xref: /openbmc/linux/mm/swap_state.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migratepage	= migrate_page,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 
49 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52 
53 #define SWAP_RA_VAL(addr, win, hits)				\
54 	(((addr) & PAGE_MASK) |					\
55 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56 	 ((hits) & SWAP_RA_HITS_MASK))
57 
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)					\
60 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 
62 #define INC_CACHE_INFO(x)	data_race(swap_cache_info.x++)
63 #define ADD_CACHE_INFO(x, nr)	data_race(swap_cache_info.x += (nr))
64 
65 static struct {
66 	unsigned long add_total;
67 	unsigned long del_total;
68 	unsigned long find_success;
69 	unsigned long find_total;
70 } swap_cache_info;
71 
72 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
73 
74 void show_swap_cache_info(void)
75 {
76 	printk("%lu pages in swap cache\n", total_swapcache_pages());
77 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
78 		swap_cache_info.add_total, swap_cache_info.del_total,
79 		swap_cache_info.find_success, swap_cache_info.find_total);
80 	printk("Free swap  = %ldkB\n",
81 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
82 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
83 }
84 
85 void *get_shadow_from_swap_cache(swp_entry_t entry)
86 {
87 	struct address_space *address_space = swap_address_space(entry);
88 	pgoff_t idx = swp_offset(entry);
89 	struct page *page;
90 
91 	page = xa_load(&address_space->i_pages, idx);
92 	if (xa_is_value(page))
93 		return page;
94 	return NULL;
95 }
96 
97 /*
98  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
99  * but sets SwapCache flag and private instead of mapping and index.
100  */
101 int add_to_swap_cache(struct page *page, swp_entry_t entry,
102 			gfp_t gfp, void **shadowp)
103 {
104 	struct address_space *address_space = swap_address_space(entry);
105 	pgoff_t idx = swp_offset(entry);
106 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
107 	unsigned long i, nr = thp_nr_pages(page);
108 	void *old;
109 
110 	VM_BUG_ON_PAGE(!PageLocked(page), page);
111 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
112 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
113 
114 	page_ref_add(page, nr);
115 	SetPageSwapCache(page);
116 
117 	do {
118 		xas_lock_irq(&xas);
119 		xas_create_range(&xas);
120 		if (xas_error(&xas))
121 			goto unlock;
122 		for (i = 0; i < nr; i++) {
123 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
124 			old = xas_load(&xas);
125 			if (xa_is_value(old)) {
126 				if (shadowp)
127 					*shadowp = old;
128 			}
129 			set_page_private(page + i, entry.val + i);
130 			xas_store(&xas, page);
131 			xas_next(&xas);
132 		}
133 		address_space->nrpages += nr;
134 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
135 		__mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
136 		ADD_CACHE_INFO(add_total, nr);
137 unlock:
138 		xas_unlock_irq(&xas);
139 	} while (xas_nomem(&xas, gfp));
140 
141 	if (!xas_error(&xas))
142 		return 0;
143 
144 	ClearPageSwapCache(page);
145 	page_ref_sub(page, nr);
146 	return xas_error(&xas);
147 }
148 
149 /*
150  * This must be called only on pages that have
151  * been verified to be in the swap cache.
152  */
153 void __delete_from_swap_cache(struct page *page,
154 			swp_entry_t entry, void *shadow)
155 {
156 	struct address_space *address_space = swap_address_space(entry);
157 	int i, nr = thp_nr_pages(page);
158 	pgoff_t idx = swp_offset(entry);
159 	XA_STATE(xas, &address_space->i_pages, idx);
160 
161 	VM_BUG_ON_PAGE(!PageLocked(page), page);
162 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
163 	VM_BUG_ON_PAGE(PageWriteback(page), page);
164 
165 	for (i = 0; i < nr; i++) {
166 		void *entry = xas_store(&xas, shadow);
167 		VM_BUG_ON_PAGE(entry != page, entry);
168 		set_page_private(page + i, 0);
169 		xas_next(&xas);
170 	}
171 	ClearPageSwapCache(page);
172 	address_space->nrpages -= nr;
173 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
174 	__mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
175 	ADD_CACHE_INFO(del_total, nr);
176 }
177 
178 /**
179  * add_to_swap - allocate swap space for a page
180  * @page: page we want to move to swap
181  *
182  * Allocate swap space for the page and add the page to the
183  * swap cache.  Caller needs to hold the page lock.
184  */
185 int add_to_swap(struct page *page)
186 {
187 	swp_entry_t entry;
188 	int err;
189 
190 	VM_BUG_ON_PAGE(!PageLocked(page), page);
191 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
192 
193 	entry = get_swap_page(page);
194 	if (!entry.val)
195 		return 0;
196 
197 	/*
198 	 * XArray node allocations from PF_MEMALLOC contexts could
199 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
200 	 * stops emergency reserves from being allocated.
201 	 *
202 	 * TODO: this could cause a theoretical memory reclaim
203 	 * deadlock in the swap out path.
204 	 */
205 	/*
206 	 * Add it to the swap cache.
207 	 */
208 	err = add_to_swap_cache(page, entry,
209 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
210 	if (err)
211 		/*
212 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
213 		 * clear SWAP_HAS_CACHE flag.
214 		 */
215 		goto fail;
216 	/*
217 	 * Normally the page will be dirtied in unmap because its pte should be
218 	 * dirty. A special case is MADV_FREE page. The page's pte could have
219 	 * dirty bit cleared but the page's SwapBacked bit is still set because
220 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
221 	 * such page, unmap will not set dirty bit for it, so page reclaim will
222 	 * not write the page out. This can cause data corruption when the page
223 	 * is swap in later. Always setting the dirty bit for the page solves
224 	 * the problem.
225 	 */
226 	set_page_dirty(page);
227 
228 	return 1;
229 
230 fail:
231 	put_swap_page(page, entry);
232 	return 0;
233 }
234 
235 /*
236  * This must be called only on pages that have
237  * been verified to be in the swap cache and locked.
238  * It will never put the page into the free list,
239  * the caller has a reference on the page.
240  */
241 void delete_from_swap_cache(struct page *page)
242 {
243 	swp_entry_t entry = { .val = page_private(page) };
244 	struct address_space *address_space = swap_address_space(entry);
245 
246 	xa_lock_irq(&address_space->i_pages);
247 	__delete_from_swap_cache(page, entry, NULL);
248 	xa_unlock_irq(&address_space->i_pages);
249 
250 	put_swap_page(page, entry);
251 	page_ref_sub(page, thp_nr_pages(page));
252 }
253 
254 void clear_shadow_from_swap_cache(int type, unsigned long begin,
255 				unsigned long end)
256 {
257 	unsigned long curr = begin;
258 	void *old;
259 
260 	for (;;) {
261 		swp_entry_t entry = swp_entry(type, curr);
262 		struct address_space *address_space = swap_address_space(entry);
263 		XA_STATE(xas, &address_space->i_pages, curr);
264 
265 		xa_lock_irq(&address_space->i_pages);
266 		xas_for_each(&xas, old, end) {
267 			if (!xa_is_value(old))
268 				continue;
269 			xas_store(&xas, NULL);
270 		}
271 		xa_unlock_irq(&address_space->i_pages);
272 
273 		/* search the next swapcache until we meet end */
274 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
275 		curr++;
276 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
277 		if (curr > end)
278 			break;
279 	}
280 }
281 
282 /*
283  * If we are the only user, then try to free up the swap cache.
284  *
285  * Its ok to check for PageSwapCache without the page lock
286  * here because we are going to recheck again inside
287  * try_to_free_swap() _with_ the lock.
288  * 					- Marcelo
289  */
290 void free_swap_cache(struct page *page)
291 {
292 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
293 		try_to_free_swap(page);
294 		unlock_page(page);
295 	}
296 }
297 
298 /*
299  * Perform a free_page(), also freeing any swap cache associated with
300  * this page if it is the last user of the page.
301  */
302 void free_page_and_swap_cache(struct page *page)
303 {
304 	free_swap_cache(page);
305 	if (!is_huge_zero_page(page))
306 		put_page(page);
307 }
308 
309 /*
310  * Passed an array of pages, drop them all from swapcache and then release
311  * them.  They are removed from the LRU and freed if this is their last use.
312  */
313 void free_pages_and_swap_cache(struct page **pages, int nr)
314 {
315 	struct page **pagep = pages;
316 	int i;
317 
318 	lru_add_drain();
319 	for (i = 0; i < nr; i++)
320 		free_swap_cache(pagep[i]);
321 	release_pages(pagep, nr);
322 }
323 
324 static inline bool swap_use_vma_readahead(void)
325 {
326 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
327 }
328 
329 /*
330  * Lookup a swap entry in the swap cache. A found page will be returned
331  * unlocked and with its refcount incremented - we rely on the kernel
332  * lock getting page table operations atomic even if we drop the page
333  * lock before returning.
334  */
335 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
336 			       unsigned long addr)
337 {
338 	struct page *page;
339 	struct swap_info_struct *si;
340 
341 	si = get_swap_device(entry);
342 	if (!si)
343 		return NULL;
344 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
345 	put_swap_device(si);
346 
347 	INC_CACHE_INFO(find_total);
348 	if (page) {
349 		bool vma_ra = swap_use_vma_readahead();
350 		bool readahead;
351 
352 		INC_CACHE_INFO(find_success);
353 		/*
354 		 * At the moment, we don't support PG_readahead for anon THP
355 		 * so let's bail out rather than confusing the readahead stat.
356 		 */
357 		if (unlikely(PageTransCompound(page)))
358 			return page;
359 
360 		readahead = TestClearPageReadahead(page);
361 		if (vma && vma_ra) {
362 			unsigned long ra_val;
363 			int win, hits;
364 
365 			ra_val = GET_SWAP_RA_VAL(vma);
366 			win = SWAP_RA_WIN(ra_val);
367 			hits = SWAP_RA_HITS(ra_val);
368 			if (readahead)
369 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
370 			atomic_long_set(&vma->swap_readahead_info,
371 					SWAP_RA_VAL(addr, win, hits));
372 		}
373 
374 		if (readahead) {
375 			count_vm_event(SWAP_RA_HIT);
376 			if (!vma || !vma_ra)
377 				atomic_inc(&swapin_readahead_hits);
378 		}
379 	}
380 
381 	return page;
382 }
383 
384 /**
385  * find_get_incore_page - Find and get a page from the page or swap caches.
386  * @mapping: The address_space to search.
387  * @index: The page cache index.
388  *
389  * This differs from find_get_page() in that it will also look for the
390  * page in the swap cache.
391  *
392  * Return: The found page or %NULL.
393  */
394 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
395 {
396 	swp_entry_t swp;
397 	struct swap_info_struct *si;
398 	struct page *page = pagecache_get_page(mapping, index,
399 						FGP_ENTRY | FGP_HEAD, 0);
400 
401 	if (!page)
402 		return page;
403 	if (!xa_is_value(page))
404 		return find_subpage(page, index);
405 	if (!shmem_mapping(mapping))
406 		return NULL;
407 
408 	swp = radix_to_swp_entry(page);
409 	/* Prevent swapoff from happening to us */
410 	si = get_swap_device(swp);
411 	if (!si)
412 		return NULL;
413 	page = find_get_page(swap_address_space(swp), swp_offset(swp));
414 	put_swap_device(si);
415 	return page;
416 }
417 
418 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
419 			struct vm_area_struct *vma, unsigned long addr,
420 			bool *new_page_allocated)
421 {
422 	struct swap_info_struct *si;
423 	struct page *page;
424 	void *shadow = NULL;
425 
426 	*new_page_allocated = false;
427 
428 	for (;;) {
429 		int err;
430 		/*
431 		 * First check the swap cache.  Since this is normally
432 		 * called after lookup_swap_cache() failed, re-calling
433 		 * that would confuse statistics.
434 		 */
435 		si = get_swap_device(entry);
436 		if (!si)
437 			return NULL;
438 		page = find_get_page(swap_address_space(entry),
439 				     swp_offset(entry));
440 		put_swap_device(si);
441 		if (page)
442 			return page;
443 
444 		/*
445 		 * Just skip read ahead for unused swap slot.
446 		 * During swap_off when swap_slot_cache is disabled,
447 		 * we have to handle the race between putting
448 		 * swap entry in swap cache and marking swap slot
449 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
450 		 * else swap_off will be aborted if we return NULL.
451 		 */
452 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
453 			return NULL;
454 
455 		/*
456 		 * Get a new page to read into from swap.  Allocate it now,
457 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
458 		 * cause any racers to loop around until we add it to cache.
459 		 */
460 		page = alloc_page_vma(gfp_mask, vma, addr);
461 		if (!page)
462 			return NULL;
463 
464 		/*
465 		 * Swap entry may have been freed since our caller observed it.
466 		 */
467 		err = swapcache_prepare(entry);
468 		if (!err)
469 			break;
470 
471 		put_page(page);
472 		if (err != -EEXIST)
473 			return NULL;
474 
475 		/*
476 		 * We might race against __delete_from_swap_cache(), and
477 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
478 		 * has not yet been cleared.  Or race against another
479 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
480 		 * in swap_map, but not yet added its page to swap cache.
481 		 */
482 		schedule_timeout_uninterruptible(1);
483 	}
484 
485 	/*
486 	 * The swap entry is ours to swap in. Prepare the new page.
487 	 */
488 
489 	__SetPageLocked(page);
490 	__SetPageSwapBacked(page);
491 
492 	if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
493 		goto fail_unlock;
494 
495 	/* May fail (-ENOMEM) if XArray node allocation failed. */
496 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
497 		goto fail_unlock;
498 
499 	mem_cgroup_swapin_uncharge_swap(entry);
500 
501 	if (shadow)
502 		workingset_refault(page_folio(page), shadow);
503 
504 	/* Caller will initiate read into locked page */
505 	lru_cache_add(page);
506 	*new_page_allocated = true;
507 	return page;
508 
509 fail_unlock:
510 	put_swap_page(page, entry);
511 	unlock_page(page);
512 	put_page(page);
513 	return NULL;
514 }
515 
516 /*
517  * Locate a page of swap in physical memory, reserving swap cache space
518  * and reading the disk if it is not already cached.
519  * A failure return means that either the page allocation failed or that
520  * the swap entry is no longer in use.
521  */
522 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
523 				   struct vm_area_struct *vma,
524 				   unsigned long addr, bool do_poll,
525 				   struct swap_iocb **plug)
526 {
527 	bool page_was_allocated;
528 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
529 			vma, addr, &page_was_allocated);
530 
531 	if (page_was_allocated)
532 		swap_readpage(retpage, do_poll, plug);
533 
534 	return retpage;
535 }
536 
537 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
538 				      unsigned long offset,
539 				      int hits,
540 				      int max_pages,
541 				      int prev_win)
542 {
543 	unsigned int pages, last_ra;
544 
545 	/*
546 	 * This heuristic has been found to work well on both sequential and
547 	 * random loads, swapping to hard disk or to SSD: please don't ask
548 	 * what the "+ 2" means, it just happens to work well, that's all.
549 	 */
550 	pages = hits + 2;
551 	if (pages == 2) {
552 		/*
553 		 * We can have no readahead hits to judge by: but must not get
554 		 * stuck here forever, so check for an adjacent offset instead
555 		 * (and don't even bother to check whether swap type is same).
556 		 */
557 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
558 			pages = 1;
559 	} else {
560 		unsigned int roundup = 4;
561 		while (roundup < pages)
562 			roundup <<= 1;
563 		pages = roundup;
564 	}
565 
566 	if (pages > max_pages)
567 		pages = max_pages;
568 
569 	/* Don't shrink readahead too fast */
570 	last_ra = prev_win / 2;
571 	if (pages < last_ra)
572 		pages = last_ra;
573 
574 	return pages;
575 }
576 
577 static unsigned long swapin_nr_pages(unsigned long offset)
578 {
579 	static unsigned long prev_offset;
580 	unsigned int hits, pages, max_pages;
581 	static atomic_t last_readahead_pages;
582 
583 	max_pages = 1 << READ_ONCE(page_cluster);
584 	if (max_pages <= 1)
585 		return 1;
586 
587 	hits = atomic_xchg(&swapin_readahead_hits, 0);
588 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
589 				  max_pages,
590 				  atomic_read(&last_readahead_pages));
591 	if (!hits)
592 		WRITE_ONCE(prev_offset, offset);
593 	atomic_set(&last_readahead_pages, pages);
594 
595 	return pages;
596 }
597 
598 /**
599  * swap_cluster_readahead - swap in pages in hope we need them soon
600  * @entry: swap entry of this memory
601  * @gfp_mask: memory allocation flags
602  * @vmf: fault information
603  *
604  * Returns the struct page for entry and addr, after queueing swapin.
605  *
606  * Primitive swap readahead code. We simply read an aligned block of
607  * (1 << page_cluster) entries in the swap area. This method is chosen
608  * because it doesn't cost us any seek time.  We also make sure to queue
609  * the 'original' request together with the readahead ones...
610  *
611  * This has been extended to use the NUMA policies from the mm triggering
612  * the readahead.
613  *
614  * Caller must hold read mmap_lock if vmf->vma is not NULL.
615  */
616 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
617 				struct vm_fault *vmf)
618 {
619 	struct page *page;
620 	unsigned long entry_offset = swp_offset(entry);
621 	unsigned long offset = entry_offset;
622 	unsigned long start_offset, end_offset;
623 	unsigned long mask;
624 	struct swap_info_struct *si = swp_swap_info(entry);
625 	struct blk_plug plug;
626 	struct swap_iocb *splug = NULL;
627 	bool do_poll = true, page_allocated;
628 	struct vm_area_struct *vma = vmf->vma;
629 	unsigned long addr = vmf->address;
630 
631 	mask = swapin_nr_pages(offset) - 1;
632 	if (!mask)
633 		goto skip;
634 
635 	do_poll = false;
636 	/* Read a page_cluster sized and aligned cluster around offset. */
637 	start_offset = offset & ~mask;
638 	end_offset = offset | mask;
639 	if (!start_offset)	/* First page is swap header. */
640 		start_offset++;
641 	if (end_offset >= si->max)
642 		end_offset = si->max - 1;
643 
644 	blk_start_plug(&plug);
645 	for (offset = start_offset; offset <= end_offset ; offset++) {
646 		/* Ok, do the async read-ahead now */
647 		page = __read_swap_cache_async(
648 			swp_entry(swp_type(entry), offset),
649 			gfp_mask, vma, addr, &page_allocated);
650 		if (!page)
651 			continue;
652 		if (page_allocated) {
653 			swap_readpage(page, false, &splug);
654 			if (offset != entry_offset) {
655 				SetPageReadahead(page);
656 				count_vm_event(SWAP_RA);
657 			}
658 		}
659 		put_page(page);
660 	}
661 	blk_finish_plug(&plug);
662 	swap_read_unplug(splug);
663 
664 	lru_add_drain();	/* Push any new pages onto the LRU now */
665 skip:
666 	/* The page was likely read above, so no need for plugging here */
667 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
668 }
669 
670 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
671 {
672 	struct address_space *spaces, *space;
673 	unsigned int i, nr;
674 
675 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
676 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
677 	if (!spaces)
678 		return -ENOMEM;
679 	for (i = 0; i < nr; i++) {
680 		space = spaces + i;
681 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
682 		atomic_set(&space->i_mmap_writable, 0);
683 		space->a_ops = &swap_aops;
684 		/* swap cache doesn't use writeback related tags */
685 		mapping_set_no_writeback_tags(space);
686 	}
687 	nr_swapper_spaces[type] = nr;
688 	swapper_spaces[type] = spaces;
689 
690 	return 0;
691 }
692 
693 void exit_swap_address_space(unsigned int type)
694 {
695 	int i;
696 	struct address_space *spaces = swapper_spaces[type];
697 
698 	for (i = 0; i < nr_swapper_spaces[type]; i++)
699 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
700 	kvfree(spaces);
701 	nr_swapper_spaces[type] = 0;
702 	swapper_spaces[type] = NULL;
703 }
704 
705 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
706 				     unsigned long faddr,
707 				     unsigned long lpfn,
708 				     unsigned long rpfn,
709 				     unsigned long *start,
710 				     unsigned long *end)
711 {
712 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
713 		      PFN_DOWN(faddr & PMD_MASK));
714 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
715 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
716 }
717 
718 static void swap_ra_info(struct vm_fault *vmf,
719 			struct vma_swap_readahead *ra_info)
720 {
721 	struct vm_area_struct *vma = vmf->vma;
722 	unsigned long ra_val;
723 	unsigned long faddr, pfn, fpfn;
724 	unsigned long start, end;
725 	pte_t *pte, *orig_pte;
726 	unsigned int max_win, hits, prev_win, win, left;
727 #ifndef CONFIG_64BIT
728 	pte_t *tpte;
729 #endif
730 
731 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
732 			     SWAP_RA_ORDER_CEILING);
733 	if (max_win == 1) {
734 		ra_info->win = 1;
735 		return;
736 	}
737 
738 	faddr = vmf->address;
739 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
740 
741 	fpfn = PFN_DOWN(faddr);
742 	ra_val = GET_SWAP_RA_VAL(vma);
743 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
744 	prev_win = SWAP_RA_WIN(ra_val);
745 	hits = SWAP_RA_HITS(ra_val);
746 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
747 					       max_win, prev_win);
748 	atomic_long_set(&vma->swap_readahead_info,
749 			SWAP_RA_VAL(faddr, win, 0));
750 
751 	if (win == 1) {
752 		pte_unmap(orig_pte);
753 		return;
754 	}
755 
756 	/* Copy the PTEs because the page table may be unmapped */
757 	if (fpfn == pfn + 1)
758 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
759 	else if (pfn == fpfn + 1)
760 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
761 				  &start, &end);
762 	else {
763 		left = (win - 1) / 2;
764 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
765 				  &start, &end);
766 	}
767 	ra_info->nr_pte = end - start;
768 	ra_info->offset = fpfn - start;
769 	pte -= ra_info->offset;
770 #ifdef CONFIG_64BIT
771 	ra_info->ptes = pte;
772 #else
773 	tpte = ra_info->ptes;
774 	for (pfn = start; pfn != end; pfn++)
775 		*tpte++ = *pte++;
776 #endif
777 	pte_unmap(orig_pte);
778 }
779 
780 /**
781  * swap_vma_readahead - swap in pages in hope we need them soon
782  * @fentry: swap entry of this memory
783  * @gfp_mask: memory allocation flags
784  * @vmf: fault information
785  *
786  * Returns the struct page for entry and addr, after queueing swapin.
787  *
788  * Primitive swap readahead code. We simply read in a few pages whose
789  * virtual addresses are around the fault address in the same vma.
790  *
791  * Caller must hold read mmap_lock if vmf->vma is not NULL.
792  *
793  */
794 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
795 				       struct vm_fault *vmf)
796 {
797 	struct blk_plug plug;
798 	struct swap_iocb *splug = NULL;
799 	struct vm_area_struct *vma = vmf->vma;
800 	struct page *page;
801 	pte_t *pte, pentry;
802 	swp_entry_t entry;
803 	unsigned int i;
804 	bool page_allocated;
805 	struct vma_swap_readahead ra_info = {
806 		.win = 1,
807 	};
808 
809 	swap_ra_info(vmf, &ra_info);
810 	if (ra_info.win == 1)
811 		goto skip;
812 
813 	blk_start_plug(&plug);
814 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
815 	     i++, pte++) {
816 		pentry = *pte;
817 		if (pte_none(pentry))
818 			continue;
819 		if (pte_present(pentry))
820 			continue;
821 		entry = pte_to_swp_entry(pentry);
822 		if (unlikely(non_swap_entry(entry)))
823 			continue;
824 		page = __read_swap_cache_async(entry, gfp_mask, vma,
825 					       vmf->address, &page_allocated);
826 		if (!page)
827 			continue;
828 		if (page_allocated) {
829 			swap_readpage(page, false, &splug);
830 			if (i != ra_info.offset) {
831 				SetPageReadahead(page);
832 				count_vm_event(SWAP_RA);
833 			}
834 		}
835 		put_page(page);
836 	}
837 	blk_finish_plug(&plug);
838 	swap_read_unplug(splug);
839 	lru_add_drain();
840 skip:
841 	/* The page was likely read above, so no need for plugging here */
842 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
843 				     ra_info.win == 1, NULL);
844 }
845 
846 /**
847  * swapin_readahead - swap in pages in hope we need them soon
848  * @entry: swap entry of this memory
849  * @gfp_mask: memory allocation flags
850  * @vmf: fault information
851  *
852  * Returns the struct page for entry and addr, after queueing swapin.
853  *
854  * It's a main entry function for swap readahead. By the configuration,
855  * it will read ahead blocks by cluster-based(ie, physical disk based)
856  * or vma-based(ie, virtual address based on faulty address) readahead.
857  */
858 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
859 				struct vm_fault *vmf)
860 {
861 	return swap_use_vma_readahead() ?
862 			swap_vma_readahead(entry, gfp_mask, vmf) :
863 			swap_cluster_readahead(entry, gfp_mask, vmf);
864 }
865 
866 #ifdef CONFIG_SYSFS
867 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
868 				     struct kobj_attribute *attr, char *buf)
869 {
870 	return sysfs_emit(buf, "%s\n",
871 			  enable_vma_readahead ? "true" : "false");
872 }
873 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
874 				      struct kobj_attribute *attr,
875 				      const char *buf, size_t count)
876 {
877 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
878 		enable_vma_readahead = true;
879 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
880 		enable_vma_readahead = false;
881 	else
882 		return -EINVAL;
883 
884 	return count;
885 }
886 static struct kobj_attribute vma_ra_enabled_attr =
887 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
888 	       vma_ra_enabled_store);
889 
890 static struct attribute *swap_attrs[] = {
891 	&vma_ra_enabled_attr.attr,
892 	NULL,
893 };
894 
895 static const struct attribute_group swap_attr_group = {
896 	.attrs = swap_attrs,
897 };
898 
899 static int __init swap_init_sysfs(void)
900 {
901 	int err;
902 	struct kobject *swap_kobj;
903 
904 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
905 	if (!swap_kobj) {
906 		pr_err("failed to create swap kobject\n");
907 		return -ENOMEM;
908 	}
909 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
910 	if (err) {
911 		pr_err("failed to register swap group\n");
912 		goto delete_obj;
913 	}
914 	return 0;
915 
916 delete_obj:
917 	kobject_put(swap_kobj);
918 	return err;
919 }
920 subsys_initcall(swap_init_sysfs);
921 #endif
922