1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 27 /* 28 * swapper_space is a fiction, retained to simplify the path through 29 * vmscan's shrink_page_list. 30 */ 31 static const struct address_space_operations swap_aops = { 32 .writepage = swap_writepage, 33 .set_page_dirty = swap_set_page_dirty, 34 #ifdef CONFIG_MIGRATION 35 .migratepage = migrate_page, 36 #endif 37 }; 38 39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static bool enable_vma_readahead __read_mostly = true; 42 43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 47 48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 51 52 #define SWAP_RA_VAL(addr, win, hits) \ 53 (((addr) & PAGE_MASK) | \ 54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 55 ((hits) & SWAP_RA_HITS_MASK)) 56 57 /* Initial readahead hits is 4 to start up with a small window */ 58 #define GET_SWAP_RA_VAL(vma) \ 59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 60 61 #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++) 62 #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr)) 63 64 static struct { 65 unsigned long add_total; 66 unsigned long del_total; 67 unsigned long find_success; 68 unsigned long find_total; 69 } swap_cache_info; 70 71 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 72 73 void show_swap_cache_info(void) 74 { 75 printk("%lu pages in swap cache\n", total_swapcache_pages()); 76 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 77 swap_cache_info.add_total, swap_cache_info.del_total, 78 swap_cache_info.find_success, swap_cache_info.find_total); 79 printk("Free swap = %ldkB\n", 80 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 81 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 82 } 83 84 void *get_shadow_from_swap_cache(swp_entry_t entry) 85 { 86 struct address_space *address_space = swap_address_space(entry); 87 pgoff_t idx = swp_offset(entry); 88 struct page *page; 89 90 page = xa_load(&address_space->i_pages, idx); 91 if (xa_is_value(page)) 92 return page; 93 return NULL; 94 } 95 96 /* 97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 98 * but sets SwapCache flag and private instead of mapping and index. 99 */ 100 int add_to_swap_cache(struct page *page, swp_entry_t entry, 101 gfp_t gfp, void **shadowp) 102 { 103 struct address_space *address_space = swap_address_space(entry); 104 pgoff_t idx = swp_offset(entry); 105 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); 106 unsigned long i, nr = thp_nr_pages(page); 107 void *old; 108 109 VM_BUG_ON_PAGE(!PageLocked(page), page); 110 VM_BUG_ON_PAGE(PageSwapCache(page), page); 111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 112 113 page_ref_add(page, nr); 114 SetPageSwapCache(page); 115 116 do { 117 unsigned long nr_shadows = 0; 118 119 xas_lock_irq(&xas); 120 xas_create_range(&xas); 121 if (xas_error(&xas)) 122 goto unlock; 123 for (i = 0; i < nr; i++) { 124 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); 125 old = xas_load(&xas); 126 if (xa_is_value(old)) { 127 nr_shadows++; 128 if (shadowp) 129 *shadowp = old; 130 } 131 set_page_private(page + i, entry.val + i); 132 xas_store(&xas, page); 133 xas_next(&xas); 134 } 135 address_space->nrpages += nr; 136 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 137 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr); 138 ADD_CACHE_INFO(add_total, nr); 139 unlock: 140 xas_unlock_irq(&xas); 141 } while (xas_nomem(&xas, gfp)); 142 143 if (!xas_error(&xas)) 144 return 0; 145 146 ClearPageSwapCache(page); 147 page_ref_sub(page, nr); 148 return xas_error(&xas); 149 } 150 151 /* 152 * This must be called only on pages that have 153 * been verified to be in the swap cache. 154 */ 155 void __delete_from_swap_cache(struct page *page, 156 swp_entry_t entry, void *shadow) 157 { 158 struct address_space *address_space = swap_address_space(entry); 159 int i, nr = thp_nr_pages(page); 160 pgoff_t idx = swp_offset(entry); 161 XA_STATE(xas, &address_space->i_pages, idx); 162 163 VM_BUG_ON_PAGE(!PageLocked(page), page); 164 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 165 VM_BUG_ON_PAGE(PageWriteback(page), page); 166 167 for (i = 0; i < nr; i++) { 168 void *entry = xas_store(&xas, shadow); 169 VM_BUG_ON_PAGE(entry != page, entry); 170 set_page_private(page + i, 0); 171 xas_next(&xas); 172 } 173 ClearPageSwapCache(page); 174 address_space->nrpages -= nr; 175 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 176 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr); 177 ADD_CACHE_INFO(del_total, nr); 178 } 179 180 /** 181 * add_to_swap - allocate swap space for a page 182 * @page: page we want to move to swap 183 * 184 * Allocate swap space for the page and add the page to the 185 * swap cache. Caller needs to hold the page lock. 186 */ 187 int add_to_swap(struct page *page) 188 { 189 swp_entry_t entry; 190 int err; 191 192 VM_BUG_ON_PAGE(!PageLocked(page), page); 193 VM_BUG_ON_PAGE(!PageUptodate(page), page); 194 195 entry = get_swap_page(page); 196 if (!entry.val) 197 return 0; 198 199 /* 200 * XArray node allocations from PF_MEMALLOC contexts could 201 * completely exhaust the page allocator. __GFP_NOMEMALLOC 202 * stops emergency reserves from being allocated. 203 * 204 * TODO: this could cause a theoretical memory reclaim 205 * deadlock in the swap out path. 206 */ 207 /* 208 * Add it to the swap cache. 209 */ 210 err = add_to_swap_cache(page, entry, 211 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 212 if (err) 213 /* 214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 215 * clear SWAP_HAS_CACHE flag. 216 */ 217 goto fail; 218 /* 219 * Normally the page will be dirtied in unmap because its pte should be 220 * dirty. A special case is MADV_FREE page. The page's pte could have 221 * dirty bit cleared but the page's SwapBacked bit is still set because 222 * clearing the dirty bit and SwapBacked bit has no lock protected. For 223 * such page, unmap will not set dirty bit for it, so page reclaim will 224 * not write the page out. This can cause data corruption when the page 225 * is swap in later. Always setting the dirty bit for the page solves 226 * the problem. 227 */ 228 set_page_dirty(page); 229 230 return 1; 231 232 fail: 233 put_swap_page(page, entry); 234 return 0; 235 } 236 237 /* 238 * This must be called only on pages that have 239 * been verified to be in the swap cache and locked. 240 * It will never put the page into the free list, 241 * the caller has a reference on the page. 242 */ 243 void delete_from_swap_cache(struct page *page) 244 { 245 swp_entry_t entry = { .val = page_private(page) }; 246 struct address_space *address_space = swap_address_space(entry); 247 248 xa_lock_irq(&address_space->i_pages); 249 __delete_from_swap_cache(page, entry, NULL); 250 xa_unlock_irq(&address_space->i_pages); 251 252 put_swap_page(page, entry); 253 page_ref_sub(page, thp_nr_pages(page)); 254 } 255 256 void clear_shadow_from_swap_cache(int type, unsigned long begin, 257 unsigned long end) 258 { 259 unsigned long curr = begin; 260 void *old; 261 262 for (;;) { 263 unsigned long nr_shadows = 0; 264 swp_entry_t entry = swp_entry(type, curr); 265 struct address_space *address_space = swap_address_space(entry); 266 XA_STATE(xas, &address_space->i_pages, curr); 267 268 xa_lock_irq(&address_space->i_pages); 269 xas_for_each(&xas, old, end) { 270 if (!xa_is_value(old)) 271 continue; 272 xas_store(&xas, NULL); 273 nr_shadows++; 274 } 275 xa_unlock_irq(&address_space->i_pages); 276 277 /* search the next swapcache until we meet end */ 278 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 279 curr++; 280 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 281 if (curr > end) 282 break; 283 } 284 } 285 286 /* 287 * If we are the only user, then try to free up the swap cache. 288 * 289 * Its ok to check for PageSwapCache without the page lock 290 * here because we are going to recheck again inside 291 * try_to_free_swap() _with_ the lock. 292 * - Marcelo 293 */ 294 static inline void free_swap_cache(struct page *page) 295 { 296 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 297 try_to_free_swap(page); 298 unlock_page(page); 299 } 300 } 301 302 /* 303 * Perform a free_page(), also freeing any swap cache associated with 304 * this page if it is the last user of the page. 305 */ 306 void free_page_and_swap_cache(struct page *page) 307 { 308 free_swap_cache(page); 309 if (!is_huge_zero_page(page)) 310 put_page(page); 311 } 312 313 /* 314 * Passed an array of pages, drop them all from swapcache and then release 315 * them. They are removed from the LRU and freed if this is their last use. 316 */ 317 void free_pages_and_swap_cache(struct page **pages, int nr) 318 { 319 struct page **pagep = pages; 320 int i; 321 322 lru_add_drain(); 323 for (i = 0; i < nr; i++) 324 free_swap_cache(pagep[i]); 325 release_pages(pagep, nr); 326 } 327 328 static inline bool swap_use_vma_readahead(void) 329 { 330 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 331 } 332 333 /* 334 * Lookup a swap entry in the swap cache. A found page will be returned 335 * unlocked and with its refcount incremented - we rely on the kernel 336 * lock getting page table operations atomic even if we drop the page 337 * lock before returning. 338 */ 339 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, 340 unsigned long addr) 341 { 342 struct page *page; 343 struct swap_info_struct *si; 344 345 si = get_swap_device(entry); 346 if (!si) 347 return NULL; 348 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 349 put_swap_device(si); 350 351 INC_CACHE_INFO(find_total); 352 if (page) { 353 bool vma_ra = swap_use_vma_readahead(); 354 bool readahead; 355 356 INC_CACHE_INFO(find_success); 357 /* 358 * At the moment, we don't support PG_readahead for anon THP 359 * so let's bail out rather than confusing the readahead stat. 360 */ 361 if (unlikely(PageTransCompound(page))) 362 return page; 363 364 readahead = TestClearPageReadahead(page); 365 if (vma && vma_ra) { 366 unsigned long ra_val; 367 int win, hits; 368 369 ra_val = GET_SWAP_RA_VAL(vma); 370 win = SWAP_RA_WIN(ra_val); 371 hits = SWAP_RA_HITS(ra_val); 372 if (readahead) 373 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 374 atomic_long_set(&vma->swap_readahead_info, 375 SWAP_RA_VAL(addr, win, hits)); 376 } 377 378 if (readahead) { 379 count_vm_event(SWAP_RA_HIT); 380 if (!vma || !vma_ra) 381 atomic_inc(&swapin_readahead_hits); 382 } 383 } 384 385 return page; 386 } 387 388 /** 389 * find_get_incore_page - Find and get a page from the page or swap caches. 390 * @mapping: The address_space to search. 391 * @index: The page cache index. 392 * 393 * This differs from find_get_page() in that it will also look for the 394 * page in the swap cache. 395 * 396 * Return: The found page or %NULL. 397 */ 398 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) 399 { 400 swp_entry_t swp; 401 struct swap_info_struct *si; 402 struct page *page = pagecache_get_page(mapping, index, 403 FGP_ENTRY | FGP_HEAD, 0); 404 405 if (!page) 406 return page; 407 if (!xa_is_value(page)) 408 return find_subpage(page, index); 409 if (!shmem_mapping(mapping)) 410 return NULL; 411 412 swp = radix_to_swp_entry(page); 413 /* Prevent swapoff from happening to us */ 414 si = get_swap_device(swp); 415 if (!si) 416 return NULL; 417 page = find_get_page(swap_address_space(swp), swp_offset(swp)); 418 put_swap_device(si); 419 return page; 420 } 421 422 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 423 struct vm_area_struct *vma, unsigned long addr, 424 bool *new_page_allocated) 425 { 426 struct swap_info_struct *si; 427 struct page *page; 428 void *shadow = NULL; 429 430 *new_page_allocated = false; 431 432 for (;;) { 433 int err; 434 /* 435 * First check the swap cache. Since this is normally 436 * called after lookup_swap_cache() failed, re-calling 437 * that would confuse statistics. 438 */ 439 si = get_swap_device(entry); 440 if (!si) 441 return NULL; 442 page = find_get_page(swap_address_space(entry), 443 swp_offset(entry)); 444 put_swap_device(si); 445 if (page) 446 return page; 447 448 /* 449 * Just skip read ahead for unused swap slot. 450 * During swap_off when swap_slot_cache is disabled, 451 * we have to handle the race between putting 452 * swap entry in swap cache and marking swap slot 453 * as SWAP_HAS_CACHE. That's done in later part of code or 454 * else swap_off will be aborted if we return NULL. 455 */ 456 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 457 return NULL; 458 459 /* 460 * Get a new page to read into from swap. Allocate it now, 461 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 462 * cause any racers to loop around until we add it to cache. 463 */ 464 page = alloc_page_vma(gfp_mask, vma, addr); 465 if (!page) 466 return NULL; 467 468 /* 469 * Swap entry may have been freed since our caller observed it. 470 */ 471 err = swapcache_prepare(entry); 472 if (!err) 473 break; 474 475 put_page(page); 476 if (err != -EEXIST) 477 return NULL; 478 479 /* 480 * We might race against __delete_from_swap_cache(), and 481 * stumble across a swap_map entry whose SWAP_HAS_CACHE 482 * has not yet been cleared. Or race against another 483 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 484 * in swap_map, but not yet added its page to swap cache. 485 */ 486 cond_resched(); 487 } 488 489 /* 490 * The swap entry is ours to swap in. Prepare the new page. 491 */ 492 493 __SetPageLocked(page); 494 __SetPageSwapBacked(page); 495 496 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry)) 497 goto fail_unlock; 498 499 /* May fail (-ENOMEM) if XArray node allocation failed. */ 500 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 501 goto fail_unlock; 502 503 mem_cgroup_swapin_uncharge_swap(entry); 504 505 if (shadow) 506 workingset_refault(page, shadow); 507 508 /* Caller will initiate read into locked page */ 509 lru_cache_add(page); 510 *new_page_allocated = true; 511 return page; 512 513 fail_unlock: 514 put_swap_page(page, entry); 515 unlock_page(page); 516 put_page(page); 517 return NULL; 518 } 519 520 /* 521 * Locate a page of swap in physical memory, reserving swap cache space 522 * and reading the disk if it is not already cached. 523 * A failure return means that either the page allocation failed or that 524 * the swap entry is no longer in use. 525 */ 526 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 527 struct vm_area_struct *vma, unsigned long addr, bool do_poll) 528 { 529 bool page_was_allocated; 530 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 531 vma, addr, &page_was_allocated); 532 533 if (page_was_allocated) 534 swap_readpage(retpage, do_poll); 535 536 return retpage; 537 } 538 539 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 540 unsigned long offset, 541 int hits, 542 int max_pages, 543 int prev_win) 544 { 545 unsigned int pages, last_ra; 546 547 /* 548 * This heuristic has been found to work well on both sequential and 549 * random loads, swapping to hard disk or to SSD: please don't ask 550 * what the "+ 2" means, it just happens to work well, that's all. 551 */ 552 pages = hits + 2; 553 if (pages == 2) { 554 /* 555 * We can have no readahead hits to judge by: but must not get 556 * stuck here forever, so check for an adjacent offset instead 557 * (and don't even bother to check whether swap type is same). 558 */ 559 if (offset != prev_offset + 1 && offset != prev_offset - 1) 560 pages = 1; 561 } else { 562 unsigned int roundup = 4; 563 while (roundup < pages) 564 roundup <<= 1; 565 pages = roundup; 566 } 567 568 if (pages > max_pages) 569 pages = max_pages; 570 571 /* Don't shrink readahead too fast */ 572 last_ra = prev_win / 2; 573 if (pages < last_ra) 574 pages = last_ra; 575 576 return pages; 577 } 578 579 static unsigned long swapin_nr_pages(unsigned long offset) 580 { 581 static unsigned long prev_offset; 582 unsigned int hits, pages, max_pages; 583 static atomic_t last_readahead_pages; 584 585 max_pages = 1 << READ_ONCE(page_cluster); 586 if (max_pages <= 1) 587 return 1; 588 589 hits = atomic_xchg(&swapin_readahead_hits, 0); 590 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 591 max_pages, 592 atomic_read(&last_readahead_pages)); 593 if (!hits) 594 WRITE_ONCE(prev_offset, offset); 595 atomic_set(&last_readahead_pages, pages); 596 597 return pages; 598 } 599 600 /** 601 * swap_cluster_readahead - swap in pages in hope we need them soon 602 * @entry: swap entry of this memory 603 * @gfp_mask: memory allocation flags 604 * @vmf: fault information 605 * 606 * Returns the struct page for entry and addr, after queueing swapin. 607 * 608 * Primitive swap readahead code. We simply read an aligned block of 609 * (1 << page_cluster) entries in the swap area. This method is chosen 610 * because it doesn't cost us any seek time. We also make sure to queue 611 * the 'original' request together with the readahead ones... 612 * 613 * This has been extended to use the NUMA policies from the mm triggering 614 * the readahead. 615 * 616 * Caller must hold read mmap_lock if vmf->vma is not NULL. 617 */ 618 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 619 struct vm_fault *vmf) 620 { 621 struct page *page; 622 unsigned long entry_offset = swp_offset(entry); 623 unsigned long offset = entry_offset; 624 unsigned long start_offset, end_offset; 625 unsigned long mask; 626 struct swap_info_struct *si = swp_swap_info(entry); 627 struct blk_plug plug; 628 bool do_poll = true, page_allocated; 629 struct vm_area_struct *vma = vmf->vma; 630 unsigned long addr = vmf->address; 631 632 mask = swapin_nr_pages(offset) - 1; 633 if (!mask) 634 goto skip; 635 636 /* Test swap type to make sure the dereference is safe */ 637 if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) { 638 struct inode *inode = si->swap_file->f_mapping->host; 639 if (inode_read_congested(inode)) 640 goto skip; 641 } 642 643 do_poll = false; 644 /* Read a page_cluster sized and aligned cluster around offset. */ 645 start_offset = offset & ~mask; 646 end_offset = offset | mask; 647 if (!start_offset) /* First page is swap header. */ 648 start_offset++; 649 if (end_offset >= si->max) 650 end_offset = si->max - 1; 651 652 blk_start_plug(&plug); 653 for (offset = start_offset; offset <= end_offset ; offset++) { 654 /* Ok, do the async read-ahead now */ 655 page = __read_swap_cache_async( 656 swp_entry(swp_type(entry), offset), 657 gfp_mask, vma, addr, &page_allocated); 658 if (!page) 659 continue; 660 if (page_allocated) { 661 swap_readpage(page, false); 662 if (offset != entry_offset) { 663 SetPageReadahead(page); 664 count_vm_event(SWAP_RA); 665 } 666 } 667 put_page(page); 668 } 669 blk_finish_plug(&plug); 670 671 lru_add_drain(); /* Push any new pages onto the LRU now */ 672 skip: 673 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); 674 } 675 676 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 677 { 678 struct address_space *spaces, *space; 679 unsigned int i, nr; 680 681 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 682 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 683 if (!spaces) 684 return -ENOMEM; 685 for (i = 0; i < nr; i++) { 686 space = spaces + i; 687 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 688 atomic_set(&space->i_mmap_writable, 0); 689 space->a_ops = &swap_aops; 690 /* swap cache doesn't use writeback related tags */ 691 mapping_set_no_writeback_tags(space); 692 } 693 nr_swapper_spaces[type] = nr; 694 swapper_spaces[type] = spaces; 695 696 return 0; 697 } 698 699 void exit_swap_address_space(unsigned int type) 700 { 701 kvfree(swapper_spaces[type]); 702 nr_swapper_spaces[type] = 0; 703 swapper_spaces[type] = NULL; 704 } 705 706 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, 707 unsigned long faddr, 708 unsigned long lpfn, 709 unsigned long rpfn, 710 unsigned long *start, 711 unsigned long *end) 712 { 713 *start = max3(lpfn, PFN_DOWN(vma->vm_start), 714 PFN_DOWN(faddr & PMD_MASK)); 715 *end = min3(rpfn, PFN_DOWN(vma->vm_end), 716 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 717 } 718 719 static void swap_ra_info(struct vm_fault *vmf, 720 struct vma_swap_readahead *ra_info) 721 { 722 struct vm_area_struct *vma = vmf->vma; 723 unsigned long ra_val; 724 swp_entry_t entry; 725 unsigned long faddr, pfn, fpfn; 726 unsigned long start, end; 727 pte_t *pte, *orig_pte; 728 unsigned int max_win, hits, prev_win, win, left; 729 #ifndef CONFIG_64BIT 730 pte_t *tpte; 731 #endif 732 733 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 734 SWAP_RA_ORDER_CEILING); 735 if (max_win == 1) { 736 ra_info->win = 1; 737 return; 738 } 739 740 faddr = vmf->address; 741 orig_pte = pte = pte_offset_map(vmf->pmd, faddr); 742 entry = pte_to_swp_entry(*pte); 743 if ((unlikely(non_swap_entry(entry)))) { 744 pte_unmap(orig_pte); 745 return; 746 } 747 748 fpfn = PFN_DOWN(faddr); 749 ra_val = GET_SWAP_RA_VAL(vma); 750 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 751 prev_win = SWAP_RA_WIN(ra_val); 752 hits = SWAP_RA_HITS(ra_val); 753 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 754 max_win, prev_win); 755 atomic_long_set(&vma->swap_readahead_info, 756 SWAP_RA_VAL(faddr, win, 0)); 757 758 if (win == 1) { 759 pte_unmap(orig_pte); 760 return; 761 } 762 763 /* Copy the PTEs because the page table may be unmapped */ 764 if (fpfn == pfn + 1) 765 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); 766 else if (pfn == fpfn + 1) 767 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, 768 &start, &end); 769 else { 770 left = (win - 1) / 2; 771 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, 772 &start, &end); 773 } 774 ra_info->nr_pte = end - start; 775 ra_info->offset = fpfn - start; 776 pte -= ra_info->offset; 777 #ifdef CONFIG_64BIT 778 ra_info->ptes = pte; 779 #else 780 tpte = ra_info->ptes; 781 for (pfn = start; pfn != end; pfn++) 782 *tpte++ = *pte++; 783 #endif 784 pte_unmap(orig_pte); 785 } 786 787 /** 788 * swap_vma_readahead - swap in pages in hope we need them soon 789 * @fentry: swap entry of this memory 790 * @gfp_mask: memory allocation flags 791 * @vmf: fault information 792 * 793 * Returns the struct page for entry and addr, after queueing swapin. 794 * 795 * Primitive swap readahead code. We simply read in a few pages whose 796 * virtual addresses are around the fault address in the same vma. 797 * 798 * Caller must hold read mmap_lock if vmf->vma is not NULL. 799 * 800 */ 801 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 802 struct vm_fault *vmf) 803 { 804 struct blk_plug plug; 805 struct vm_area_struct *vma = vmf->vma; 806 struct page *page; 807 pte_t *pte, pentry; 808 swp_entry_t entry; 809 unsigned int i; 810 bool page_allocated; 811 struct vma_swap_readahead ra_info = { 812 .win = 1, 813 }; 814 815 swap_ra_info(vmf, &ra_info); 816 if (ra_info.win == 1) 817 goto skip; 818 819 blk_start_plug(&plug); 820 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; 821 i++, pte++) { 822 pentry = *pte; 823 if (pte_none(pentry)) 824 continue; 825 if (pte_present(pentry)) 826 continue; 827 entry = pte_to_swp_entry(pentry); 828 if (unlikely(non_swap_entry(entry))) 829 continue; 830 page = __read_swap_cache_async(entry, gfp_mask, vma, 831 vmf->address, &page_allocated); 832 if (!page) 833 continue; 834 if (page_allocated) { 835 swap_readpage(page, false); 836 if (i != ra_info.offset) { 837 SetPageReadahead(page); 838 count_vm_event(SWAP_RA); 839 } 840 } 841 put_page(page); 842 } 843 blk_finish_plug(&plug); 844 lru_add_drain(); 845 skip: 846 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 847 ra_info.win == 1); 848 } 849 850 /** 851 * swapin_readahead - swap in pages in hope we need them soon 852 * @entry: swap entry of this memory 853 * @gfp_mask: memory allocation flags 854 * @vmf: fault information 855 * 856 * Returns the struct page for entry and addr, after queueing swapin. 857 * 858 * It's a main entry function for swap readahead. By the configuration, 859 * it will read ahead blocks by cluster-based(ie, physical disk based) 860 * or vma-based(ie, virtual address based on faulty address) readahead. 861 */ 862 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 863 struct vm_fault *vmf) 864 { 865 return swap_use_vma_readahead() ? 866 swap_vma_readahead(entry, gfp_mask, vmf) : 867 swap_cluster_readahead(entry, gfp_mask, vmf); 868 } 869 870 #ifdef CONFIG_SYSFS 871 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 872 struct kobj_attribute *attr, char *buf) 873 { 874 return sysfs_emit(buf, "%s\n", 875 enable_vma_readahead ? "true" : "false"); 876 } 877 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 878 struct kobj_attribute *attr, 879 const char *buf, size_t count) 880 { 881 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 882 enable_vma_readahead = true; 883 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 884 enable_vma_readahead = false; 885 else 886 return -EINVAL; 887 888 return count; 889 } 890 static struct kobj_attribute vma_ra_enabled_attr = 891 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, 892 vma_ra_enabled_store); 893 894 static struct attribute *swap_attrs[] = { 895 &vma_ra_enabled_attr.attr, 896 NULL, 897 }; 898 899 static const struct attribute_group swap_attr_group = { 900 .attrs = swap_attrs, 901 }; 902 903 static int __init swap_init_sysfs(void) 904 { 905 int err; 906 struct kobject *swap_kobj; 907 908 swap_kobj = kobject_create_and_add("swap", mm_kobj); 909 if (!swap_kobj) { 910 pr_err("failed to create swap kobject\n"); 911 return -ENOMEM; 912 } 913 err = sysfs_create_group(swap_kobj, &swap_attr_group); 914 if (err) { 915 pr_err("failed to register swap group\n"); 916 goto delete_obj; 917 } 918 return 0; 919 920 delete_obj: 921 kobject_put(swap_kobj); 922 return err; 923 } 924 subsys_initcall(swap_init_sysfs); 925 #endif 926