page) 290 INC_CACHE_INFO(find_success); 291 292 INC_CACHE_INFO(find_total); 293 return page; 294 } 295 296 /* 297 * Locate a page of swap in physical memory, reserving swap cache space 298 * and reading the disk if it is not already cached. 299 * A failure return means that either the page allocation failed or that 300 * the swap entry is no longer in use. 301 */ 302 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 303 struct vm_area_struct *vma, unsigned long addr) 304 { 305 struct page *found_page, *new_page = NULL; 306 int err; 307 308 do { 309 /* 310 * First check the swap cache. Since this is normally 311 * called after lookup_swap_cache() failed, re-calling 312 * that would confuse statistics. 313 */ 314 found_page = find_get_page(swap_address_space(entry), 315 entry.val); 316 if (found_page) 317 break; 318 319 /* 320 * Get a new page to read into from swap. 321 */ 322 if (!new_page) { 323 new_page = alloc_page_vma(gfp_mask, vma, addr); 324 if (!new_page) 325 break; /* Out of memory */ 326 } 327 328 /* 329 * call radix_tree_preload() while we can wait. 330 */ 331 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); 332 if (err) 333 break; 334 335 /* 336 * Swap entry may have been freed since our caller observed it. 337 */ 338 err = swapcache_prepare(entry); 339 if (err == -EEXIST) { 340 radix_tree_preload_end(); 341 /* 342 * We might race against get_swap_page() and stumble 343 * across a SWAP_HAS_CACHE swap_map entry whose page 344 * has not been brought into the swapcache yet, while 345 * the other end is scheduled away waiting on discard 346 * I/O completion at scan_swap_map(). 347 * 348 * In order to avoid turning this transitory state 349 * into a permanent loop around this -EEXIST case 350 * if !CONFIG_PREEMPT and the I/O completion happens 351 * to be waiting on the CPU waitqueue where we are now 352 * busy looping, we just conditionally invoke the 353 * scheduler here, if there are some more important 354 * tasks to run. 355 */ 356 cond_resched(); 357 continue; 358 } 359 if (err) { /* swp entry is obsolete ? */ 360 radix_tree_preload_end(); 361 break; 362 } 363 364 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 365 __set_page_locked(new_page); 366 SetPageSwapBacked(new_page); 367 err = __add_to_swap_cache(new_page, entry); 368 if (likely(!err)) { 369 radix_tree_preload_end(); 370 /* 371 * Initiate read into locked page and return. 372 */ 373 lru_cache_add_anon(new_page); 374 swap_readpage(new_page); 375 return new_page; 376 } 377 radix_tree_preload_end(); 378 ClearPageSwapBacked(new_page); 379 __clear_page_locked(new_page); 380 /* 381 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 382 * clear SWAP_HAS_CACHE flag. 383 */ 384 swapcache_free(entry, NULL); 385 } while (err != -ENOMEM); 386 387 if (new_page) 388 page_cache_release(new_page); 389 return found_page; 390 } 391 392 /** 393 * swapin_readahead - swap in pages in hope we need them soon 394 * @entry: swap entry of this memory 395 * @gfp_mask: memory allocation flags 396 * @vma: user vma this address belongs to 397 * @addr: target address for mempolicy 398 * 399 * Returns the struct page for entry and addr, after queueing swapin. 400 * 401 * Primitive swap readahead code. We simply read an aligned block of 402 * (1 << page_cluster) entries in the swap area. This method is chosen 403 * because it doesn't cost us any seek time. We also make sure to queue 404 * the 'original' request together with the readahead ones... 405 * 406 * This has been extended to use the NUMA policies from the mm triggering 407 * the readahead. 408 * 409 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 410 */ 411 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 412 struct vm_area_struct *vma, unsigned long addr) 413 { 414 struct page *page; 415 unsigned long offset = swp_offset(entry); 416 unsigned long start_offset, end_offset; 417 unsigned long mask = (1UL << page_cluster) - 1; 418 struct blk_plug plug; 419 420 /* Read a page_cluster sized and aligned cluster around offset. */ 421 start_offset = offset & ~mask; 422 end_offset = offset | mask; 423 if (!start_offset) /* First page is swap header. */ 424 start_offset++; 425 426 blk_start_plug(&plug); 427 for (offset = start_offset; offset <= end_offset ; offset++) { 428 /* Ok, do the async read-ahead now */ 429 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 430 gfp_mask, vma, addr); 431 if (!page) 432 continue; 433 page_cache_release(page); 434 } 435 blk_finish_plug(&plug); 436 437 lru_add_drain(); /* Push any new pages onto the LRU now */ 438 return read_swap_cache_async(entry, gfp_mask, vma, addr); 439 } 440