xref: /openbmc/linux/mm/swap_state.c (revision 3932b9ca)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list.
27  */
28 static const struct address_space_operations swap_aops = {
29 	.writepage	= swap_writepage,
30 	.set_page_dirty	= swap_set_page_dirty,
31 	.migratepage	= migrate_page,
32 };
33 
34 static struct backing_dev_info swap_backing_dev_info = {
35 	.name		= "swap",
36 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37 };
38 
39 struct address_space swapper_spaces[MAX_SWAPFILES] = {
40 	[0 ... MAX_SWAPFILES - 1] = {
41 		.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 		.i_mmap_writable = ATOMIC_INIT(0),
43 		.a_ops		= &swap_aops,
44 		.backing_dev_info = &swap_backing_dev_info,
45 	}
46 };
47 
48 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
49 
50 static struct {
51 	unsigned long add_total;
52 	unsigned long del_total;
53 	unsigned long find_success;
54 	unsigned long find_total;
55 } swap_cache_info;
56 
57 unsigned long total_swapcache_pages(void)
58 {
59 	int i;
60 	unsigned long ret = 0;
61 
62 	for (i = 0; i < MAX_SWAPFILES; i++)
63 		ret += swapper_spaces[i].nrpages;
64 	return ret;
65 }
66 
67 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
68 
69 void show_swap_cache_info(void)
70 {
71 	printk("%lu pages in swap cache\n", total_swapcache_pages());
72 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
73 		swap_cache_info.add_total, swap_cache_info.del_total,
74 		swap_cache_info.find_success, swap_cache_info.find_total);
75 	printk("Free swap  = %ldkB\n",
76 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
77 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
78 }
79 
80 /*
81  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
82  * but sets SwapCache flag and private instead of mapping and index.
83  */
84 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
85 {
86 	int error;
87 	struct address_space *address_space;
88 
89 	VM_BUG_ON_PAGE(!PageLocked(page), page);
90 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
91 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
92 
93 	page_cache_get(page);
94 	SetPageSwapCache(page);
95 	set_page_private(page, entry.val);
96 
97 	address_space = swap_address_space(entry);
98 	spin_lock_irq(&address_space->tree_lock);
99 	error = radix_tree_insert(&address_space->page_tree,
100 					entry.val, page);
101 	if (likely(!error)) {
102 		address_space->nrpages++;
103 		__inc_zone_page_state(page, NR_FILE_PAGES);
104 		INC_CACHE_INFO(add_total);
105 	}
106 	spin_unlock_irq(&address_space->tree_lock);
107 
108 	if (unlikely(error)) {
109 		/*
110 		 * Only the context which have set SWAP_HAS_CACHE flag
111 		 * would call add_to_swap_cache().
112 		 * So add_to_swap_cache() doesn't returns -EEXIST.
113 		 */
114 		VM_BUG_ON(error == -EEXIST);
115 		set_page_private(page, 0UL);
116 		ClearPageSwapCache(page);
117 		page_cache_release(page);
118 	}
119 
120 	return error;
121 }
122 
123 
124 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
125 {
126 	int error;
127 
128 	error = radix_tree_maybe_preload(gfp_mask);
129 	if (!error) {
130 		error = __add_to_swap_cache(page, entry);
131 		radix_tree_preload_end();
132 	}
133 	return error;
134 }
135 
136 /*
137  * This must be called only on pages that have
138  * been verified to be in the swap cache.
139  */
140 void __delete_from_swap_cache(struct page *page)
141 {
142 	swp_entry_t entry;
143 	struct address_space *address_space;
144 
145 	VM_BUG_ON_PAGE(!PageLocked(page), page);
146 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
147 	VM_BUG_ON_PAGE(PageWriteback(page), page);
148 
149 	entry.val = page_private(page);
150 	address_space = swap_address_space(entry);
151 	radix_tree_delete(&address_space->page_tree, page_private(page));
152 	set_page_private(page, 0);
153 	ClearPageSwapCache(page);
154 	address_space->nrpages--;
155 	__dec_zone_page_state(page, NR_FILE_PAGES);
156 	INC_CACHE_INFO(del_total);
157 }
158 
159 /**
160  * add_to_swap - allocate swap space for a page
161  * @page: page we want to move to swap
162  *
163  * Allocate swap space for the page and add the page to the
164  * swap cache.  Caller needs to hold the page lock.
165  */
166 int add_to_swap(struct page *page, struct list_head *list)
167 {
168 	swp_entry_t entry;
169 	int err;
170 
171 	VM_BUG_ON_PAGE(!PageLocked(page), page);
172 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
173 
174 	entry = get_swap_page();
175 	if (!entry.val)
176 		return 0;
177 
178 	if (unlikely(PageTransHuge(page)))
179 		if (unlikely(split_huge_page_to_list(page, list))) {
180 			swapcache_free(entry);
181 			return 0;
182 		}
183 
184 	/*
185 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
186 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
187 	 * stops emergency reserves from being allocated.
188 	 *
189 	 * TODO: this could cause a theoretical memory reclaim
190 	 * deadlock in the swap out path.
191 	 */
192 	/*
193 	 * Add it to the swap cache and mark it dirty
194 	 */
195 	err = add_to_swap_cache(page, entry,
196 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
197 
198 	if (!err) {	/* Success */
199 		SetPageDirty(page);
200 		return 1;
201 	} else {	/* -ENOMEM radix-tree allocation failure */
202 		/*
203 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
204 		 * clear SWAP_HAS_CACHE flag.
205 		 */
206 		swapcache_free(entry);
207 		return 0;
208 	}
209 }
210 
211 /*
212  * This must be called only on pages that have
213  * been verified to be in the swap cache and locked.
214  * It will never put the page into the free list,
215  * the caller has a reference on the page.
216  */
217 void delete_from_swap_cache(struct page *page)
218 {
219 	swp_entry_t entry;
220 	struct address_space *address_space;
221 
222 	entry.val = page_private(page);
223 
224 	address_space = swap_address_space(entry);
225 	spin_lock_irq(&address_space->tree_lock);
226 	__delete_from_swap_cache(page);
227 	spin_unlock_irq(&address_space->tree_lock);
228 
229 	swapcache_free(entry);
230 	page_cache_release(page);
231 }
232 
233 /*
234  * If we are the only user, then try to free up the swap cache.
235  *
236  * Its ok to check for PageSwapCache without the page lock
237  * here because we are going to recheck again inside
238  * try_to_free_swap() _with_ the lock.
239  * 					- Marcelo
240  */
241 static inline void free_swap_cache(struct page *page)
242 {
243 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
244 		try_to_free_swap(page);
245 		unlock_page(page);
246 	}
247 }
248 
249 /*
250  * Perform a free_page(), also freeing any swap cache associated with
251  * this page if it is the last user of the page.
252  */
253 void free_page_and_swap_cache(struct page *page)
254 {
255 	free_swap_cache(page);
256 	page_cache_release(page);
257 }
258 
259 /*
260  * Passed an array of pages, drop them all from swapcache and then release
261  * them.  They are removed from the LRU and freed if this is their last use.
262  */
263 void free_pages_and_swap_cache(struct page **pages, int nr)
264 {
265 	struct page **pagep = pages;
266 
267 	lru_add_drain();
268 	while (nr) {
269 		int todo = min(nr, PAGEVEC_SIZE);
270 		int i;
271 
272 		for (i = 0; i < todo; i++)
273 			free_swap_cache(pagep[i]);
274 		release_pages(pagep, todo, false);
275 		pagep += todo;
276 		nr -= todo;
277 	}
278 }
279 
280 /*
281  * Lookup a swap entry in the swap cache. A found page will be returned
282  * unlocked and with its refcount incremented - we rely on the kernel
283  * lock getting page table operations atomic even if we drop the page
284  * lock before returning.
285  */
286 struct page * lookup_swap_cache(swp_entry_t entry)
287 {
288 	struct page *page;
289 
290 	page = find_get_page(swap_address_space(entry), entry.val);
291 
292 	if (page) {
293 		INC_CACHE_INFO(find_success);
294 		if (TestClearPageReadahead(page))
295 			atomic_inc(&swapin_readahead_hits);
296 	}
297 
298 	INC_CACHE_INFO(find_total);
299 	return page;
300 }
301 
302 /*
303  * Locate a page of swap in physical memory, reserving swap cache space
304  * and reading the disk if it is not already cached.
305  * A failure return means that either the page allocation failed or that
306  * the swap entry is no longer in use.
307  */
308 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
309 			struct vm_area_struct *vma, unsigned long addr)
310 {
311 	struct page *found_page, *new_page = NULL;
312 	int err;
313 
314 	do {
315 		/*
316 		 * First check the swap cache.  Since this is normally
317 		 * called after lookup_swap_cache() failed, re-calling
318 		 * that would confuse statistics.
319 		 */
320 		found_page = find_get_page(swap_address_space(entry),
321 					entry.val);
322 		if (found_page)
323 			break;
324 
325 		/*
326 		 * Get a new page to read into from swap.
327 		 */
328 		if (!new_page) {
329 			new_page = alloc_page_vma(gfp_mask, vma, addr);
330 			if (!new_page)
331 				break;		/* Out of memory */
332 		}
333 
334 		/*
335 		 * call radix_tree_preload() while we can wait.
336 		 */
337 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
338 		if (err)
339 			break;
340 
341 		/*
342 		 * Swap entry may have been freed since our caller observed it.
343 		 */
344 		err = swapcache_prepare(entry);
345 		if (err == -EEXIST) {
346 			radix_tree_preload_end();
347 			/*
348 			 * We might race against get_swap_page() and stumble
349 			 * across a SWAP_HAS_CACHE swap_map entry whose page
350 			 * has not been brought into the swapcache yet, while
351 			 * the other end is scheduled away waiting on discard
352 			 * I/O completion at scan_swap_map().
353 			 *
354 			 * In order to avoid turning this transitory state
355 			 * into a permanent loop around this -EEXIST case
356 			 * if !CONFIG_PREEMPT and the I/O completion happens
357 			 * to be waiting on the CPU waitqueue where we are now
358 			 * busy looping, we just conditionally invoke the
359 			 * scheduler here, if there are some more important
360 			 * tasks to run.
361 			 */
362 			cond_resched();
363 			continue;
364 		}
365 		if (err) {		/* swp entry is obsolete ? */
366 			radix_tree_preload_end();
367 			break;
368 		}
369 
370 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
371 		__set_page_locked(new_page);
372 		SetPageSwapBacked(new_page);
373 		err = __add_to_swap_cache(new_page, entry);
374 		if (likely(!err)) {
375 			radix_tree_preload_end();
376 			/*
377 			 * Initiate read into locked page and return.
378 			 */
379 			lru_cache_add_anon(new_page);
380 			swap_readpage(new_page);
381 			return new_page;
382 		}
383 		radix_tree_preload_end();
384 		ClearPageSwapBacked(new_page);
385 		__clear_page_locked(new_page);
386 		/*
387 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
388 		 * clear SWAP_HAS_CACHE flag.
389 		 */
390 		swapcache_free(entry);
391 	} while (err != -ENOMEM);
392 
393 	if (new_page)
394 		page_cache_release(new_page);
395 	return found_page;
396 }
397 
398 static unsigned long swapin_nr_pages(unsigned long offset)
399 {
400 	static unsigned long prev_offset;
401 	unsigned int pages, max_pages, last_ra;
402 	static atomic_t last_readahead_pages;
403 
404 	max_pages = 1 << ACCESS_ONCE(page_cluster);
405 	if (max_pages <= 1)
406 		return 1;
407 
408 	/*
409 	 * This heuristic has been found to work well on both sequential and
410 	 * random loads, swapping to hard disk or to SSD: please don't ask
411 	 * what the "+ 2" means, it just happens to work well, that's all.
412 	 */
413 	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
414 	if (pages == 2) {
415 		/*
416 		 * We can have no readahead hits to judge by: but must not get
417 		 * stuck here forever, so check for an adjacent offset instead
418 		 * (and don't even bother to check whether swap type is same).
419 		 */
420 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
421 			pages = 1;
422 		prev_offset = offset;
423 	} else {
424 		unsigned int roundup = 4;
425 		while (roundup < pages)
426 			roundup <<= 1;
427 		pages = roundup;
428 	}
429 
430 	if (pages > max_pages)
431 		pages = max_pages;
432 
433 	/* Don't shrink readahead too fast */
434 	last_ra = atomic_read(&last_readahead_pages) / 2;
435 	if (pages < last_ra)
436 		pages = last_ra;
437 	atomic_set(&last_readahead_pages, pages);
438 
439 	return pages;
440 }
441 
442 /**
443  * swapin_readahead - swap in pages in hope we need them soon
444  * @entry: swap entry of this memory
445  * @gfp_mask: memory allocation flags
446  * @vma: user vma this address belongs to
447  * @addr: target address for mempolicy
448  *
449  * Returns the struct page for entry and addr, after queueing swapin.
450  *
451  * Primitive swap readahead code. We simply read an aligned block of
452  * (1 << page_cluster) entries in the swap area. This method is chosen
453  * because it doesn't cost us any seek time.  We also make sure to queue
454  * the 'original' request together with the readahead ones...
455  *
456  * This has been extended to use the NUMA policies from the mm triggering
457  * the readahead.
458  *
459  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
460  */
461 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
462 			struct vm_area_struct *vma, unsigned long addr)
463 {
464 	struct page *page;
465 	unsigned long entry_offset = swp_offset(entry);
466 	unsigned long offset = entry_offset;
467 	unsigned long start_offset, end_offset;
468 	unsigned long mask;
469 	struct blk_plug plug;
470 
471 	mask = swapin_nr_pages(offset) - 1;
472 	if (!mask)
473 		goto skip;
474 
475 	/* Read a page_cluster sized and aligned cluster around offset. */
476 	start_offset = offset & ~mask;
477 	end_offset = offset | mask;
478 	if (!start_offset)	/* First page is swap header. */
479 		start_offset++;
480 
481 	blk_start_plug(&plug);
482 	for (offset = start_offset; offset <= end_offset ; offset++) {
483 		/* Ok, do the async read-ahead now */
484 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
485 						gfp_mask, vma, addr);
486 		if (!page)
487 			continue;
488 		if (offset != entry_offset)
489 			SetPageReadahead(page);
490 		page_cache_release(page);
491 	}
492 	blk_finish_plug(&plug);
493 
494 	lru_add_drain();	/* Push any new pages onto the LRU now */
495 skip:
496 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
497 }
498