1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 25 #include <asm/pgtable.h> 26 27 /* 28 * swapper_space is a fiction, retained to simplify the path through 29 * vmscan's shrink_page_list. 30 */ 31 static const struct address_space_operations swap_aops = { 32 .writepage = swap_writepage, 33 .set_page_dirty = swap_set_page_dirty, 34 #ifdef CONFIG_MIGRATION 35 .migratepage = migrate_page, 36 #endif 37 }; 38 39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static bool enable_vma_readahead __read_mostly = true; 42 43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 47 48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 51 52 #define SWAP_RA_VAL(addr, win, hits) \ 53 (((addr) & PAGE_MASK) | \ 54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 55 ((hits) & SWAP_RA_HITS_MASK)) 56 57 /* Initial readahead hits is 4 to start up with a small window */ 58 #define GET_SWAP_RA_VAL(vma) \ 59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 60 61 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 62 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0) 63 64 static struct { 65 unsigned long add_total; 66 unsigned long del_total; 67 unsigned long find_success; 68 unsigned long find_total; 69 } swap_cache_info; 70 71 unsigned long total_swapcache_pages(void) 72 { 73 unsigned int i, j, nr; 74 unsigned long ret = 0; 75 struct address_space *spaces; 76 struct swap_info_struct *si; 77 78 for (i = 0; i < MAX_SWAPFILES; i++) { 79 swp_entry_t entry = swp_entry(i, 1); 80 81 /* Avoid get_swap_device() to warn for bad swap entry */ 82 if (!swp_swap_info(entry)) 83 continue; 84 /* Prevent swapoff to free swapper_spaces */ 85 si = get_swap_device(entry); 86 if (!si) 87 continue; 88 nr = nr_swapper_spaces[i]; 89 spaces = swapper_spaces[i]; 90 for (j = 0; j < nr; j++) 91 ret += spaces[j].nrpages; 92 put_swap_device(si); 93 } 94 return ret; 95 } 96 97 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 98 99 void show_swap_cache_info(void) 100 { 101 printk("%lu pages in swap cache\n", total_swapcache_pages()); 102 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 103 swap_cache_info.add_total, swap_cache_info.del_total, 104 swap_cache_info.find_success, swap_cache_info.find_total); 105 printk("Free swap = %ldkB\n", 106 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 107 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 108 } 109 110 /* 111 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 112 * but sets SwapCache flag and private instead of mapping and index. 113 */ 114 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp) 115 { 116 struct address_space *address_space = swap_address_space(entry); 117 pgoff_t idx = swp_offset(entry); 118 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); 119 unsigned long i, nr = hpage_nr_pages(page); 120 121 VM_BUG_ON_PAGE(!PageLocked(page), page); 122 VM_BUG_ON_PAGE(PageSwapCache(page), page); 123 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 124 125 page_ref_add(page, nr); 126 SetPageSwapCache(page); 127 128 do { 129 xas_lock_irq(&xas); 130 xas_create_range(&xas); 131 if (xas_error(&xas)) 132 goto unlock; 133 for (i = 0; i < nr; i++) { 134 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); 135 set_page_private(page + i, entry.val + i); 136 xas_store(&xas, page); 137 xas_next(&xas); 138 } 139 address_space->nrpages += nr; 140 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 141 ADD_CACHE_INFO(add_total, nr); 142 unlock: 143 xas_unlock_irq(&xas); 144 } while (xas_nomem(&xas, gfp)); 145 146 if (!xas_error(&xas)) 147 return 0; 148 149 ClearPageSwapCache(page); 150 page_ref_sub(page, nr); 151 return xas_error(&xas); 152 } 153 154 /* 155 * This must be called only on pages that have 156 * been verified to be in the swap cache. 157 */ 158 void __delete_from_swap_cache(struct page *page, swp_entry_t entry) 159 { 160 struct address_space *address_space = swap_address_space(entry); 161 int i, nr = hpage_nr_pages(page); 162 pgoff_t idx = swp_offset(entry); 163 XA_STATE(xas, &address_space->i_pages, idx); 164 165 VM_BUG_ON_PAGE(!PageLocked(page), page); 166 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 167 VM_BUG_ON_PAGE(PageWriteback(page), page); 168 169 for (i = 0; i < nr; i++) { 170 void *entry = xas_store(&xas, NULL); 171 VM_BUG_ON_PAGE(entry != page, entry); 172 set_page_private(page + i, 0); 173 xas_next(&xas); 174 } 175 ClearPageSwapCache(page); 176 address_space->nrpages -= nr; 177 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 178 ADD_CACHE_INFO(del_total, nr); 179 } 180 181 /** 182 * add_to_swap - allocate swap space for a page 183 * @page: page we want to move to swap 184 * 185 * Allocate swap space for the page and add the page to the 186 * swap cache. Caller needs to hold the page lock. 187 */ 188 int add_to_swap(struct page *page) 189 { 190 swp_entry_t entry; 191 int err; 192 193 VM_BUG_ON_PAGE(!PageLocked(page), page); 194 VM_BUG_ON_PAGE(!PageUptodate(page), page); 195 196 entry = get_swap_page(page); 197 if (!entry.val) 198 return 0; 199 200 /* 201 * XArray node allocations from PF_MEMALLOC contexts could 202 * completely exhaust the page allocator. __GFP_NOMEMALLOC 203 * stops emergency reserves from being allocated. 204 * 205 * TODO: this could cause a theoretical memory reclaim 206 * deadlock in the swap out path. 207 */ 208 /* 209 * Add it to the swap cache. 210 */ 211 err = add_to_swap_cache(page, entry, 212 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 213 if (err) 214 /* 215 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 216 * clear SWAP_HAS_CACHE flag. 217 */ 218 goto fail; 219 /* 220 * Normally the page will be dirtied in unmap because its pte should be 221 * dirty. A special case is MADV_FREE page. The page'e pte could have 222 * dirty bit cleared but the page's SwapBacked bit is still set because 223 * clearing the dirty bit and SwapBacked bit has no lock protected. For 224 * such page, unmap will not set dirty bit for it, so page reclaim will 225 * not write the page out. This can cause data corruption when the page 226 * is swap in later. Always setting the dirty bit for the page solves 227 * the problem. 228 */ 229 set_page_dirty(page); 230 231 return 1; 232 233 fail: 234 put_swap_page(page, entry); 235 return 0; 236 } 237 238 /* 239 * This must be called only on pages that have 240 * been verified to be in the swap cache and locked. 241 * It will never put the page into the free list, 242 * the caller has a reference on the page. 243 */ 244 void delete_from_swap_cache(struct page *page) 245 { 246 swp_entry_t entry = { .val = page_private(page) }; 247 struct address_space *address_space = swap_address_space(entry); 248 249 xa_lock_irq(&address_space->i_pages); 250 __delete_from_swap_cache(page, entry); 251 xa_unlock_irq(&address_space->i_pages); 252 253 put_swap_page(page, entry); 254 page_ref_sub(page, hpage_nr_pages(page)); 255 } 256 257 /* 258 * If we are the only user, then try to free up the swap cache. 259 * 260 * Its ok to check for PageSwapCache without the page lock 261 * here because we are going to recheck again inside 262 * try_to_free_swap() _with_ the lock. 263 * - Marcelo 264 */ 265 static inline void free_swap_cache(struct page *page) 266 { 267 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 268 try_to_free_swap(page); 269 unlock_page(page); 270 } 271 } 272 273 /* 274 * Perform a free_page(), also freeing any swap cache associated with 275 * this page if it is the last user of the page. 276 */ 277 void free_page_and_swap_cache(struct page *page) 278 { 279 free_swap_cache(page); 280 if (!is_huge_zero_page(page)) 281 put_page(page); 282 } 283 284 /* 285 * Passed an array of pages, drop them all from swapcache and then release 286 * them. They are removed from the LRU and freed if this is their last use. 287 */ 288 void free_pages_and_swap_cache(struct page **pages, int nr) 289 { 290 struct page **pagep = pages; 291 int i; 292 293 lru_add_drain(); 294 for (i = 0; i < nr; i++) 295 free_swap_cache(pagep[i]); 296 release_pages(pagep, nr); 297 } 298 299 static inline bool swap_use_vma_readahead(void) 300 { 301 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 302 } 303 304 /* 305 * Lookup a swap entry in the swap cache. A found page will be returned 306 * unlocked and with its refcount incremented - we rely on the kernel 307 * lock getting page table operations atomic even if we drop the page 308 * lock before returning. 309 */ 310 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, 311 unsigned long addr) 312 { 313 struct page *page; 314 struct swap_info_struct *si; 315 316 si = get_swap_device(entry); 317 if (!si) 318 return NULL; 319 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 320 put_swap_device(si); 321 322 INC_CACHE_INFO(find_total); 323 if (page) { 324 bool vma_ra = swap_use_vma_readahead(); 325 bool readahead; 326 327 INC_CACHE_INFO(find_success); 328 /* 329 * At the moment, we don't support PG_readahead for anon THP 330 * so let's bail out rather than confusing the readahead stat. 331 */ 332 if (unlikely(PageTransCompound(page))) 333 return page; 334 335 readahead = TestClearPageReadahead(page); 336 if (vma && vma_ra) { 337 unsigned long ra_val; 338 int win, hits; 339 340 ra_val = GET_SWAP_RA_VAL(vma); 341 win = SWAP_RA_WIN(ra_val); 342 hits = SWAP_RA_HITS(ra_val); 343 if (readahead) 344 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 345 atomic_long_set(&vma->swap_readahead_info, 346 SWAP_RA_VAL(addr, win, hits)); 347 } 348 349 if (readahead) { 350 count_vm_event(SWAP_RA_HIT); 351 if (!vma || !vma_ra) 352 atomic_inc(&swapin_readahead_hits); 353 } 354 } 355 356 return page; 357 } 358 359 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 360 struct vm_area_struct *vma, unsigned long addr, 361 bool *new_page_allocated) 362 { 363 struct swap_info_struct *si; 364 struct page *page; 365 366 *new_page_allocated = false; 367 368 for (;;) { 369 int err; 370 /* 371 * First check the swap cache. Since this is normally 372 * called after lookup_swap_cache() failed, re-calling 373 * that would confuse statistics. 374 */ 375 si = get_swap_device(entry); 376 if (!si) 377 return NULL; 378 page = find_get_page(swap_address_space(entry), 379 swp_offset(entry)); 380 put_swap_device(si); 381 if (page) 382 return page; 383 384 /* 385 * Just skip read ahead for unused swap slot. 386 * During swap_off when swap_slot_cache is disabled, 387 * we have to handle the race between putting 388 * swap entry in swap cache and marking swap slot 389 * as SWAP_HAS_CACHE. That's done in later part of code or 390 * else swap_off will be aborted if we return NULL. 391 */ 392 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 393 return NULL; 394 395 /* 396 * Get a new page to read into from swap. Allocate it now, 397 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 398 * cause any racers to loop around until we add it to cache. 399 */ 400 page = alloc_page_vma(gfp_mask, vma, addr); 401 if (!page) 402 return NULL; 403 404 /* 405 * Swap entry may have been freed since our caller observed it. 406 */ 407 err = swapcache_prepare(entry); 408 if (!err) 409 break; 410 411 put_page(page); 412 if (err != -EEXIST) 413 return NULL; 414 415 /* 416 * We might race against __delete_from_swap_cache(), and 417 * stumble across a swap_map entry whose SWAP_HAS_CACHE 418 * has not yet been cleared. Or race against another 419 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 420 * in swap_map, but not yet added its page to swap cache. 421 */ 422 cond_resched(); 423 } 424 425 /* 426 * The swap entry is ours to swap in. Prepare the new page. 427 */ 428 429 __SetPageLocked(page); 430 __SetPageSwapBacked(page); 431 432 /* May fail (-ENOMEM) if XArray node allocation failed. */ 433 if (add_to_swap_cache(page, entry, gfp_mask & GFP_KERNEL)) { 434 put_swap_page(page, entry); 435 goto fail_unlock; 436 } 437 438 if (mem_cgroup_charge(page, NULL, gfp_mask)) { 439 delete_from_swap_cache(page); 440 goto fail_unlock; 441 } 442 443 /* XXX: Move to lru_cache_add() when it supports new vs putback */ 444 spin_lock_irq(&page_pgdat(page)->lru_lock); 445 lru_note_cost_page(page); 446 spin_unlock_irq(&page_pgdat(page)->lru_lock); 447 448 /* Caller will initiate read into locked page */ 449 SetPageWorkingset(page); 450 lru_cache_add(page); 451 *new_page_allocated = true; 452 return page; 453 454 fail_unlock: 455 unlock_page(page); 456 put_page(page); 457 return NULL; 458 } 459 460 /* 461 * Locate a page of swap in physical memory, reserving swap cache space 462 * and reading the disk if it is not already cached. 463 * A failure return means that either the page allocation failed or that 464 * the swap entry is no longer in use. 465 */ 466 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 467 struct vm_area_struct *vma, unsigned long addr, bool do_poll) 468 { 469 bool page_was_allocated; 470 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 471 vma, addr, &page_was_allocated); 472 473 if (page_was_allocated) 474 swap_readpage(retpage, do_poll); 475 476 return retpage; 477 } 478 479 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 480 unsigned long offset, 481 int hits, 482 int max_pages, 483 int prev_win) 484 { 485 unsigned int pages, last_ra; 486 487 /* 488 * This heuristic has been found to work well on both sequential and 489 * random loads, swapping to hard disk or to SSD: please don't ask 490 * what the "+ 2" means, it just happens to work well, that's all. 491 */ 492 pages = hits + 2; 493 if (pages == 2) { 494 /* 495 * We can have no readahead hits to judge by: but must not get 496 * stuck here forever, so check for an adjacent offset instead 497 * (and don't even bother to check whether swap type is same). 498 */ 499 if (offset != prev_offset + 1 && offset != prev_offset - 1) 500 pages = 1; 501 } else { 502 unsigned int roundup = 4; 503 while (roundup < pages) 504 roundup <<= 1; 505 pages = roundup; 506 } 507 508 if (pages > max_pages) 509 pages = max_pages; 510 511 /* Don't shrink readahead too fast */ 512 last_ra = prev_win / 2; 513 if (pages < last_ra) 514 pages = last_ra; 515 516 return pages; 517 } 518 519 static unsigned long swapin_nr_pages(unsigned long offset) 520 { 521 static unsigned long prev_offset; 522 unsigned int hits, pages, max_pages; 523 static atomic_t last_readahead_pages; 524 525 max_pages = 1 << READ_ONCE(page_cluster); 526 if (max_pages <= 1) 527 return 1; 528 529 hits = atomic_xchg(&swapin_readahead_hits, 0); 530 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 531 max_pages, 532 atomic_read(&last_readahead_pages)); 533 if (!hits) 534 WRITE_ONCE(prev_offset, offset); 535 atomic_set(&last_readahead_pages, pages); 536 537 return pages; 538 } 539 540 /** 541 * swap_cluster_readahead - swap in pages in hope we need them soon 542 * @entry: swap entry of this memory 543 * @gfp_mask: memory allocation flags 544 * @vmf: fault information 545 * 546 * Returns the struct page for entry and addr, after queueing swapin. 547 * 548 * Primitive swap readahead code. We simply read an aligned block of 549 * (1 << page_cluster) entries in the swap area. This method is chosen 550 * because it doesn't cost us any seek time. We also make sure to queue 551 * the 'original' request together with the readahead ones... 552 * 553 * This has been extended to use the NUMA policies from the mm triggering 554 * the readahead. 555 * 556 * Caller must hold read mmap_sem if vmf->vma is not NULL. 557 */ 558 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 559 struct vm_fault *vmf) 560 { 561 struct page *page; 562 unsigned long entry_offset = swp_offset(entry); 563 unsigned long offset = entry_offset; 564 unsigned long start_offset, end_offset; 565 unsigned long mask; 566 struct swap_info_struct *si = swp_swap_info(entry); 567 struct blk_plug plug; 568 bool do_poll = true, page_allocated; 569 struct vm_area_struct *vma = vmf->vma; 570 unsigned long addr = vmf->address; 571 572 mask = swapin_nr_pages(offset) - 1; 573 if (!mask) 574 goto skip; 575 576 /* Test swap type to make sure the dereference is safe */ 577 if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) { 578 struct inode *inode = si->swap_file->f_mapping->host; 579 if (inode_read_congested(inode)) 580 goto skip; 581 } 582 583 do_poll = false; 584 /* Read a page_cluster sized and aligned cluster around offset. */ 585 start_offset = offset & ~mask; 586 end_offset = offset | mask; 587 if (!start_offset) /* First page is swap header. */ 588 start_offset++; 589 if (end_offset >= si->max) 590 end_offset = si->max - 1; 591 592 blk_start_plug(&plug); 593 for (offset = start_offset; offset <= end_offset ; offset++) { 594 /* Ok, do the async read-ahead now */ 595 page = __read_swap_cache_async( 596 swp_entry(swp_type(entry), offset), 597 gfp_mask, vma, addr, &page_allocated); 598 if (!page) 599 continue; 600 if (page_allocated) { 601 swap_readpage(page, false); 602 if (offset != entry_offset) { 603 SetPageReadahead(page); 604 count_vm_event(SWAP_RA); 605 } 606 } 607 put_page(page); 608 } 609 blk_finish_plug(&plug); 610 611 lru_add_drain(); /* Push any new pages onto the LRU now */ 612 skip: 613 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); 614 } 615 616 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 617 { 618 struct address_space *spaces, *space; 619 unsigned int i, nr; 620 621 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 622 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 623 if (!spaces) 624 return -ENOMEM; 625 for (i = 0; i < nr; i++) { 626 space = spaces + i; 627 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 628 atomic_set(&space->i_mmap_writable, 0); 629 space->a_ops = &swap_aops; 630 /* swap cache doesn't use writeback related tags */ 631 mapping_set_no_writeback_tags(space); 632 } 633 nr_swapper_spaces[type] = nr; 634 swapper_spaces[type] = spaces; 635 636 return 0; 637 } 638 639 void exit_swap_address_space(unsigned int type) 640 { 641 kvfree(swapper_spaces[type]); 642 nr_swapper_spaces[type] = 0; 643 swapper_spaces[type] = NULL; 644 } 645 646 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, 647 unsigned long faddr, 648 unsigned long lpfn, 649 unsigned long rpfn, 650 unsigned long *start, 651 unsigned long *end) 652 { 653 *start = max3(lpfn, PFN_DOWN(vma->vm_start), 654 PFN_DOWN(faddr & PMD_MASK)); 655 *end = min3(rpfn, PFN_DOWN(vma->vm_end), 656 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 657 } 658 659 static void swap_ra_info(struct vm_fault *vmf, 660 struct vma_swap_readahead *ra_info) 661 { 662 struct vm_area_struct *vma = vmf->vma; 663 unsigned long ra_val; 664 swp_entry_t entry; 665 unsigned long faddr, pfn, fpfn; 666 unsigned long start, end; 667 pte_t *pte, *orig_pte; 668 unsigned int max_win, hits, prev_win, win, left; 669 #ifndef CONFIG_64BIT 670 pte_t *tpte; 671 #endif 672 673 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 674 SWAP_RA_ORDER_CEILING); 675 if (max_win == 1) { 676 ra_info->win = 1; 677 return; 678 } 679 680 faddr = vmf->address; 681 orig_pte = pte = pte_offset_map(vmf->pmd, faddr); 682 entry = pte_to_swp_entry(*pte); 683 if ((unlikely(non_swap_entry(entry)))) { 684 pte_unmap(orig_pte); 685 return; 686 } 687 688 fpfn = PFN_DOWN(faddr); 689 ra_val = GET_SWAP_RA_VAL(vma); 690 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 691 prev_win = SWAP_RA_WIN(ra_val); 692 hits = SWAP_RA_HITS(ra_val); 693 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 694 max_win, prev_win); 695 atomic_long_set(&vma->swap_readahead_info, 696 SWAP_RA_VAL(faddr, win, 0)); 697 698 if (win == 1) { 699 pte_unmap(orig_pte); 700 return; 701 } 702 703 /* Copy the PTEs because the page table may be unmapped */ 704 if (fpfn == pfn + 1) 705 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); 706 else if (pfn == fpfn + 1) 707 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, 708 &start, &end); 709 else { 710 left = (win - 1) / 2; 711 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, 712 &start, &end); 713 } 714 ra_info->nr_pte = end - start; 715 ra_info->offset = fpfn - start; 716 pte -= ra_info->offset; 717 #ifdef CONFIG_64BIT 718 ra_info->ptes = pte; 719 #else 720 tpte = ra_info->ptes; 721 for (pfn = start; pfn != end; pfn++) 722 *tpte++ = *pte++; 723 #endif 724 pte_unmap(orig_pte); 725 } 726 727 /** 728 * swap_vma_readahead - swap in pages in hope we need them soon 729 * @entry: swap entry of this memory 730 * @gfp_mask: memory allocation flags 731 * @vmf: fault information 732 * 733 * Returns the struct page for entry and addr, after queueing swapin. 734 * 735 * Primitive swap readahead code. We simply read in a few pages whoes 736 * virtual addresses are around the fault address in the same vma. 737 * 738 * Caller must hold read mmap_sem if vmf->vma is not NULL. 739 * 740 */ 741 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 742 struct vm_fault *vmf) 743 { 744 struct blk_plug plug; 745 struct vm_area_struct *vma = vmf->vma; 746 struct page *page; 747 pte_t *pte, pentry; 748 swp_entry_t entry; 749 unsigned int i; 750 bool page_allocated; 751 struct vma_swap_readahead ra_info = {0,}; 752 753 swap_ra_info(vmf, &ra_info); 754 if (ra_info.win == 1) 755 goto skip; 756 757 blk_start_plug(&plug); 758 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; 759 i++, pte++) { 760 pentry = *pte; 761 if (pte_none(pentry)) 762 continue; 763 if (pte_present(pentry)) 764 continue; 765 entry = pte_to_swp_entry(pentry); 766 if (unlikely(non_swap_entry(entry))) 767 continue; 768 page = __read_swap_cache_async(entry, gfp_mask, vma, 769 vmf->address, &page_allocated); 770 if (!page) 771 continue; 772 if (page_allocated) { 773 swap_readpage(page, false); 774 if (i != ra_info.offset) { 775 SetPageReadahead(page); 776 count_vm_event(SWAP_RA); 777 } 778 } 779 put_page(page); 780 } 781 blk_finish_plug(&plug); 782 lru_add_drain(); 783 skip: 784 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 785 ra_info.win == 1); 786 } 787 788 /** 789 * swapin_readahead - swap in pages in hope we need them soon 790 * @entry: swap entry of this memory 791 * @gfp_mask: memory allocation flags 792 * @vmf: fault information 793 * 794 * Returns the struct page for entry and addr, after queueing swapin. 795 * 796 * It's a main entry function for swap readahead. By the configuration, 797 * it will read ahead blocks by cluster-based(ie, physical disk based) 798 * or vma-based(ie, virtual address based on faulty address) readahead. 799 */ 800 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 801 struct vm_fault *vmf) 802 { 803 return swap_use_vma_readahead() ? 804 swap_vma_readahead(entry, gfp_mask, vmf) : 805 swap_cluster_readahead(entry, gfp_mask, vmf); 806 } 807 808 #ifdef CONFIG_SYSFS 809 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 810 struct kobj_attribute *attr, char *buf) 811 { 812 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false"); 813 } 814 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 815 struct kobj_attribute *attr, 816 const char *buf, size_t count) 817 { 818 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 819 enable_vma_readahead = true; 820 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 821 enable_vma_readahead = false; 822 else 823 return -EINVAL; 824 825 return count; 826 } 827 static struct kobj_attribute vma_ra_enabled_attr = 828 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, 829 vma_ra_enabled_store); 830 831 static struct attribute *swap_attrs[] = { 832 &vma_ra_enabled_attr.attr, 833 NULL, 834 }; 835 836 static struct attribute_group swap_attr_group = { 837 .attrs = swap_attrs, 838 }; 839 840 static int __init swap_init_sysfs(void) 841 { 842 int err; 843 struct kobject *swap_kobj; 844 845 swap_kobj = kobject_create_and_add("swap", mm_kobj); 846 if (!swap_kobj) { 847 pr_err("failed to create swap kobject\n"); 848 return -ENOMEM; 849 } 850 err = sysfs_create_group(swap_kobj, &swap_attr_group); 851 if (err) { 852 pr_err("failed to register swap group\n"); 853 goto delete_obj; 854 } 855 return 0; 856 857 delete_obj: 858 kobject_put(swap_kobj); 859 return err; 860 } 861 subsys_initcall(swap_init_sysfs); 862 #endif 863