xref: /openbmc/linux/mm/swap_state.c (revision 0bcba960)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migratepage	= migrate_page,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 
49 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52 
53 #define SWAP_RA_VAL(addr, win, hits)				\
54 	(((addr) & PAGE_MASK) |					\
55 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56 	 ((hits) & SWAP_RA_HITS_MASK))
57 
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)					\
60 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63 
64 void show_swap_cache_info(void)
65 {
66 	printk("%lu pages in swap cache\n", total_swapcache_pages());
67 	printk("Free swap  = %ldkB\n",
68 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
70 }
71 
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
73 {
74 	struct address_space *address_space = swap_address_space(entry);
75 	pgoff_t idx = swp_offset(entry);
76 	struct page *page;
77 
78 	page = xa_load(&address_space->i_pages, idx);
79 	if (xa_is_value(page))
80 		return page;
81 	return NULL;
82 }
83 
84 /*
85  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
86  * but sets SwapCache flag and private instead of mapping and index.
87  */
88 int add_to_swap_cache(struct page *page, swp_entry_t entry,
89 			gfp_t gfp, void **shadowp)
90 {
91 	struct address_space *address_space = swap_address_space(entry);
92 	pgoff_t idx = swp_offset(entry);
93 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
94 	unsigned long i, nr = thp_nr_pages(page);
95 	void *old;
96 
97 	VM_BUG_ON_PAGE(!PageLocked(page), page);
98 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
99 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
100 
101 	page_ref_add(page, nr);
102 	SetPageSwapCache(page);
103 
104 	do {
105 		xas_lock_irq(&xas);
106 		xas_create_range(&xas);
107 		if (xas_error(&xas))
108 			goto unlock;
109 		for (i = 0; i < nr; i++) {
110 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
111 			old = xas_load(&xas);
112 			if (xa_is_value(old)) {
113 				if (shadowp)
114 					*shadowp = old;
115 			}
116 			set_page_private(page + i, entry.val + i);
117 			xas_store(&xas, page);
118 			xas_next(&xas);
119 		}
120 		address_space->nrpages += nr;
121 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
122 		__mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
123 unlock:
124 		xas_unlock_irq(&xas);
125 	} while (xas_nomem(&xas, gfp));
126 
127 	if (!xas_error(&xas))
128 		return 0;
129 
130 	ClearPageSwapCache(page);
131 	page_ref_sub(page, nr);
132 	return xas_error(&xas);
133 }
134 
135 /*
136  * This must be called only on pages that have
137  * been verified to be in the swap cache.
138  */
139 void __delete_from_swap_cache(struct page *page,
140 			swp_entry_t entry, void *shadow)
141 {
142 	struct address_space *address_space = swap_address_space(entry);
143 	int i, nr = thp_nr_pages(page);
144 	pgoff_t idx = swp_offset(entry);
145 	XA_STATE(xas, &address_space->i_pages, idx);
146 
147 	VM_BUG_ON_PAGE(!PageLocked(page), page);
148 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
149 	VM_BUG_ON_PAGE(PageWriteback(page), page);
150 
151 	for (i = 0; i < nr; i++) {
152 		void *entry = xas_store(&xas, shadow);
153 		VM_BUG_ON_PAGE(entry != page, entry);
154 		set_page_private(page + i, 0);
155 		xas_next(&xas);
156 	}
157 	ClearPageSwapCache(page);
158 	address_space->nrpages -= nr;
159 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
160 	__mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
161 }
162 
163 /**
164  * add_to_swap - allocate swap space for a folio
165  * @folio: folio we want to move to swap
166  *
167  * Allocate swap space for the folio and add the folio to the
168  * swap cache.
169  *
170  * Context: Caller needs to hold the folio lock.
171  * Return: Whether the folio was added to the swap cache.
172  */
173 bool add_to_swap(struct folio *folio)
174 {
175 	swp_entry_t entry;
176 	int err;
177 
178 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
179 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
180 
181 	entry = folio_alloc_swap(folio);
182 	if (!entry.val)
183 		return false;
184 
185 	/*
186 	 * XArray node allocations from PF_MEMALLOC contexts could
187 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
188 	 * stops emergency reserves from being allocated.
189 	 *
190 	 * TODO: this could cause a theoretical memory reclaim
191 	 * deadlock in the swap out path.
192 	 */
193 	/*
194 	 * Add it to the swap cache.
195 	 */
196 	err = add_to_swap_cache(&folio->page, entry,
197 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
198 	if (err)
199 		/*
200 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
201 		 * clear SWAP_HAS_CACHE flag.
202 		 */
203 		goto fail;
204 	/*
205 	 * Normally the folio will be dirtied in unmap because its
206 	 * pte should be dirty. A special case is MADV_FREE page. The
207 	 * page's pte could have dirty bit cleared but the folio's
208 	 * SwapBacked flag is still set because clearing the dirty bit
209 	 * and SwapBacked flag has no lock protected. For such folio,
210 	 * unmap will not set dirty bit for it, so folio reclaim will
211 	 * not write the folio out. This can cause data corruption when
212 	 * the folio is swapped in later. Always setting the dirty flag
213 	 * for the folio solves the problem.
214 	 */
215 	folio_mark_dirty(folio);
216 
217 	return true;
218 
219 fail:
220 	put_swap_page(&folio->page, entry);
221 	return false;
222 }
223 
224 /*
225  * This must be called only on pages that have
226  * been verified to be in the swap cache and locked.
227  * It will never put the page into the free list,
228  * the caller has a reference on the page.
229  */
230 void delete_from_swap_cache(struct page *page)
231 {
232 	swp_entry_t entry = { .val = page_private(page) };
233 	struct address_space *address_space = swap_address_space(entry);
234 
235 	xa_lock_irq(&address_space->i_pages);
236 	__delete_from_swap_cache(page, entry, NULL);
237 	xa_unlock_irq(&address_space->i_pages);
238 
239 	put_swap_page(page, entry);
240 	page_ref_sub(page, thp_nr_pages(page));
241 }
242 
243 void clear_shadow_from_swap_cache(int type, unsigned long begin,
244 				unsigned long end)
245 {
246 	unsigned long curr = begin;
247 	void *old;
248 
249 	for (;;) {
250 		swp_entry_t entry = swp_entry(type, curr);
251 		struct address_space *address_space = swap_address_space(entry);
252 		XA_STATE(xas, &address_space->i_pages, curr);
253 
254 		xa_lock_irq(&address_space->i_pages);
255 		xas_for_each(&xas, old, end) {
256 			if (!xa_is_value(old))
257 				continue;
258 			xas_store(&xas, NULL);
259 		}
260 		xa_unlock_irq(&address_space->i_pages);
261 
262 		/* search the next swapcache until we meet end */
263 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
264 		curr++;
265 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
266 		if (curr > end)
267 			break;
268 	}
269 }
270 
271 /*
272  * If we are the only user, then try to free up the swap cache.
273  *
274  * Its ok to check for PageSwapCache without the page lock
275  * here because we are going to recheck again inside
276  * try_to_free_swap() _with_ the lock.
277  * 					- Marcelo
278  */
279 void free_swap_cache(struct page *page)
280 {
281 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
282 		try_to_free_swap(page);
283 		unlock_page(page);
284 	}
285 }
286 
287 /*
288  * Perform a free_page(), also freeing any swap cache associated with
289  * this page if it is the last user of the page.
290  */
291 void free_page_and_swap_cache(struct page *page)
292 {
293 	free_swap_cache(page);
294 	if (!is_huge_zero_page(page))
295 		put_page(page);
296 }
297 
298 /*
299  * Passed an array of pages, drop them all from swapcache and then release
300  * them.  They are removed from the LRU and freed if this is their last use.
301  */
302 void free_pages_and_swap_cache(struct page **pages, int nr)
303 {
304 	struct page **pagep = pages;
305 	int i;
306 
307 	lru_add_drain();
308 	for (i = 0; i < nr; i++)
309 		free_swap_cache(pagep[i]);
310 	release_pages(pagep, nr);
311 }
312 
313 static inline bool swap_use_vma_readahead(void)
314 {
315 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
316 }
317 
318 /*
319  * Lookup a swap entry in the swap cache. A found page will be returned
320  * unlocked and with its refcount incremented - we rely on the kernel
321  * lock getting page table operations atomic even if we drop the page
322  * lock before returning.
323  */
324 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
325 			       unsigned long addr)
326 {
327 	struct page *page;
328 	struct swap_info_struct *si;
329 
330 	si = get_swap_device(entry);
331 	if (!si)
332 		return NULL;
333 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
334 	put_swap_device(si);
335 
336 	if (page) {
337 		bool vma_ra = swap_use_vma_readahead();
338 		bool readahead;
339 
340 		/*
341 		 * At the moment, we don't support PG_readahead for anon THP
342 		 * so let's bail out rather than confusing the readahead stat.
343 		 */
344 		if (unlikely(PageTransCompound(page)))
345 			return page;
346 
347 		readahead = TestClearPageReadahead(page);
348 		if (vma && vma_ra) {
349 			unsigned long ra_val;
350 			int win, hits;
351 
352 			ra_val = GET_SWAP_RA_VAL(vma);
353 			win = SWAP_RA_WIN(ra_val);
354 			hits = SWAP_RA_HITS(ra_val);
355 			if (readahead)
356 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
357 			atomic_long_set(&vma->swap_readahead_info,
358 					SWAP_RA_VAL(addr, win, hits));
359 		}
360 
361 		if (readahead) {
362 			count_vm_event(SWAP_RA_HIT);
363 			if (!vma || !vma_ra)
364 				atomic_inc(&swapin_readahead_hits);
365 		}
366 	}
367 
368 	return page;
369 }
370 
371 /**
372  * find_get_incore_page - Find and get a page from the page or swap caches.
373  * @mapping: The address_space to search.
374  * @index: The page cache index.
375  *
376  * This differs from find_get_page() in that it will also look for the
377  * page in the swap cache.
378  *
379  * Return: The found page or %NULL.
380  */
381 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
382 {
383 	swp_entry_t swp;
384 	struct swap_info_struct *si;
385 	struct page *page = pagecache_get_page(mapping, index,
386 						FGP_ENTRY | FGP_HEAD, 0);
387 
388 	if (!page)
389 		return page;
390 	if (!xa_is_value(page))
391 		return find_subpage(page, index);
392 	if (!shmem_mapping(mapping))
393 		return NULL;
394 
395 	swp = radix_to_swp_entry(page);
396 	/* There might be swapin error entries in shmem mapping. */
397 	if (non_swap_entry(swp))
398 		return NULL;
399 	/* Prevent swapoff from happening to us */
400 	si = get_swap_device(swp);
401 	if (!si)
402 		return NULL;
403 	page = find_get_page(swap_address_space(swp), swp_offset(swp));
404 	put_swap_device(si);
405 	return page;
406 }
407 
408 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
409 			struct vm_area_struct *vma, unsigned long addr,
410 			bool *new_page_allocated)
411 {
412 	struct swap_info_struct *si;
413 	struct page *page;
414 	void *shadow = NULL;
415 
416 	*new_page_allocated = false;
417 
418 	for (;;) {
419 		int err;
420 		/*
421 		 * First check the swap cache.  Since this is normally
422 		 * called after lookup_swap_cache() failed, re-calling
423 		 * that would confuse statistics.
424 		 */
425 		si = get_swap_device(entry);
426 		if (!si)
427 			return NULL;
428 		page = find_get_page(swap_address_space(entry),
429 				     swp_offset(entry));
430 		put_swap_device(si);
431 		if (page)
432 			return page;
433 
434 		/*
435 		 * Just skip read ahead for unused swap slot.
436 		 * During swap_off when swap_slot_cache is disabled,
437 		 * we have to handle the race between putting
438 		 * swap entry in swap cache and marking swap slot
439 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
440 		 * else swap_off will be aborted if we return NULL.
441 		 */
442 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
443 			return NULL;
444 
445 		/*
446 		 * Get a new page to read into from swap.  Allocate it now,
447 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
448 		 * cause any racers to loop around until we add it to cache.
449 		 */
450 		page = alloc_page_vma(gfp_mask, vma, addr);
451 		if (!page)
452 			return NULL;
453 
454 		/*
455 		 * Swap entry may have been freed since our caller observed it.
456 		 */
457 		err = swapcache_prepare(entry);
458 		if (!err)
459 			break;
460 
461 		put_page(page);
462 		if (err != -EEXIST)
463 			return NULL;
464 
465 		/*
466 		 * We might race against __delete_from_swap_cache(), and
467 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
468 		 * has not yet been cleared.  Or race against another
469 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
470 		 * in swap_map, but not yet added its page to swap cache.
471 		 */
472 		schedule_timeout_uninterruptible(1);
473 	}
474 
475 	/*
476 	 * The swap entry is ours to swap in. Prepare the new page.
477 	 */
478 
479 	__SetPageLocked(page);
480 	__SetPageSwapBacked(page);
481 
482 	if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
483 		goto fail_unlock;
484 
485 	/* May fail (-ENOMEM) if XArray node allocation failed. */
486 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
487 		goto fail_unlock;
488 
489 	mem_cgroup_swapin_uncharge_swap(entry);
490 
491 	if (shadow)
492 		workingset_refault(page_folio(page), shadow);
493 
494 	/* Caller will initiate read into locked page */
495 	lru_cache_add(page);
496 	*new_page_allocated = true;
497 	return page;
498 
499 fail_unlock:
500 	put_swap_page(page, entry);
501 	unlock_page(page);
502 	put_page(page);
503 	return NULL;
504 }
505 
506 /*
507  * Locate a page of swap in physical memory, reserving swap cache space
508  * and reading the disk if it is not already cached.
509  * A failure return means that either the page allocation failed or that
510  * the swap entry is no longer in use.
511  */
512 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
513 				   struct vm_area_struct *vma,
514 				   unsigned long addr, bool do_poll,
515 				   struct swap_iocb **plug)
516 {
517 	bool page_was_allocated;
518 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
519 			vma, addr, &page_was_allocated);
520 
521 	if (page_was_allocated)
522 		swap_readpage(retpage, do_poll, plug);
523 
524 	return retpage;
525 }
526 
527 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
528 				      unsigned long offset,
529 				      int hits,
530 				      int max_pages,
531 				      int prev_win)
532 {
533 	unsigned int pages, last_ra;
534 
535 	/*
536 	 * This heuristic has been found to work well on both sequential and
537 	 * random loads, swapping to hard disk or to SSD: please don't ask
538 	 * what the "+ 2" means, it just happens to work well, that's all.
539 	 */
540 	pages = hits + 2;
541 	if (pages == 2) {
542 		/*
543 		 * We can have no readahead hits to judge by: but must not get
544 		 * stuck here forever, so check for an adjacent offset instead
545 		 * (and don't even bother to check whether swap type is same).
546 		 */
547 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
548 			pages = 1;
549 	} else {
550 		unsigned int roundup = 4;
551 		while (roundup < pages)
552 			roundup <<= 1;
553 		pages = roundup;
554 	}
555 
556 	if (pages > max_pages)
557 		pages = max_pages;
558 
559 	/* Don't shrink readahead too fast */
560 	last_ra = prev_win / 2;
561 	if (pages < last_ra)
562 		pages = last_ra;
563 
564 	return pages;
565 }
566 
567 static unsigned long swapin_nr_pages(unsigned long offset)
568 {
569 	static unsigned long prev_offset;
570 	unsigned int hits, pages, max_pages;
571 	static atomic_t last_readahead_pages;
572 
573 	max_pages = 1 << READ_ONCE(page_cluster);
574 	if (max_pages <= 1)
575 		return 1;
576 
577 	hits = atomic_xchg(&swapin_readahead_hits, 0);
578 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
579 				  max_pages,
580 				  atomic_read(&last_readahead_pages));
581 	if (!hits)
582 		WRITE_ONCE(prev_offset, offset);
583 	atomic_set(&last_readahead_pages, pages);
584 
585 	return pages;
586 }
587 
588 /**
589  * swap_cluster_readahead - swap in pages in hope we need them soon
590  * @entry: swap entry of this memory
591  * @gfp_mask: memory allocation flags
592  * @vmf: fault information
593  *
594  * Returns the struct page for entry and addr, after queueing swapin.
595  *
596  * Primitive swap readahead code. We simply read an aligned block of
597  * (1 << page_cluster) entries in the swap area. This method is chosen
598  * because it doesn't cost us any seek time.  We also make sure to queue
599  * the 'original' request together with the readahead ones...
600  *
601  * This has been extended to use the NUMA policies from the mm triggering
602  * the readahead.
603  *
604  * Caller must hold read mmap_lock if vmf->vma is not NULL.
605  */
606 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
607 				struct vm_fault *vmf)
608 {
609 	struct page *page;
610 	unsigned long entry_offset = swp_offset(entry);
611 	unsigned long offset = entry_offset;
612 	unsigned long start_offset, end_offset;
613 	unsigned long mask;
614 	struct swap_info_struct *si = swp_swap_info(entry);
615 	struct blk_plug plug;
616 	struct swap_iocb *splug = NULL;
617 	bool do_poll = true, page_allocated;
618 	struct vm_area_struct *vma = vmf->vma;
619 	unsigned long addr = vmf->address;
620 
621 	mask = swapin_nr_pages(offset) - 1;
622 	if (!mask)
623 		goto skip;
624 
625 	do_poll = false;
626 	/* Read a page_cluster sized and aligned cluster around offset. */
627 	start_offset = offset & ~mask;
628 	end_offset = offset | mask;
629 	if (!start_offset)	/* First page is swap header. */
630 		start_offset++;
631 	if (end_offset >= si->max)
632 		end_offset = si->max - 1;
633 
634 	blk_start_plug(&plug);
635 	for (offset = start_offset; offset <= end_offset ; offset++) {
636 		/* Ok, do the async read-ahead now */
637 		page = __read_swap_cache_async(
638 			swp_entry(swp_type(entry), offset),
639 			gfp_mask, vma, addr, &page_allocated);
640 		if (!page)
641 			continue;
642 		if (page_allocated) {
643 			swap_readpage(page, false, &splug);
644 			if (offset != entry_offset) {
645 				SetPageReadahead(page);
646 				count_vm_event(SWAP_RA);
647 			}
648 		}
649 		put_page(page);
650 	}
651 	blk_finish_plug(&plug);
652 	swap_read_unplug(splug);
653 
654 	lru_add_drain();	/* Push any new pages onto the LRU now */
655 skip:
656 	/* The page was likely read above, so no need for plugging here */
657 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
658 }
659 
660 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
661 {
662 	struct address_space *spaces, *space;
663 	unsigned int i, nr;
664 
665 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
666 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
667 	if (!spaces)
668 		return -ENOMEM;
669 	for (i = 0; i < nr; i++) {
670 		space = spaces + i;
671 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
672 		atomic_set(&space->i_mmap_writable, 0);
673 		space->a_ops = &swap_aops;
674 		/* swap cache doesn't use writeback related tags */
675 		mapping_set_no_writeback_tags(space);
676 	}
677 	nr_swapper_spaces[type] = nr;
678 	swapper_spaces[type] = spaces;
679 
680 	return 0;
681 }
682 
683 void exit_swap_address_space(unsigned int type)
684 {
685 	int i;
686 	struct address_space *spaces = swapper_spaces[type];
687 
688 	for (i = 0; i < nr_swapper_spaces[type]; i++)
689 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
690 	kvfree(spaces);
691 	nr_swapper_spaces[type] = 0;
692 	swapper_spaces[type] = NULL;
693 }
694 
695 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
696 				     unsigned long faddr,
697 				     unsigned long lpfn,
698 				     unsigned long rpfn,
699 				     unsigned long *start,
700 				     unsigned long *end)
701 {
702 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
703 		      PFN_DOWN(faddr & PMD_MASK));
704 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
705 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
706 }
707 
708 static void swap_ra_info(struct vm_fault *vmf,
709 			struct vma_swap_readahead *ra_info)
710 {
711 	struct vm_area_struct *vma = vmf->vma;
712 	unsigned long ra_val;
713 	unsigned long faddr, pfn, fpfn;
714 	unsigned long start, end;
715 	pte_t *pte, *orig_pte;
716 	unsigned int max_win, hits, prev_win, win, left;
717 #ifndef CONFIG_64BIT
718 	pte_t *tpte;
719 #endif
720 
721 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
722 			     SWAP_RA_ORDER_CEILING);
723 	if (max_win == 1) {
724 		ra_info->win = 1;
725 		return;
726 	}
727 
728 	faddr = vmf->address;
729 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
730 
731 	fpfn = PFN_DOWN(faddr);
732 	ra_val = GET_SWAP_RA_VAL(vma);
733 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
734 	prev_win = SWAP_RA_WIN(ra_val);
735 	hits = SWAP_RA_HITS(ra_val);
736 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
737 					       max_win, prev_win);
738 	atomic_long_set(&vma->swap_readahead_info,
739 			SWAP_RA_VAL(faddr, win, 0));
740 
741 	if (win == 1) {
742 		pte_unmap(orig_pte);
743 		return;
744 	}
745 
746 	/* Copy the PTEs because the page table may be unmapped */
747 	if (fpfn == pfn + 1)
748 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
749 	else if (pfn == fpfn + 1)
750 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
751 				  &start, &end);
752 	else {
753 		left = (win - 1) / 2;
754 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
755 				  &start, &end);
756 	}
757 	ra_info->nr_pte = end - start;
758 	ra_info->offset = fpfn - start;
759 	pte -= ra_info->offset;
760 #ifdef CONFIG_64BIT
761 	ra_info->ptes = pte;
762 #else
763 	tpte = ra_info->ptes;
764 	for (pfn = start; pfn != end; pfn++)
765 		*tpte++ = *pte++;
766 #endif
767 	pte_unmap(orig_pte);
768 }
769 
770 /**
771  * swap_vma_readahead - swap in pages in hope we need them soon
772  * @fentry: swap entry of this memory
773  * @gfp_mask: memory allocation flags
774  * @vmf: fault information
775  *
776  * Returns the struct page for entry and addr, after queueing swapin.
777  *
778  * Primitive swap readahead code. We simply read in a few pages whose
779  * virtual addresses are around the fault address in the same vma.
780  *
781  * Caller must hold read mmap_lock if vmf->vma is not NULL.
782  *
783  */
784 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
785 				       struct vm_fault *vmf)
786 {
787 	struct blk_plug plug;
788 	struct swap_iocb *splug = NULL;
789 	struct vm_area_struct *vma = vmf->vma;
790 	struct page *page;
791 	pte_t *pte, pentry;
792 	swp_entry_t entry;
793 	unsigned int i;
794 	bool page_allocated;
795 	struct vma_swap_readahead ra_info = {
796 		.win = 1,
797 	};
798 
799 	swap_ra_info(vmf, &ra_info);
800 	if (ra_info.win == 1)
801 		goto skip;
802 
803 	blk_start_plug(&plug);
804 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
805 	     i++, pte++) {
806 		pentry = *pte;
807 		if (!is_swap_pte(pentry))
808 			continue;
809 		entry = pte_to_swp_entry(pentry);
810 		if (unlikely(non_swap_entry(entry)))
811 			continue;
812 		page = __read_swap_cache_async(entry, gfp_mask, vma,
813 					       vmf->address, &page_allocated);
814 		if (!page)
815 			continue;
816 		if (page_allocated) {
817 			swap_readpage(page, false, &splug);
818 			if (i != ra_info.offset) {
819 				SetPageReadahead(page);
820 				count_vm_event(SWAP_RA);
821 			}
822 		}
823 		put_page(page);
824 	}
825 	blk_finish_plug(&plug);
826 	swap_read_unplug(splug);
827 	lru_add_drain();
828 skip:
829 	/* The page was likely read above, so no need for plugging here */
830 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
831 				     ra_info.win == 1, NULL);
832 }
833 
834 /**
835  * swapin_readahead - swap in pages in hope we need them soon
836  * @entry: swap entry of this memory
837  * @gfp_mask: memory allocation flags
838  * @vmf: fault information
839  *
840  * Returns the struct page for entry and addr, after queueing swapin.
841  *
842  * It's a main entry function for swap readahead. By the configuration,
843  * it will read ahead blocks by cluster-based(ie, physical disk based)
844  * or vma-based(ie, virtual address based on faulty address) readahead.
845  */
846 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
847 				struct vm_fault *vmf)
848 {
849 	return swap_use_vma_readahead() ?
850 			swap_vma_readahead(entry, gfp_mask, vmf) :
851 			swap_cluster_readahead(entry, gfp_mask, vmf);
852 }
853 
854 #ifdef CONFIG_SYSFS
855 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
856 				     struct kobj_attribute *attr, char *buf)
857 {
858 	return sysfs_emit(buf, "%s\n",
859 			  enable_vma_readahead ? "true" : "false");
860 }
861 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
862 				      struct kobj_attribute *attr,
863 				      const char *buf, size_t count)
864 {
865 	ssize_t ret;
866 
867 	ret = kstrtobool(buf, &enable_vma_readahead);
868 	if (ret)
869 		return ret;
870 
871 	return count;
872 }
873 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
874 
875 static struct attribute *swap_attrs[] = {
876 	&vma_ra_enabled_attr.attr,
877 	NULL,
878 };
879 
880 static const struct attribute_group swap_attr_group = {
881 	.attrs = swap_attrs,
882 };
883 
884 static int __init swap_init_sysfs(void)
885 {
886 	int err;
887 	struct kobject *swap_kobj;
888 
889 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
890 	if (!swap_kobj) {
891 		pr_err("failed to create swap kobject\n");
892 		return -ENOMEM;
893 	}
894 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
895 	if (err) {
896 		pr_err("failed to register swap group\n");
897 		goto delete_obj;
898 	}
899 	return 0;
900 
901 delete_obj:
902 	kobject_put(swap_kobj);
903 	return err;
904 }
905 subsys_initcall(swap_init_sysfs);
906 #endif
907