1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 27 /* 28 * swapper_space is a fiction, retained to simplify the path through 29 * vmscan's shrink_page_list. 30 */ 31 static const struct address_space_operations swap_aops = { 32 .writepage = swap_writepage, 33 .set_page_dirty = swap_set_page_dirty, 34 #ifdef CONFIG_MIGRATION 35 .migratepage = migrate_page, 36 #endif 37 }; 38 39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static bool enable_vma_readahead __read_mostly = true; 42 43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 47 48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 51 52 #define SWAP_RA_VAL(addr, win, hits) \ 53 (((addr) & PAGE_MASK) | \ 54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 55 ((hits) & SWAP_RA_HITS_MASK)) 56 57 /* Initial readahead hits is 4 to start up with a small window */ 58 #define GET_SWAP_RA_VAL(vma) \ 59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 60 61 #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++) 62 #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr)) 63 64 static struct { 65 unsigned long add_total; 66 unsigned long del_total; 67 unsigned long find_success; 68 unsigned long find_total; 69 } swap_cache_info; 70 71 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 72 73 void show_swap_cache_info(void) 74 { 75 printk("%lu pages in swap cache\n", total_swapcache_pages()); 76 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 77 swap_cache_info.add_total, swap_cache_info.del_total, 78 swap_cache_info.find_success, swap_cache_info.find_total); 79 printk("Free swap = %ldkB\n", 80 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 81 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 82 } 83 84 void *get_shadow_from_swap_cache(swp_entry_t entry) 85 { 86 struct address_space *address_space = swap_address_space(entry); 87 pgoff_t idx = swp_offset(entry); 88 struct page *page; 89 90 page = xa_load(&address_space->i_pages, idx); 91 if (xa_is_value(page)) 92 return page; 93 return NULL; 94 } 95 96 /* 97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 98 * but sets SwapCache flag and private instead of mapping and index. 99 */ 100 int add_to_swap_cache(struct page *page, swp_entry_t entry, 101 gfp_t gfp, void **shadowp) 102 { 103 struct address_space *address_space = swap_address_space(entry); 104 pgoff_t idx = swp_offset(entry); 105 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); 106 unsigned long i, nr = thp_nr_pages(page); 107 void *old; 108 109 VM_BUG_ON_PAGE(!PageLocked(page), page); 110 VM_BUG_ON_PAGE(PageSwapCache(page), page); 111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 112 113 page_ref_add(page, nr); 114 SetPageSwapCache(page); 115 116 do { 117 xas_lock_irq(&xas); 118 xas_create_range(&xas); 119 if (xas_error(&xas)) 120 goto unlock; 121 for (i = 0; i < nr; i++) { 122 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); 123 old = xas_load(&xas); 124 if (xa_is_value(old)) { 125 if (shadowp) 126 *shadowp = old; 127 } 128 set_page_private(page + i, entry.val + i); 129 xas_store(&xas, page); 130 xas_next(&xas); 131 } 132 address_space->nrpages += nr; 133 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 134 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr); 135 ADD_CACHE_INFO(add_total, nr); 136 unlock: 137 xas_unlock_irq(&xas); 138 } while (xas_nomem(&xas, gfp)); 139 140 if (!xas_error(&xas)) 141 return 0; 142 143 ClearPageSwapCache(page); 144 page_ref_sub(page, nr); 145 return xas_error(&xas); 146 } 147 148 /* 149 * This must be called only on pages that have 150 * been verified to be in the swap cache. 151 */ 152 void __delete_from_swap_cache(struct page *page, 153 swp_entry_t entry, void *shadow) 154 { 155 struct address_space *address_space = swap_address_space(entry); 156 int i, nr = thp_nr_pages(page); 157 pgoff_t idx = swp_offset(entry); 158 XA_STATE(xas, &address_space->i_pages, idx); 159 160 VM_BUG_ON_PAGE(!PageLocked(page), page); 161 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 162 VM_BUG_ON_PAGE(PageWriteback(page), page); 163 164 for (i = 0; i < nr; i++) { 165 void *entry = xas_store(&xas, shadow); 166 VM_BUG_ON_PAGE(entry != page, entry); 167 set_page_private(page + i, 0); 168 xas_next(&xas); 169 } 170 ClearPageSwapCache(page); 171 address_space->nrpages -= nr; 172 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 173 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr); 174 ADD_CACHE_INFO(del_total, nr); 175 } 176 177 /** 178 * add_to_swap - allocate swap space for a page 179 * @page: page we want to move to swap 180 * 181 * Allocate swap space for the page and add the page to the 182 * swap cache. Caller needs to hold the page lock. 183 */ 184 int add_to_swap(struct page *page) 185 { 186 swp_entry_t entry; 187 int err; 188 189 VM_BUG_ON_PAGE(!PageLocked(page), page); 190 VM_BUG_ON_PAGE(!PageUptodate(page), page); 191 192 entry = get_swap_page(page); 193 if (!entry.val) 194 return 0; 195 196 /* 197 * XArray node allocations from PF_MEMALLOC contexts could 198 * completely exhaust the page allocator. __GFP_NOMEMALLOC 199 * stops emergency reserves from being allocated. 200 * 201 * TODO: this could cause a theoretical memory reclaim 202 * deadlock in the swap out path. 203 */ 204 /* 205 * Add it to the swap cache. 206 */ 207 err = add_to_swap_cache(page, entry, 208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 209 if (err) 210 /* 211 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 212 * clear SWAP_HAS_CACHE flag. 213 */ 214 goto fail; 215 /* 216 * Normally the page will be dirtied in unmap because its pte should be 217 * dirty. A special case is MADV_FREE page. The page's pte could have 218 * dirty bit cleared but the page's SwapBacked bit is still set because 219 * clearing the dirty bit and SwapBacked bit has no lock protected. For 220 * such page, unmap will not set dirty bit for it, so page reclaim will 221 * not write the page out. This can cause data corruption when the page 222 * is swap in later. Always setting the dirty bit for the page solves 223 * the problem. 224 */ 225 set_page_dirty(page); 226 227 return 1; 228 229 fail: 230 put_swap_page(page, entry); 231 return 0; 232 } 233 234 /* 235 * This must be called only on pages that have 236 * been verified to be in the swap cache and locked. 237 * It will never put the page into the free list, 238 * the caller has a reference on the page. 239 */ 240 void delete_from_swap_cache(struct page *page) 241 { 242 swp_entry_t entry = { .val = page_private(page) }; 243 struct address_space *address_space = swap_address_space(entry); 244 245 xa_lock_irq(&address_space->i_pages); 246 __delete_from_swap_cache(page, entry, NULL); 247 xa_unlock_irq(&address_space->i_pages); 248 249 put_swap_page(page, entry); 250 page_ref_sub(page, thp_nr_pages(page)); 251 } 252 253 void clear_shadow_from_swap_cache(int type, unsigned long begin, 254 unsigned long end) 255 { 256 unsigned long curr = begin; 257 void *old; 258 259 for (;;) { 260 swp_entry_t entry = swp_entry(type, curr); 261 struct address_space *address_space = swap_address_space(entry); 262 XA_STATE(xas, &address_space->i_pages, curr); 263 264 xa_lock_irq(&address_space->i_pages); 265 xas_for_each(&xas, old, end) { 266 if (!xa_is_value(old)) 267 continue; 268 xas_store(&xas, NULL); 269 } 270 xa_unlock_irq(&address_space->i_pages); 271 272 /* search the next swapcache until we meet end */ 273 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 274 curr++; 275 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 276 if (curr > end) 277 break; 278 } 279 } 280 281 /* 282 * If we are the only user, then try to free up the swap cache. 283 * 284 * Its ok to check for PageSwapCache without the page lock 285 * here because we are going to recheck again inside 286 * try_to_free_swap() _with_ the lock. 287 * - Marcelo 288 */ 289 void free_swap_cache(struct page *page) 290 { 291 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 292 try_to_free_swap(page); 293 unlock_page(page); 294 } 295 } 296 297 /* 298 * Perform a free_page(), also freeing any swap cache associated with 299 * this page if it is the last user of the page. 300 */ 301 void free_page_and_swap_cache(struct page *page) 302 { 303 free_swap_cache(page); 304 if (!is_huge_zero_page(page)) 305 put_page(page); 306 } 307 308 /* 309 * Passed an array of pages, drop them all from swapcache and then release 310 * them. They are removed from the LRU and freed if this is their last use. 311 */ 312 void free_pages_and_swap_cache(struct page **pages, int nr) 313 { 314 struct page **pagep = pages; 315 int i; 316 317 lru_add_drain(); 318 for (i = 0; i < nr; i++) 319 free_swap_cache(pagep[i]); 320 release_pages(pagep, nr); 321 } 322 323 static inline bool swap_use_vma_readahead(void) 324 { 325 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 326 } 327 328 /* 329 * Lookup a swap entry in the swap cache. A found page will be returned 330 * unlocked and with its refcount incremented - we rely on the kernel 331 * lock getting page table operations atomic even if we drop the page 332 * lock before returning. 333 */ 334 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, 335 unsigned long addr) 336 { 337 struct page *page; 338 struct swap_info_struct *si; 339 340 si = get_swap_device(entry); 341 if (!si) 342 return NULL; 343 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 344 put_swap_device(si); 345 346 INC_CACHE_INFO(find_total); 347 if (page) { 348 bool vma_ra = swap_use_vma_readahead(); 349 bool readahead; 350 351 INC_CACHE_INFO(find_success); 352 /* 353 * At the moment, we don't support PG_readahead for anon THP 354 * so let's bail out rather than confusing the readahead stat. 355 */ 356 if (unlikely(PageTransCompound(page))) 357 return page; 358 359 readahead = TestClearPageReadahead(page); 360 if (vma && vma_ra) { 361 unsigned long ra_val; 362 int win, hits; 363 364 ra_val = GET_SWAP_RA_VAL(vma); 365 win = SWAP_RA_WIN(ra_val); 366 hits = SWAP_RA_HITS(ra_val); 367 if (readahead) 368 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 369 atomic_long_set(&vma->swap_readahead_info, 370 SWAP_RA_VAL(addr, win, hits)); 371 } 372 373 if (readahead) { 374 count_vm_event(SWAP_RA_HIT); 375 if (!vma || !vma_ra) 376 atomic_inc(&swapin_readahead_hits); 377 } 378 } 379 380 return page; 381 } 382 383 /** 384 * find_get_incore_page - Find and get a page from the page or swap caches. 385 * @mapping: The address_space to search. 386 * @index: The page cache index. 387 * 388 * This differs from find_get_page() in that it will also look for the 389 * page in the swap cache. 390 * 391 * Return: The found page or %NULL. 392 */ 393 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) 394 { 395 swp_entry_t swp; 396 struct swap_info_struct *si; 397 struct page *page = pagecache_get_page(mapping, index, 398 FGP_ENTRY | FGP_HEAD, 0); 399 400 if (!page) 401 return page; 402 if (!xa_is_value(page)) 403 return find_subpage(page, index); 404 if (!shmem_mapping(mapping)) 405 return NULL; 406 407 swp = radix_to_swp_entry(page); 408 /* Prevent swapoff from happening to us */ 409 si = get_swap_device(swp); 410 if (!si) 411 return NULL; 412 page = find_get_page(swap_address_space(swp), swp_offset(swp)); 413 put_swap_device(si); 414 return page; 415 } 416 417 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 418 struct vm_area_struct *vma, unsigned long addr, 419 bool *new_page_allocated) 420 { 421 struct swap_info_struct *si; 422 struct page *page; 423 void *shadow = NULL; 424 425 *new_page_allocated = false; 426 427 for (;;) { 428 int err; 429 /* 430 * First check the swap cache. Since this is normally 431 * called after lookup_swap_cache() failed, re-calling 432 * that would confuse statistics. 433 */ 434 si = get_swap_device(entry); 435 if (!si) 436 return NULL; 437 page = find_get_page(swap_address_space(entry), 438 swp_offset(entry)); 439 put_swap_device(si); 440 if (page) 441 return page; 442 443 /* 444 * Just skip read ahead for unused swap slot. 445 * During swap_off when swap_slot_cache is disabled, 446 * we have to handle the race between putting 447 * swap entry in swap cache and marking swap slot 448 * as SWAP_HAS_CACHE. That's done in later part of code or 449 * else swap_off will be aborted if we return NULL. 450 */ 451 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 452 return NULL; 453 454 /* 455 * Get a new page to read into from swap. Allocate it now, 456 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 457 * cause any racers to loop around until we add it to cache. 458 */ 459 page = alloc_page_vma(gfp_mask, vma, addr); 460 if (!page) 461 return NULL; 462 463 /* 464 * Swap entry may have been freed since our caller observed it. 465 */ 466 err = swapcache_prepare(entry); 467 if (!err) 468 break; 469 470 put_page(page); 471 if (err != -EEXIST) 472 return NULL; 473 474 /* 475 * We might race against __delete_from_swap_cache(), and 476 * stumble across a swap_map entry whose SWAP_HAS_CACHE 477 * has not yet been cleared. Or race against another 478 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 479 * in swap_map, but not yet added its page to swap cache. 480 */ 481 cond_resched(); 482 } 483 484 /* 485 * The swap entry is ours to swap in. Prepare the new page. 486 */ 487 488 __SetPageLocked(page); 489 __SetPageSwapBacked(page); 490 491 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry)) 492 goto fail_unlock; 493 494 /* May fail (-ENOMEM) if XArray node allocation failed. */ 495 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 496 goto fail_unlock; 497 498 mem_cgroup_swapin_uncharge_swap(entry); 499 500 if (shadow) 501 workingset_refault(page, shadow); 502 503 /* Caller will initiate read into locked page */ 504 lru_cache_add(page); 505 *new_page_allocated = true; 506 return page; 507 508 fail_unlock: 509 put_swap_page(page, entry); 510 unlock_page(page); 511 put_page(page); 512 return NULL; 513 } 514 515 /* 516 * Locate a page of swap in physical memory, reserving swap cache space 517 * and reading the disk if it is not already cached. 518 * A failure return means that either the page allocation failed or that 519 * the swap entry is no longer in use. 520 */ 521 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 522 struct vm_area_struct *vma, unsigned long addr, bool do_poll) 523 { 524 bool page_was_allocated; 525 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 526 vma, addr, &page_was_allocated); 527 528 if (page_was_allocated) 529 swap_readpage(retpage, do_poll); 530 531 return retpage; 532 } 533 534 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 535 unsigned long offset, 536 int hits, 537 int max_pages, 538 int prev_win) 539 { 540 unsigned int pages, last_ra; 541 542 /* 543 * This heuristic has been found to work well on both sequential and 544 * random loads, swapping to hard disk or to SSD: please don't ask 545 * what the "+ 2" means, it just happens to work well, that's all. 546 */ 547 pages = hits + 2; 548 if (pages == 2) { 549 /* 550 * We can have no readahead hits to judge by: but must not get 551 * stuck here forever, so check for an adjacent offset instead 552 * (and don't even bother to check whether swap type is same). 553 */ 554 if (offset != prev_offset + 1 && offset != prev_offset - 1) 555 pages = 1; 556 } else { 557 unsigned int roundup = 4; 558 while (roundup < pages) 559 roundup <<= 1; 560 pages = roundup; 561 } 562 563 if (pages > max_pages) 564 pages = max_pages; 565 566 /* Don't shrink readahead too fast */ 567 last_ra = prev_win / 2; 568 if (pages < last_ra) 569 pages = last_ra; 570 571 return pages; 572 } 573 574 static unsigned long swapin_nr_pages(unsigned long offset) 575 { 576 static unsigned long prev_offset; 577 unsigned int hits, pages, max_pages; 578 static atomic_t last_readahead_pages; 579 580 max_pages = 1 << READ_ONCE(page_cluster); 581 if (max_pages <= 1) 582 return 1; 583 584 hits = atomic_xchg(&swapin_readahead_hits, 0); 585 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 586 max_pages, 587 atomic_read(&last_readahead_pages)); 588 if (!hits) 589 WRITE_ONCE(prev_offset, offset); 590 atomic_set(&last_readahead_pages, pages); 591 592 return pages; 593 } 594 595 /** 596 * swap_cluster_readahead - swap in pages in hope we need them soon 597 * @entry: swap entry of this memory 598 * @gfp_mask: memory allocation flags 599 * @vmf: fault information 600 * 601 * Returns the struct page for entry and addr, after queueing swapin. 602 * 603 * Primitive swap readahead code. We simply read an aligned block of 604 * (1 << page_cluster) entries in the swap area. This method is chosen 605 * because it doesn't cost us any seek time. We also make sure to queue 606 * the 'original' request together with the readahead ones... 607 * 608 * This has been extended to use the NUMA policies from the mm triggering 609 * the readahead. 610 * 611 * Caller must hold read mmap_lock if vmf->vma is not NULL. 612 */ 613 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 614 struct vm_fault *vmf) 615 { 616 struct page *page; 617 unsigned long entry_offset = swp_offset(entry); 618 unsigned long offset = entry_offset; 619 unsigned long start_offset, end_offset; 620 unsigned long mask; 621 struct swap_info_struct *si = swp_swap_info(entry); 622 struct blk_plug plug; 623 bool do_poll = true, page_allocated; 624 struct vm_area_struct *vma = vmf->vma; 625 unsigned long addr = vmf->address; 626 627 mask = swapin_nr_pages(offset) - 1; 628 if (!mask) 629 goto skip; 630 631 /* Test swap type to make sure the dereference is safe */ 632 if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) { 633 struct inode *inode = si->swap_file->f_mapping->host; 634 if (inode_read_congested(inode)) 635 goto skip; 636 } 637 638 do_poll = false; 639 /* Read a page_cluster sized and aligned cluster around offset. */ 640 start_offset = offset & ~mask; 641 end_offset = offset | mask; 642 if (!start_offset) /* First page is swap header. */ 643 start_offset++; 644 if (end_offset >= si->max) 645 end_offset = si->max - 1; 646 647 blk_start_plug(&plug); 648 for (offset = start_offset; offset <= end_offset ; offset++) { 649 /* Ok, do the async read-ahead now */ 650 page = __read_swap_cache_async( 651 swp_entry(swp_type(entry), offset), 652 gfp_mask, vma, addr, &page_allocated); 653 if (!page) 654 continue; 655 if (page_allocated) { 656 swap_readpage(page, false); 657 if (offset != entry_offset) { 658 SetPageReadahead(page); 659 count_vm_event(SWAP_RA); 660 } 661 } 662 put_page(page); 663 } 664 blk_finish_plug(&plug); 665 666 lru_add_drain(); /* Push any new pages onto the LRU now */ 667 skip: 668 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); 669 } 670 671 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 672 { 673 struct address_space *spaces, *space; 674 unsigned int i, nr; 675 676 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 677 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 678 if (!spaces) 679 return -ENOMEM; 680 for (i = 0; i < nr; i++) { 681 space = spaces + i; 682 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 683 atomic_set(&space->i_mmap_writable, 0); 684 space->a_ops = &swap_aops; 685 /* swap cache doesn't use writeback related tags */ 686 mapping_set_no_writeback_tags(space); 687 } 688 nr_swapper_spaces[type] = nr; 689 swapper_spaces[type] = spaces; 690 691 return 0; 692 } 693 694 void exit_swap_address_space(unsigned int type) 695 { 696 int i; 697 struct address_space *spaces = swapper_spaces[type]; 698 699 for (i = 0; i < nr_swapper_spaces[type]; i++) 700 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 701 kvfree(spaces); 702 nr_swapper_spaces[type] = 0; 703 swapper_spaces[type] = NULL; 704 } 705 706 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, 707 unsigned long faddr, 708 unsigned long lpfn, 709 unsigned long rpfn, 710 unsigned long *start, 711 unsigned long *end) 712 { 713 *start = max3(lpfn, PFN_DOWN(vma->vm_start), 714 PFN_DOWN(faddr & PMD_MASK)); 715 *end = min3(rpfn, PFN_DOWN(vma->vm_end), 716 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 717 } 718 719 static void swap_ra_info(struct vm_fault *vmf, 720 struct vma_swap_readahead *ra_info) 721 { 722 struct vm_area_struct *vma = vmf->vma; 723 unsigned long ra_val; 724 unsigned long faddr, pfn, fpfn; 725 unsigned long start, end; 726 pte_t *pte, *orig_pte; 727 unsigned int max_win, hits, prev_win, win, left; 728 #ifndef CONFIG_64BIT 729 pte_t *tpte; 730 #endif 731 732 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 733 SWAP_RA_ORDER_CEILING); 734 if (max_win == 1) { 735 ra_info->win = 1; 736 return; 737 } 738 739 faddr = vmf->address; 740 orig_pte = pte = pte_offset_map(vmf->pmd, faddr); 741 742 fpfn = PFN_DOWN(faddr); 743 ra_val = GET_SWAP_RA_VAL(vma); 744 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 745 prev_win = SWAP_RA_WIN(ra_val); 746 hits = SWAP_RA_HITS(ra_val); 747 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 748 max_win, prev_win); 749 atomic_long_set(&vma->swap_readahead_info, 750 SWAP_RA_VAL(faddr, win, 0)); 751 752 if (win == 1) { 753 pte_unmap(orig_pte); 754 return; 755 } 756 757 /* Copy the PTEs because the page table may be unmapped */ 758 if (fpfn == pfn + 1) 759 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); 760 else if (pfn == fpfn + 1) 761 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, 762 &start, &end); 763 else { 764 left = (win - 1) / 2; 765 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, 766 &start, &end); 767 } 768 ra_info->nr_pte = end - start; 769 ra_info->offset = fpfn - start; 770 pte -= ra_info->offset; 771 #ifdef CONFIG_64BIT 772 ra_info->ptes = pte; 773 #else 774 tpte = ra_info->ptes; 775 for (pfn = start; pfn != end; pfn++) 776 *tpte++ = *pte++; 777 #endif 778 pte_unmap(orig_pte); 779 } 780 781 /** 782 * swap_vma_readahead - swap in pages in hope we need them soon 783 * @fentry: swap entry of this memory 784 * @gfp_mask: memory allocation flags 785 * @vmf: fault information 786 * 787 * Returns the struct page for entry and addr, after queueing swapin. 788 * 789 * Primitive swap readahead code. We simply read in a few pages whose 790 * virtual addresses are around the fault address in the same vma. 791 * 792 * Caller must hold read mmap_lock if vmf->vma is not NULL. 793 * 794 */ 795 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 796 struct vm_fault *vmf) 797 { 798 struct blk_plug plug; 799 struct vm_area_struct *vma = vmf->vma; 800 struct page *page; 801 pte_t *pte, pentry; 802 swp_entry_t entry; 803 unsigned int i; 804 bool page_allocated; 805 struct vma_swap_readahead ra_info = { 806 .win = 1, 807 }; 808 809 swap_ra_info(vmf, &ra_info); 810 if (ra_info.win == 1) 811 goto skip; 812 813 blk_start_plug(&plug); 814 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; 815 i++, pte++) { 816 pentry = *pte; 817 if (pte_none(pentry)) 818 continue; 819 if (pte_present(pentry)) 820 continue; 821 entry = pte_to_swp_entry(pentry); 822 if (unlikely(non_swap_entry(entry))) 823 continue; 824 page = __read_swap_cache_async(entry, gfp_mask, vma, 825 vmf->address, &page_allocated); 826 if (!page) 827 continue; 828 if (page_allocated) { 829 swap_readpage(page, false); 830 if (i != ra_info.offset) { 831 SetPageReadahead(page); 832 count_vm_event(SWAP_RA); 833 } 834 } 835 put_page(page); 836 } 837 blk_finish_plug(&plug); 838 lru_add_drain(); 839 skip: 840 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 841 ra_info.win == 1); 842 } 843 844 /** 845 * swapin_readahead - swap in pages in hope we need them soon 846 * @entry: swap entry of this memory 847 * @gfp_mask: memory allocation flags 848 * @vmf: fault information 849 * 850 * Returns the struct page for entry and addr, after queueing swapin. 851 * 852 * It's a main entry function for swap readahead. By the configuration, 853 * it will read ahead blocks by cluster-based(ie, physical disk based) 854 * or vma-based(ie, virtual address based on faulty address) readahead. 855 */ 856 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 857 struct vm_fault *vmf) 858 { 859 return swap_use_vma_readahead() ? 860 swap_vma_readahead(entry, gfp_mask, vmf) : 861 swap_cluster_readahead(entry, gfp_mask, vmf); 862 } 863 864 #ifdef CONFIG_SYSFS 865 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 866 struct kobj_attribute *attr, char *buf) 867 { 868 return sysfs_emit(buf, "%s\n", 869 enable_vma_readahead ? "true" : "false"); 870 } 871 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 872 struct kobj_attribute *attr, 873 const char *buf, size_t count) 874 { 875 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 876 enable_vma_readahead = true; 877 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 878 enable_vma_readahead = false; 879 else 880 return -EINVAL; 881 882 return count; 883 } 884 static struct kobj_attribute vma_ra_enabled_attr = 885 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, 886 vma_ra_enabled_store); 887 888 static struct attribute *swap_attrs[] = { 889 &vma_ra_enabled_attr.attr, 890 NULL, 891 }; 892 893 static const struct attribute_group swap_attr_group = { 894 .attrs = swap_attrs, 895 }; 896 897 static int __init swap_init_sysfs(void) 898 { 899 int err; 900 struct kobject *swap_kobj; 901 902 swap_kobj = kobject_create_and_add("swap", mm_kobj); 903 if (!swap_kobj) { 904 pr_err("failed to create swap kobject\n"); 905 return -ENOMEM; 906 } 907 err = sysfs_create_group(swap_kobj, &swap_attr_group); 908 if (err) { 909 pr_err("failed to register swap group\n"); 910 goto delete_obj; 911 } 912 return 0; 913 914 delete_obj: 915 kobject_put(swap_kobj); 916 return err; 917 } 918 subsys_initcall(swap_init_sysfs); 919 #endif 920