1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/migrate.h> 20 #include <linux/vmalloc.h> 21 #include <linux/swap_slots.h> 22 #include <linux/huge_mm.h> 23 #include <linux/shmem_fs.h> 24 #include "internal.h" 25 #include "swap.h" 26 27 /* 28 * swapper_space is a fiction, retained to simplify the path through 29 * vmscan's shrink_page_list. 30 */ 31 static const struct address_space_operations swap_aops = { 32 .writepage = swap_writepage, 33 .dirty_folio = noop_dirty_folio, 34 #ifdef CONFIG_MIGRATION 35 .migrate_folio = migrate_folio, 36 #endif 37 }; 38 39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static bool enable_vma_readahead __read_mostly = true; 42 43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 47 48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 51 52 #define SWAP_RA_VAL(addr, win, hits) \ 53 (((addr) & PAGE_MASK) | \ 54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 55 ((hits) & SWAP_RA_HITS_MASK)) 56 57 /* Initial readahead hits is 4 to start up with a small window */ 58 #define GET_SWAP_RA_VAL(vma) \ 59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 60 61 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 62 63 void show_swap_cache_info(void) 64 { 65 printk("%lu pages in swap cache\n", total_swapcache_pages()); 66 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 67 printk("Total swap = %lukB\n", K(total_swap_pages)); 68 } 69 70 void *get_shadow_from_swap_cache(swp_entry_t entry) 71 { 72 struct address_space *address_space = swap_address_space(entry); 73 pgoff_t idx = swp_offset(entry); 74 struct page *page; 75 76 page = xa_load(&address_space->i_pages, idx); 77 if (xa_is_value(page)) 78 return page; 79 return NULL; 80 } 81 82 /* 83 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 84 * but sets SwapCache flag and private instead of mapping and index. 85 */ 86 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 87 gfp_t gfp, void **shadowp) 88 { 89 struct address_space *address_space = swap_address_space(entry); 90 pgoff_t idx = swp_offset(entry); 91 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 92 unsigned long i, nr = folio_nr_pages(folio); 93 void *old; 94 95 xas_set_update(&xas, workingset_update_node); 96 97 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 98 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 99 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 100 101 folio_ref_add(folio, nr); 102 folio_set_swapcache(folio); 103 104 do { 105 xas_lock_irq(&xas); 106 xas_create_range(&xas); 107 if (xas_error(&xas)) 108 goto unlock; 109 for (i = 0; i < nr; i++) { 110 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 111 old = xas_load(&xas); 112 if (xa_is_value(old)) { 113 if (shadowp) 114 *shadowp = old; 115 } 116 set_page_private(folio_page(folio, i), entry.val + i); 117 xas_store(&xas, folio); 118 xas_next(&xas); 119 } 120 address_space->nrpages += nr; 121 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 122 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 123 unlock: 124 xas_unlock_irq(&xas); 125 } while (xas_nomem(&xas, gfp)); 126 127 if (!xas_error(&xas)) 128 return 0; 129 130 folio_clear_swapcache(folio); 131 folio_ref_sub(folio, nr); 132 return xas_error(&xas); 133 } 134 135 /* 136 * This must be called only on folios that have 137 * been verified to be in the swap cache. 138 */ 139 void __delete_from_swap_cache(struct folio *folio, 140 swp_entry_t entry, void *shadow) 141 { 142 struct address_space *address_space = swap_address_space(entry); 143 int i; 144 long nr = folio_nr_pages(folio); 145 pgoff_t idx = swp_offset(entry); 146 XA_STATE(xas, &address_space->i_pages, idx); 147 148 xas_set_update(&xas, workingset_update_node); 149 150 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 151 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 152 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 153 154 for (i = 0; i < nr; i++) { 155 void *entry = xas_store(&xas, shadow); 156 VM_BUG_ON_PAGE(entry != folio, entry); 157 set_page_private(folio_page(folio, i), 0); 158 xas_next(&xas); 159 } 160 folio_clear_swapcache(folio); 161 address_space->nrpages -= nr; 162 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 163 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 164 } 165 166 /** 167 * add_to_swap - allocate swap space for a folio 168 * @folio: folio we want to move to swap 169 * 170 * Allocate swap space for the folio and add the folio to the 171 * swap cache. 172 * 173 * Context: Caller needs to hold the folio lock. 174 * Return: Whether the folio was added to the swap cache. 175 */ 176 bool add_to_swap(struct folio *folio) 177 { 178 swp_entry_t entry; 179 int err; 180 181 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 182 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 183 184 entry = folio_alloc_swap(folio); 185 if (!entry.val) 186 return false; 187 188 /* 189 * XArray node allocations from PF_MEMALLOC contexts could 190 * completely exhaust the page allocator. __GFP_NOMEMALLOC 191 * stops emergency reserves from being allocated. 192 * 193 * TODO: this could cause a theoretical memory reclaim 194 * deadlock in the swap out path. 195 */ 196 /* 197 * Add it to the swap cache. 198 */ 199 err = add_to_swap_cache(folio, entry, 200 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 201 if (err) 202 /* 203 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 204 * clear SWAP_HAS_CACHE flag. 205 */ 206 goto fail; 207 /* 208 * Normally the folio will be dirtied in unmap because its 209 * pte should be dirty. A special case is MADV_FREE page. The 210 * page's pte could have dirty bit cleared but the folio's 211 * SwapBacked flag is still set because clearing the dirty bit 212 * and SwapBacked flag has no lock protected. For such folio, 213 * unmap will not set dirty bit for it, so folio reclaim will 214 * not write the folio out. This can cause data corruption when 215 * the folio is swapped in later. Always setting the dirty flag 216 * for the folio solves the problem. 217 */ 218 folio_mark_dirty(folio); 219 220 return true; 221 222 fail: 223 put_swap_folio(folio, entry); 224 return false; 225 } 226 227 /* 228 * This must be called only on folios that have 229 * been verified to be in the swap cache and locked. 230 * It will never put the folio into the free list, 231 * the caller has a reference on the folio. 232 */ 233 void delete_from_swap_cache(struct folio *folio) 234 { 235 swp_entry_t entry = folio_swap_entry(folio); 236 struct address_space *address_space = swap_address_space(entry); 237 238 xa_lock_irq(&address_space->i_pages); 239 __delete_from_swap_cache(folio, entry, NULL); 240 xa_unlock_irq(&address_space->i_pages); 241 242 put_swap_folio(folio, entry); 243 folio_ref_sub(folio, folio_nr_pages(folio)); 244 } 245 246 void clear_shadow_from_swap_cache(int type, unsigned long begin, 247 unsigned long end) 248 { 249 unsigned long curr = begin; 250 void *old; 251 252 for (;;) { 253 swp_entry_t entry = swp_entry(type, curr); 254 struct address_space *address_space = swap_address_space(entry); 255 XA_STATE(xas, &address_space->i_pages, curr); 256 257 xas_set_update(&xas, workingset_update_node); 258 259 xa_lock_irq(&address_space->i_pages); 260 xas_for_each(&xas, old, end) { 261 if (!xa_is_value(old)) 262 continue; 263 xas_store(&xas, NULL); 264 } 265 xa_unlock_irq(&address_space->i_pages); 266 267 /* search the next swapcache until we meet end */ 268 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 269 curr++; 270 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 271 if (curr > end) 272 break; 273 } 274 } 275 276 /* 277 * If we are the only user, then try to free up the swap cache. 278 * 279 * Its ok to check the swapcache flag without the folio lock 280 * here because we are going to recheck again inside 281 * folio_free_swap() _with_ the lock. 282 * - Marcelo 283 */ 284 void free_swap_cache(struct page *page) 285 { 286 struct folio *folio = page_folio(page); 287 288 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 289 folio_trylock(folio)) { 290 folio_free_swap(folio); 291 folio_unlock(folio); 292 } 293 } 294 295 /* 296 * Perform a free_page(), also freeing any swap cache associated with 297 * this page if it is the last user of the page. 298 */ 299 void free_page_and_swap_cache(struct page *page) 300 { 301 free_swap_cache(page); 302 if (!is_huge_zero_page(page)) 303 put_page(page); 304 } 305 306 /* 307 * Passed an array of pages, drop them all from swapcache and then release 308 * them. They are removed from the LRU and freed if this is their last use. 309 */ 310 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 311 { 312 lru_add_drain(); 313 for (int i = 0; i < nr; i++) 314 free_swap_cache(encoded_page_ptr(pages[i])); 315 release_pages(pages, nr); 316 } 317 318 static inline bool swap_use_vma_readahead(void) 319 { 320 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 321 } 322 323 /* 324 * Lookup a swap entry in the swap cache. A found folio will be returned 325 * unlocked and with its refcount incremented - we rely on the kernel 326 * lock getting page table operations atomic even if we drop the folio 327 * lock before returning. 328 * 329 * Caller must lock the swap device or hold a reference to keep it valid. 330 */ 331 struct folio *swap_cache_get_folio(swp_entry_t entry, 332 struct vm_area_struct *vma, unsigned long addr) 333 { 334 struct folio *folio; 335 336 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry)); 337 if (!IS_ERR(folio)) { 338 bool vma_ra = swap_use_vma_readahead(); 339 bool readahead; 340 341 /* 342 * At the moment, we don't support PG_readahead for anon THP 343 * so let's bail out rather than confusing the readahead stat. 344 */ 345 if (unlikely(folio_test_large(folio))) 346 return folio; 347 348 readahead = folio_test_clear_readahead(folio); 349 if (vma && vma_ra) { 350 unsigned long ra_val; 351 int win, hits; 352 353 ra_val = GET_SWAP_RA_VAL(vma); 354 win = SWAP_RA_WIN(ra_val); 355 hits = SWAP_RA_HITS(ra_val); 356 if (readahead) 357 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 358 atomic_long_set(&vma->swap_readahead_info, 359 SWAP_RA_VAL(addr, win, hits)); 360 } 361 362 if (readahead) { 363 count_vm_event(SWAP_RA_HIT); 364 if (!vma || !vma_ra) 365 atomic_inc(&swapin_readahead_hits); 366 } 367 } else { 368 folio = NULL; 369 } 370 371 return folio; 372 } 373 374 /** 375 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 376 * @mapping: The address_space to search. 377 * @index: The page cache index. 378 * 379 * This differs from filemap_get_folio() in that it will also look for the 380 * folio in the swap cache. 381 * 382 * Return: The found folio or %NULL. 383 */ 384 struct folio *filemap_get_incore_folio(struct address_space *mapping, 385 pgoff_t index) 386 { 387 swp_entry_t swp; 388 struct swap_info_struct *si; 389 struct folio *folio = filemap_get_entry(mapping, index); 390 391 if (!folio) 392 return ERR_PTR(-ENOENT); 393 if (!xa_is_value(folio)) 394 return folio; 395 if (!shmem_mapping(mapping)) 396 return ERR_PTR(-ENOENT); 397 398 swp = radix_to_swp_entry(folio); 399 /* There might be swapin error entries in shmem mapping. */ 400 if (non_swap_entry(swp)) 401 return ERR_PTR(-ENOENT); 402 /* Prevent swapoff from happening to us */ 403 si = get_swap_device(swp); 404 if (!si) 405 return ERR_PTR(-ENOENT); 406 index = swp_offset(swp); 407 folio = filemap_get_folio(swap_address_space(swp), index); 408 put_swap_device(si); 409 return folio; 410 } 411 412 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 413 struct vm_area_struct *vma, unsigned long addr, 414 bool *new_page_allocated) 415 { 416 struct swap_info_struct *si; 417 struct folio *folio; 418 struct page *page; 419 void *shadow = NULL; 420 421 *new_page_allocated = false; 422 si = get_swap_device(entry); 423 if (!si) 424 return NULL; 425 426 for (;;) { 427 int err; 428 /* 429 * First check the swap cache. Since this is normally 430 * called after swap_cache_get_folio() failed, re-calling 431 * that would confuse statistics. 432 */ 433 folio = filemap_get_folio(swap_address_space(entry), 434 swp_offset(entry)); 435 if (!IS_ERR(folio)) { 436 page = folio_file_page(folio, swp_offset(entry)); 437 goto got_page; 438 } 439 440 /* 441 * Just skip read ahead for unused swap slot. 442 * During swap_off when swap_slot_cache is disabled, 443 * we have to handle the race between putting 444 * swap entry in swap cache and marking swap slot 445 * as SWAP_HAS_CACHE. That's done in later part of code or 446 * else swap_off will be aborted if we return NULL. 447 */ 448 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled) 449 goto fail_put_swap; 450 451 /* 452 * Get a new page to read into from swap. Allocate it now, 453 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 454 * cause any racers to loop around until we add it to cache. 455 */ 456 folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false); 457 if (!folio) 458 goto fail_put_swap; 459 460 /* 461 * Swap entry may have been freed since our caller observed it. 462 */ 463 err = swapcache_prepare(entry); 464 if (!err) 465 break; 466 467 folio_put(folio); 468 if (err != -EEXIST) 469 goto fail_put_swap; 470 471 /* 472 * We might race against __delete_from_swap_cache(), and 473 * stumble across a swap_map entry whose SWAP_HAS_CACHE 474 * has not yet been cleared. Or race against another 475 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 476 * in swap_map, but not yet added its page to swap cache. 477 */ 478 schedule_timeout_uninterruptible(1); 479 } 480 481 /* 482 * The swap entry is ours to swap in. Prepare the new page. 483 */ 484 485 __folio_set_locked(folio); 486 __folio_set_swapbacked(folio); 487 488 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) 489 goto fail_unlock; 490 491 /* May fail (-ENOMEM) if XArray node allocation failed. */ 492 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 493 goto fail_unlock; 494 495 mem_cgroup_swapin_uncharge_swap(entry); 496 497 if (shadow) 498 workingset_refault(folio, shadow); 499 500 /* Caller will initiate read into locked folio */ 501 folio_add_lru(folio); 502 *new_page_allocated = true; 503 page = &folio->page; 504 got_page: 505 put_swap_device(si); 506 return page; 507 508 fail_unlock: 509 put_swap_folio(folio, entry); 510 folio_unlock(folio); 511 folio_put(folio); 512 fail_put_swap: 513 put_swap_device(si); 514 return NULL; 515 } 516 517 /* 518 * Locate a page of swap in physical memory, reserving swap cache space 519 * and reading the disk if it is not already cached. 520 * A failure return means that either the page allocation failed or that 521 * the swap entry is no longer in use. 522 * 523 * get/put_swap_device() aren't needed to call this function, because 524 * __read_swap_cache_async() call them and swap_readpage() holds the 525 * swap cache folio lock. 526 */ 527 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 528 struct vm_area_struct *vma, 529 unsigned long addr, bool do_poll, 530 struct swap_iocb **plug) 531 { 532 bool page_was_allocated; 533 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 534 vma, addr, &page_was_allocated); 535 536 if (page_was_allocated) 537 swap_readpage(retpage, do_poll, plug); 538 539 return retpage; 540 } 541 542 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 543 unsigned long offset, 544 int hits, 545 int max_pages, 546 int prev_win) 547 { 548 unsigned int pages, last_ra; 549 550 /* 551 * This heuristic has been found to work well on both sequential and 552 * random loads, swapping to hard disk or to SSD: please don't ask 553 * what the "+ 2" means, it just happens to work well, that's all. 554 */ 555 pages = hits + 2; 556 if (pages == 2) { 557 /* 558 * We can have no readahead hits to judge by: but must not get 559 * stuck here forever, so check for an adjacent offset instead 560 * (and don't even bother to check whether swap type is same). 561 */ 562 if (offset != prev_offset + 1 && offset != prev_offset - 1) 563 pages = 1; 564 } else { 565 unsigned int roundup = 4; 566 while (roundup < pages) 567 roundup <<= 1; 568 pages = roundup; 569 } 570 571 if (pages > max_pages) 572 pages = max_pages; 573 574 /* Don't shrink readahead too fast */ 575 last_ra = prev_win / 2; 576 if (pages < last_ra) 577 pages = last_ra; 578 579 return pages; 580 } 581 582 static unsigned long swapin_nr_pages(unsigned long offset) 583 { 584 static unsigned long prev_offset; 585 unsigned int hits, pages, max_pages; 586 static atomic_t last_readahead_pages; 587 588 max_pages = 1 << READ_ONCE(page_cluster); 589 if (max_pages <= 1) 590 return 1; 591 592 hits = atomic_xchg(&swapin_readahead_hits, 0); 593 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 594 max_pages, 595 atomic_read(&last_readahead_pages)); 596 if (!hits) 597 WRITE_ONCE(prev_offset, offset); 598 atomic_set(&last_readahead_pages, pages); 599 600 return pages; 601 } 602 603 /** 604 * swap_cluster_readahead - swap in pages in hope we need them soon 605 * @entry: swap entry of this memory 606 * @gfp_mask: memory allocation flags 607 * @vmf: fault information 608 * 609 * Returns the struct page for entry and addr, after queueing swapin. 610 * 611 * Primitive swap readahead code. We simply read an aligned block of 612 * (1 << page_cluster) entries in the swap area. This method is chosen 613 * because it doesn't cost us any seek time. We also make sure to queue 614 * the 'original' request together with the readahead ones... 615 * 616 * This has been extended to use the NUMA policies from the mm triggering 617 * the readahead. 618 * 619 * Caller must hold read mmap_lock if vmf->vma is not NULL. 620 */ 621 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 622 struct vm_fault *vmf) 623 { 624 struct page *page; 625 unsigned long entry_offset = swp_offset(entry); 626 unsigned long offset = entry_offset; 627 unsigned long start_offset, end_offset; 628 unsigned long mask; 629 struct swap_info_struct *si = swp_swap_info(entry); 630 struct blk_plug plug; 631 struct swap_iocb *splug = NULL; 632 bool do_poll = true, page_allocated; 633 struct vm_area_struct *vma = vmf->vma; 634 unsigned long addr = vmf->address; 635 636 mask = swapin_nr_pages(offset) - 1; 637 if (!mask) 638 goto skip; 639 640 do_poll = false; 641 /* Read a page_cluster sized and aligned cluster around offset. */ 642 start_offset = offset & ~mask; 643 end_offset = offset | mask; 644 if (!start_offset) /* First page is swap header. */ 645 start_offset++; 646 if (end_offset >= si->max) 647 end_offset = si->max - 1; 648 649 blk_start_plug(&plug); 650 for (offset = start_offset; offset <= end_offset ; offset++) { 651 /* Ok, do the async read-ahead now */ 652 page = __read_swap_cache_async( 653 swp_entry(swp_type(entry), offset), 654 gfp_mask, vma, addr, &page_allocated); 655 if (!page) 656 continue; 657 if (page_allocated) { 658 swap_readpage(page, false, &splug); 659 if (offset != entry_offset) { 660 SetPageReadahead(page); 661 count_vm_event(SWAP_RA); 662 } 663 } 664 put_page(page); 665 } 666 blk_finish_plug(&plug); 667 swap_read_unplug(splug); 668 669 lru_add_drain(); /* Push any new pages onto the LRU now */ 670 skip: 671 /* The page was likely read above, so no need for plugging here */ 672 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); 673 } 674 675 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 676 { 677 struct address_space *spaces, *space; 678 unsigned int i, nr; 679 680 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 681 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 682 if (!spaces) 683 return -ENOMEM; 684 for (i = 0; i < nr; i++) { 685 space = spaces + i; 686 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 687 atomic_set(&space->i_mmap_writable, 0); 688 space->a_ops = &swap_aops; 689 /* swap cache doesn't use writeback related tags */ 690 mapping_set_no_writeback_tags(space); 691 } 692 nr_swapper_spaces[type] = nr; 693 swapper_spaces[type] = spaces; 694 695 return 0; 696 } 697 698 void exit_swap_address_space(unsigned int type) 699 { 700 int i; 701 struct address_space *spaces = swapper_spaces[type]; 702 703 for (i = 0; i < nr_swapper_spaces[type]; i++) 704 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 705 kvfree(spaces); 706 nr_swapper_spaces[type] = 0; 707 swapper_spaces[type] = NULL; 708 } 709 710 #define SWAP_RA_ORDER_CEILING 5 711 712 struct vma_swap_readahead { 713 unsigned short win; 714 unsigned short offset; 715 unsigned short nr_pte; 716 }; 717 718 static void swap_ra_info(struct vm_fault *vmf, 719 struct vma_swap_readahead *ra_info) 720 { 721 struct vm_area_struct *vma = vmf->vma; 722 unsigned long ra_val; 723 unsigned long faddr, pfn, fpfn, lpfn, rpfn; 724 unsigned long start, end; 725 unsigned int max_win, hits, prev_win, win; 726 727 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 728 SWAP_RA_ORDER_CEILING); 729 if (max_win == 1) { 730 ra_info->win = 1; 731 return; 732 } 733 734 faddr = vmf->address; 735 fpfn = PFN_DOWN(faddr); 736 ra_val = GET_SWAP_RA_VAL(vma); 737 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 738 prev_win = SWAP_RA_WIN(ra_val); 739 hits = SWAP_RA_HITS(ra_val); 740 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 741 max_win, prev_win); 742 atomic_long_set(&vma->swap_readahead_info, 743 SWAP_RA_VAL(faddr, win, 0)); 744 if (win == 1) 745 return; 746 747 if (fpfn == pfn + 1) { 748 lpfn = fpfn; 749 rpfn = fpfn + win; 750 } else if (pfn == fpfn + 1) { 751 lpfn = fpfn - win + 1; 752 rpfn = fpfn + 1; 753 } else { 754 unsigned int left = (win - 1) / 2; 755 756 lpfn = fpfn - left; 757 rpfn = fpfn + win - left; 758 } 759 start = max3(lpfn, PFN_DOWN(vma->vm_start), 760 PFN_DOWN(faddr & PMD_MASK)); 761 end = min3(rpfn, PFN_DOWN(vma->vm_end), 762 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 763 764 ra_info->nr_pte = end - start; 765 ra_info->offset = fpfn - start; 766 } 767 768 /** 769 * swap_vma_readahead - swap in pages in hope we need them soon 770 * @fentry: swap entry of this memory 771 * @gfp_mask: memory allocation flags 772 * @vmf: fault information 773 * 774 * Returns the struct page for entry and addr, after queueing swapin. 775 * 776 * Primitive swap readahead code. We simply read in a few pages whose 777 * virtual addresses are around the fault address in the same vma. 778 * 779 * Caller must hold read mmap_lock if vmf->vma is not NULL. 780 * 781 */ 782 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 783 struct vm_fault *vmf) 784 { 785 struct blk_plug plug; 786 struct swap_iocb *splug = NULL; 787 struct vm_area_struct *vma = vmf->vma; 788 struct page *page; 789 pte_t *pte = NULL, pentry; 790 unsigned long addr; 791 swp_entry_t entry; 792 unsigned int i; 793 bool page_allocated; 794 struct vma_swap_readahead ra_info = { 795 .win = 1, 796 }; 797 798 swap_ra_info(vmf, &ra_info); 799 if (ra_info.win == 1) 800 goto skip; 801 802 addr = vmf->address - (ra_info.offset * PAGE_SIZE); 803 804 blk_start_plug(&plug); 805 for (i = 0; i < ra_info.nr_pte; i++, addr += PAGE_SIZE) { 806 if (!pte++) { 807 pte = pte_offset_map(vmf->pmd, addr); 808 if (!pte) 809 break; 810 } 811 pentry = ptep_get_lockless(pte); 812 if (!is_swap_pte(pentry)) 813 continue; 814 entry = pte_to_swp_entry(pentry); 815 if (unlikely(non_swap_entry(entry))) 816 continue; 817 pte_unmap(pte); 818 pte = NULL; 819 page = __read_swap_cache_async(entry, gfp_mask, vma, 820 addr, &page_allocated); 821 if (!page) 822 continue; 823 if (page_allocated) { 824 swap_readpage(page, false, &splug); 825 if (i != ra_info.offset) { 826 SetPageReadahead(page); 827 count_vm_event(SWAP_RA); 828 } 829 } 830 put_page(page); 831 } 832 if (pte) 833 pte_unmap(pte); 834 blk_finish_plug(&plug); 835 swap_read_unplug(splug); 836 lru_add_drain(); 837 skip: 838 /* The page was likely read above, so no need for plugging here */ 839 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 840 ra_info.win == 1, NULL); 841 } 842 843 /** 844 * swapin_readahead - swap in pages in hope we need them soon 845 * @entry: swap entry of this memory 846 * @gfp_mask: memory allocation flags 847 * @vmf: fault information 848 * 849 * Returns the struct page for entry and addr, after queueing swapin. 850 * 851 * It's a main entry function for swap readahead. By the configuration, 852 * it will read ahead blocks by cluster-based(ie, physical disk based) 853 * or vma-based(ie, virtual address based on faulty address) readahead. 854 */ 855 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 856 struct vm_fault *vmf) 857 { 858 return swap_use_vma_readahead() ? 859 swap_vma_readahead(entry, gfp_mask, vmf) : 860 swap_cluster_readahead(entry, gfp_mask, vmf); 861 } 862 863 #ifdef CONFIG_SYSFS 864 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 865 struct kobj_attribute *attr, char *buf) 866 { 867 return sysfs_emit(buf, "%s\n", 868 enable_vma_readahead ? "true" : "false"); 869 } 870 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 871 struct kobj_attribute *attr, 872 const char *buf, size_t count) 873 { 874 ssize_t ret; 875 876 ret = kstrtobool(buf, &enable_vma_readahead); 877 if (ret) 878 return ret; 879 880 return count; 881 } 882 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 883 884 static struct attribute *swap_attrs[] = { 885 &vma_ra_enabled_attr.attr, 886 NULL, 887 }; 888 889 static const struct attribute_group swap_attr_group = { 890 .attrs = swap_attrs, 891 }; 892 893 static int __init swap_init_sysfs(void) 894 { 895 int err; 896 struct kobject *swap_kobj; 897 898 swap_kobj = kobject_create_and_add("swap", mm_kobj); 899 if (!swap_kobj) { 900 pr_err("failed to create swap kobject\n"); 901 return -ENOMEM; 902 } 903 err = sysfs_create_group(swap_kobj, &swap_attr_group); 904 if (err) { 905 pr_err("failed to register swap group\n"); 906 goto delete_obj; 907 } 908 return 0; 909 910 delete_obj: 911 kobject_put(swap_kobj); 912 return err; 913 } 914 subsys_initcall(swap_init_sysfs); 915 #endif 916