1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_page_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .writepage = swap_writepage, 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migratepage = migrate_page, 37 #endif 38 }; 39 40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static bool enable_vma_readahead __read_mostly = true; 43 44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 48 49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 52 53 #define SWAP_RA_VAL(addr, win, hits) \ 54 (((addr) & PAGE_MASK) | \ 55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 56 ((hits) & SWAP_RA_HITS_MASK)) 57 58 /* Initial readahead hits is 4 to start up with a small window */ 59 #define GET_SWAP_RA_VAL(vma) \ 60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 61 62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 63 64 void show_swap_cache_info(void) 65 { 66 printk("%lu pages in swap cache\n", total_swapcache_pages()); 67 printk("Free swap = %ldkB\n", 68 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 69 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 70 } 71 72 void *get_shadow_from_swap_cache(swp_entry_t entry) 73 { 74 struct address_space *address_space = swap_address_space(entry); 75 pgoff_t idx = swp_offset(entry); 76 struct page *page; 77 78 page = xa_load(&address_space->i_pages, idx); 79 if (xa_is_value(page)) 80 return page; 81 return NULL; 82 } 83 84 /* 85 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 86 * but sets SwapCache flag and private instead of mapping and index. 87 */ 88 int add_to_swap_cache(struct page *page, swp_entry_t entry, 89 gfp_t gfp, void **shadowp) 90 { 91 struct address_space *address_space = swap_address_space(entry); 92 pgoff_t idx = swp_offset(entry); 93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); 94 unsigned long i, nr = thp_nr_pages(page); 95 void *old; 96 97 VM_BUG_ON_PAGE(!PageLocked(page), page); 98 VM_BUG_ON_PAGE(PageSwapCache(page), page); 99 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 100 101 page_ref_add(page, nr); 102 SetPageSwapCache(page); 103 104 do { 105 xas_lock_irq(&xas); 106 xas_create_range(&xas); 107 if (xas_error(&xas)) 108 goto unlock; 109 for (i = 0; i < nr; i++) { 110 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); 111 old = xas_load(&xas); 112 if (xa_is_value(old)) { 113 if (shadowp) 114 *shadowp = old; 115 } 116 set_page_private(page + i, entry.val + i); 117 xas_store(&xas, page); 118 xas_next(&xas); 119 } 120 address_space->nrpages += nr; 121 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 122 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr); 123 unlock: 124 xas_unlock_irq(&xas); 125 } while (xas_nomem(&xas, gfp)); 126 127 if (!xas_error(&xas)) 128 return 0; 129 130 ClearPageSwapCache(page); 131 page_ref_sub(page, nr); 132 return xas_error(&xas); 133 } 134 135 /* 136 * This must be called only on pages that have 137 * been verified to be in the swap cache. 138 */ 139 void __delete_from_swap_cache(struct page *page, 140 swp_entry_t entry, void *shadow) 141 { 142 struct address_space *address_space = swap_address_space(entry); 143 int i, nr = thp_nr_pages(page); 144 pgoff_t idx = swp_offset(entry); 145 XA_STATE(xas, &address_space->i_pages, idx); 146 147 VM_BUG_ON_PAGE(!PageLocked(page), page); 148 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 149 VM_BUG_ON_PAGE(PageWriteback(page), page); 150 151 for (i = 0; i < nr; i++) { 152 void *entry = xas_store(&xas, shadow); 153 VM_BUG_ON_PAGE(entry != page, entry); 154 set_page_private(page + i, 0); 155 xas_next(&xas); 156 } 157 ClearPageSwapCache(page); 158 address_space->nrpages -= nr; 159 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 160 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr); 161 } 162 163 /** 164 * add_to_swap - allocate swap space for a folio 165 * @folio: folio we want to move to swap 166 * 167 * Allocate swap space for the folio and add the folio to the 168 * swap cache. 169 * 170 * Context: Caller needs to hold the folio lock. 171 * Return: Whether the folio was added to the swap cache. 172 */ 173 bool add_to_swap(struct folio *folio) 174 { 175 swp_entry_t entry; 176 int err; 177 178 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 179 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 180 181 entry = folio_alloc_swap(folio); 182 if (!entry.val) 183 return false; 184 185 /* 186 * XArray node allocations from PF_MEMALLOC contexts could 187 * completely exhaust the page allocator. __GFP_NOMEMALLOC 188 * stops emergency reserves from being allocated. 189 * 190 * TODO: this could cause a theoretical memory reclaim 191 * deadlock in the swap out path. 192 */ 193 /* 194 * Add it to the swap cache. 195 */ 196 err = add_to_swap_cache(&folio->page, entry, 197 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 198 if (err) 199 /* 200 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 201 * clear SWAP_HAS_CACHE flag. 202 */ 203 goto fail; 204 /* 205 * Normally the folio will be dirtied in unmap because its 206 * pte should be dirty. A special case is MADV_FREE page. The 207 * page's pte could have dirty bit cleared but the folio's 208 * SwapBacked flag is still set because clearing the dirty bit 209 * and SwapBacked flag has no lock protected. For such folio, 210 * unmap will not set dirty bit for it, so folio reclaim will 211 * not write the folio out. This can cause data corruption when 212 * the folio is swapped in later. Always setting the dirty flag 213 * for the folio solves the problem. 214 */ 215 folio_mark_dirty(folio); 216 217 return true; 218 219 fail: 220 put_swap_page(&folio->page, entry); 221 return false; 222 } 223 224 /* 225 * This must be called only on pages that have 226 * been verified to be in the swap cache and locked. 227 * It will never put the page into the free list, 228 * the caller has a reference on the page. 229 */ 230 void delete_from_swap_cache(struct page *page) 231 { 232 swp_entry_t entry = { .val = page_private(page) }; 233 struct address_space *address_space = swap_address_space(entry); 234 235 xa_lock_irq(&address_space->i_pages); 236 __delete_from_swap_cache(page, entry, NULL); 237 xa_unlock_irq(&address_space->i_pages); 238 239 put_swap_page(page, entry); 240 page_ref_sub(page, thp_nr_pages(page)); 241 } 242 243 void clear_shadow_from_swap_cache(int type, unsigned long begin, 244 unsigned long end) 245 { 246 unsigned long curr = begin; 247 void *old; 248 249 for (;;) { 250 swp_entry_t entry = swp_entry(type, curr); 251 struct address_space *address_space = swap_address_space(entry); 252 XA_STATE(xas, &address_space->i_pages, curr); 253 254 xa_lock_irq(&address_space->i_pages); 255 xas_for_each(&xas, old, end) { 256 if (!xa_is_value(old)) 257 continue; 258 xas_store(&xas, NULL); 259 } 260 xa_unlock_irq(&address_space->i_pages); 261 262 /* search the next swapcache until we meet end */ 263 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 264 curr++; 265 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 266 if (curr > end) 267 break; 268 } 269 } 270 271 /* 272 * If we are the only user, then try to free up the swap cache. 273 * 274 * Its ok to check for PageSwapCache without the page lock 275 * here because we are going to recheck again inside 276 * try_to_free_swap() _with_ the lock. 277 * - Marcelo 278 */ 279 void free_swap_cache(struct page *page) 280 { 281 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 282 try_to_free_swap(page); 283 unlock_page(page); 284 } 285 } 286 287 /* 288 * Perform a free_page(), also freeing any swap cache associated with 289 * this page if it is the last user of the page. 290 */ 291 void free_page_and_swap_cache(struct page *page) 292 { 293 free_swap_cache(page); 294 if (!is_huge_zero_page(page)) 295 put_page(page); 296 } 297 298 /* 299 * Passed an array of pages, drop them all from swapcache and then release 300 * them. They are removed from the LRU and freed if this is their last use. 301 */ 302 void free_pages_and_swap_cache(struct page **pages, int nr) 303 { 304 struct page **pagep = pages; 305 int i; 306 307 lru_add_drain(); 308 for (i = 0; i < nr; i++) 309 free_swap_cache(pagep[i]); 310 release_pages(pagep, nr); 311 } 312 313 static inline bool swap_use_vma_readahead(void) 314 { 315 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 316 } 317 318 /* 319 * Lookup a swap entry in the swap cache. A found page will be returned 320 * unlocked and with its refcount incremented - we rely on the kernel 321 * lock getting page table operations atomic even if we drop the page 322 * lock before returning. 323 */ 324 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, 325 unsigned long addr) 326 { 327 struct page *page; 328 struct swap_info_struct *si; 329 330 si = get_swap_device(entry); 331 if (!si) 332 return NULL; 333 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 334 put_swap_device(si); 335 336 if (page) { 337 bool vma_ra = swap_use_vma_readahead(); 338 bool readahead; 339 340 /* 341 * At the moment, we don't support PG_readahead for anon THP 342 * so let's bail out rather than confusing the readahead stat. 343 */ 344 if (unlikely(PageTransCompound(page))) 345 return page; 346 347 readahead = TestClearPageReadahead(page); 348 if (vma && vma_ra) { 349 unsigned long ra_val; 350 int win, hits; 351 352 ra_val = GET_SWAP_RA_VAL(vma); 353 win = SWAP_RA_WIN(ra_val); 354 hits = SWAP_RA_HITS(ra_val); 355 if (readahead) 356 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 357 atomic_long_set(&vma->swap_readahead_info, 358 SWAP_RA_VAL(addr, win, hits)); 359 } 360 361 if (readahead) { 362 count_vm_event(SWAP_RA_HIT); 363 if (!vma || !vma_ra) 364 atomic_inc(&swapin_readahead_hits); 365 } 366 } 367 368 return page; 369 } 370 371 /** 372 * find_get_incore_page - Find and get a page from the page or swap caches. 373 * @mapping: The address_space to search. 374 * @index: The page cache index. 375 * 376 * This differs from find_get_page() in that it will also look for the 377 * page in the swap cache. 378 * 379 * Return: The found page or %NULL. 380 */ 381 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) 382 { 383 swp_entry_t swp; 384 struct swap_info_struct *si; 385 struct page *page = pagecache_get_page(mapping, index, 386 FGP_ENTRY | FGP_HEAD, 0); 387 388 if (!page) 389 return page; 390 if (!xa_is_value(page)) 391 return find_subpage(page, index); 392 if (!shmem_mapping(mapping)) 393 return NULL; 394 395 swp = radix_to_swp_entry(page); 396 /* There might be swapin error entries in shmem mapping. */ 397 if (non_swap_entry(swp)) 398 return NULL; 399 /* Prevent swapoff from happening to us */ 400 si = get_swap_device(swp); 401 if (!si) 402 return NULL; 403 page = find_get_page(swap_address_space(swp), swp_offset(swp)); 404 put_swap_device(si); 405 return page; 406 } 407 408 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 409 struct vm_area_struct *vma, unsigned long addr, 410 bool *new_page_allocated) 411 { 412 struct swap_info_struct *si; 413 struct page *page; 414 void *shadow = NULL; 415 416 *new_page_allocated = false; 417 418 for (;;) { 419 int err; 420 /* 421 * First check the swap cache. Since this is normally 422 * called after lookup_swap_cache() failed, re-calling 423 * that would confuse statistics. 424 */ 425 si = get_swap_device(entry); 426 if (!si) 427 return NULL; 428 page = find_get_page(swap_address_space(entry), 429 swp_offset(entry)); 430 put_swap_device(si); 431 if (page) 432 return page; 433 434 /* 435 * Just skip read ahead for unused swap slot. 436 * During swap_off when swap_slot_cache is disabled, 437 * we have to handle the race between putting 438 * swap entry in swap cache and marking swap slot 439 * as SWAP_HAS_CACHE. That's done in later part of code or 440 * else swap_off will be aborted if we return NULL. 441 */ 442 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 443 return NULL; 444 445 /* 446 * Get a new page to read into from swap. Allocate it now, 447 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 448 * cause any racers to loop around until we add it to cache. 449 */ 450 page = alloc_page_vma(gfp_mask, vma, addr); 451 if (!page) 452 return NULL; 453 454 /* 455 * Swap entry may have been freed since our caller observed it. 456 */ 457 err = swapcache_prepare(entry); 458 if (!err) 459 break; 460 461 put_page(page); 462 if (err != -EEXIST) 463 return NULL; 464 465 /* 466 * We might race against __delete_from_swap_cache(), and 467 * stumble across a swap_map entry whose SWAP_HAS_CACHE 468 * has not yet been cleared. Or race against another 469 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 470 * in swap_map, but not yet added its page to swap cache. 471 */ 472 schedule_timeout_uninterruptible(1); 473 } 474 475 /* 476 * The swap entry is ours to swap in. Prepare the new page. 477 */ 478 479 __SetPageLocked(page); 480 __SetPageSwapBacked(page); 481 482 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry)) 483 goto fail_unlock; 484 485 /* May fail (-ENOMEM) if XArray node allocation failed. */ 486 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 487 goto fail_unlock; 488 489 mem_cgroup_swapin_uncharge_swap(entry); 490 491 if (shadow) 492 workingset_refault(page_folio(page), shadow); 493 494 /* Caller will initiate read into locked page */ 495 lru_cache_add(page); 496 *new_page_allocated = true; 497 return page; 498 499 fail_unlock: 500 put_swap_page(page, entry); 501 unlock_page(page); 502 put_page(page); 503 return NULL; 504 } 505 506 /* 507 * Locate a page of swap in physical memory, reserving swap cache space 508 * and reading the disk if it is not already cached. 509 * A failure return means that either the page allocation failed or that 510 * the swap entry is no longer in use. 511 */ 512 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 513 struct vm_area_struct *vma, 514 unsigned long addr, bool do_poll, 515 struct swap_iocb **plug) 516 { 517 bool page_was_allocated; 518 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 519 vma, addr, &page_was_allocated); 520 521 if (page_was_allocated) 522 swap_readpage(retpage, do_poll, plug); 523 524 return retpage; 525 } 526 527 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 528 unsigned long offset, 529 int hits, 530 int max_pages, 531 int prev_win) 532 { 533 unsigned int pages, last_ra; 534 535 /* 536 * This heuristic has been found to work well on both sequential and 537 * random loads, swapping to hard disk or to SSD: please don't ask 538 * what the "+ 2" means, it just happens to work well, that's all. 539 */ 540 pages = hits + 2; 541 if (pages == 2) { 542 /* 543 * We can have no readahead hits to judge by: but must not get 544 * stuck here forever, so check for an adjacent offset instead 545 * (and don't even bother to check whether swap type is same). 546 */ 547 if (offset != prev_offset + 1 && offset != prev_offset - 1) 548 pages = 1; 549 } else { 550 unsigned int roundup = 4; 551 while (roundup < pages) 552 roundup <<= 1; 553 pages = roundup; 554 } 555 556 if (pages > max_pages) 557 pages = max_pages; 558 559 /* Don't shrink readahead too fast */ 560 last_ra = prev_win / 2; 561 if (pages < last_ra) 562 pages = last_ra; 563 564 return pages; 565 } 566 567 static unsigned long swapin_nr_pages(unsigned long offset) 568 { 569 static unsigned long prev_offset; 570 unsigned int hits, pages, max_pages; 571 static atomic_t last_readahead_pages; 572 573 max_pages = 1 << READ_ONCE(page_cluster); 574 if (max_pages <= 1) 575 return 1; 576 577 hits = atomic_xchg(&swapin_readahead_hits, 0); 578 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 579 max_pages, 580 atomic_read(&last_readahead_pages)); 581 if (!hits) 582 WRITE_ONCE(prev_offset, offset); 583 atomic_set(&last_readahead_pages, pages); 584 585 return pages; 586 } 587 588 /** 589 * swap_cluster_readahead - swap in pages in hope we need them soon 590 * @entry: swap entry of this memory 591 * @gfp_mask: memory allocation flags 592 * @vmf: fault information 593 * 594 * Returns the struct page for entry and addr, after queueing swapin. 595 * 596 * Primitive swap readahead code. We simply read an aligned block of 597 * (1 << page_cluster) entries in the swap area. This method is chosen 598 * because it doesn't cost us any seek time. We also make sure to queue 599 * the 'original' request together with the readahead ones... 600 * 601 * This has been extended to use the NUMA policies from the mm triggering 602 * the readahead. 603 * 604 * Caller must hold read mmap_lock if vmf->vma is not NULL. 605 */ 606 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 607 struct vm_fault *vmf) 608 { 609 struct page *page; 610 unsigned long entry_offset = swp_offset(entry); 611 unsigned long offset = entry_offset; 612 unsigned long start_offset, end_offset; 613 unsigned long mask; 614 struct swap_info_struct *si = swp_swap_info(entry); 615 struct blk_plug plug; 616 struct swap_iocb *splug = NULL; 617 bool do_poll = true, page_allocated; 618 struct vm_area_struct *vma = vmf->vma; 619 unsigned long addr = vmf->address; 620 621 mask = swapin_nr_pages(offset) - 1; 622 if (!mask) 623 goto skip; 624 625 do_poll = false; 626 /* Read a page_cluster sized and aligned cluster around offset. */ 627 start_offset = offset & ~mask; 628 end_offset = offset | mask; 629 if (!start_offset) /* First page is swap header. */ 630 start_offset++; 631 if (end_offset >= si->max) 632 end_offset = si->max - 1; 633 634 blk_start_plug(&plug); 635 for (offset = start_offset; offset <= end_offset ; offset++) { 636 /* Ok, do the async read-ahead now */ 637 page = __read_swap_cache_async( 638 swp_entry(swp_type(entry), offset), 639 gfp_mask, vma, addr, &page_allocated); 640 if (!page) 641 continue; 642 if (page_allocated) { 643 swap_readpage(page, false, &splug); 644 if (offset != entry_offset) { 645 SetPageReadahead(page); 646 count_vm_event(SWAP_RA); 647 } 648 } 649 put_page(page); 650 } 651 blk_finish_plug(&plug); 652 swap_read_unplug(splug); 653 654 lru_add_drain(); /* Push any new pages onto the LRU now */ 655 skip: 656 /* The page was likely read above, so no need for plugging here */ 657 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); 658 } 659 660 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 661 { 662 struct address_space *spaces, *space; 663 unsigned int i, nr; 664 665 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 666 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 667 if (!spaces) 668 return -ENOMEM; 669 for (i = 0; i < nr; i++) { 670 space = spaces + i; 671 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 672 atomic_set(&space->i_mmap_writable, 0); 673 space->a_ops = &swap_aops; 674 /* swap cache doesn't use writeback related tags */ 675 mapping_set_no_writeback_tags(space); 676 } 677 nr_swapper_spaces[type] = nr; 678 swapper_spaces[type] = spaces; 679 680 return 0; 681 } 682 683 void exit_swap_address_space(unsigned int type) 684 { 685 int i; 686 struct address_space *spaces = swapper_spaces[type]; 687 688 for (i = 0; i < nr_swapper_spaces[type]; i++) 689 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 690 kvfree(spaces); 691 nr_swapper_spaces[type] = 0; 692 swapper_spaces[type] = NULL; 693 } 694 695 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, 696 unsigned long faddr, 697 unsigned long lpfn, 698 unsigned long rpfn, 699 unsigned long *start, 700 unsigned long *end) 701 { 702 *start = max3(lpfn, PFN_DOWN(vma->vm_start), 703 PFN_DOWN(faddr & PMD_MASK)); 704 *end = min3(rpfn, PFN_DOWN(vma->vm_end), 705 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 706 } 707 708 static void swap_ra_info(struct vm_fault *vmf, 709 struct vma_swap_readahead *ra_info) 710 { 711 struct vm_area_struct *vma = vmf->vma; 712 unsigned long ra_val; 713 unsigned long faddr, pfn, fpfn; 714 unsigned long start, end; 715 pte_t *pte, *orig_pte; 716 unsigned int max_win, hits, prev_win, win, left; 717 #ifndef CONFIG_64BIT 718 pte_t *tpte; 719 #endif 720 721 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 722 SWAP_RA_ORDER_CEILING); 723 if (max_win == 1) { 724 ra_info->win = 1; 725 return; 726 } 727 728 faddr = vmf->address; 729 orig_pte = pte = pte_offset_map(vmf->pmd, faddr); 730 731 fpfn = PFN_DOWN(faddr); 732 ra_val = GET_SWAP_RA_VAL(vma); 733 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 734 prev_win = SWAP_RA_WIN(ra_val); 735 hits = SWAP_RA_HITS(ra_val); 736 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 737 max_win, prev_win); 738 atomic_long_set(&vma->swap_readahead_info, 739 SWAP_RA_VAL(faddr, win, 0)); 740 741 if (win == 1) { 742 pte_unmap(orig_pte); 743 return; 744 } 745 746 /* Copy the PTEs because the page table may be unmapped */ 747 if (fpfn == pfn + 1) 748 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); 749 else if (pfn == fpfn + 1) 750 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, 751 &start, &end); 752 else { 753 left = (win - 1) / 2; 754 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, 755 &start, &end); 756 } 757 ra_info->nr_pte = end - start; 758 ra_info->offset = fpfn - start; 759 pte -= ra_info->offset; 760 #ifdef CONFIG_64BIT 761 ra_info->ptes = pte; 762 #else 763 tpte = ra_info->ptes; 764 for (pfn = start; pfn != end; pfn++) 765 *tpte++ = *pte++; 766 #endif 767 pte_unmap(orig_pte); 768 } 769 770 /** 771 * swap_vma_readahead - swap in pages in hope we need them soon 772 * @fentry: swap entry of this memory 773 * @gfp_mask: memory allocation flags 774 * @vmf: fault information 775 * 776 * Returns the struct page for entry and addr, after queueing swapin. 777 * 778 * Primitive swap readahead code. We simply read in a few pages whose 779 * virtual addresses are around the fault address in the same vma. 780 * 781 * Caller must hold read mmap_lock if vmf->vma is not NULL. 782 * 783 */ 784 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 785 struct vm_fault *vmf) 786 { 787 struct blk_plug plug; 788 struct swap_iocb *splug = NULL; 789 struct vm_area_struct *vma = vmf->vma; 790 struct page *page; 791 pte_t *pte, pentry; 792 swp_entry_t entry; 793 unsigned int i; 794 bool page_allocated; 795 struct vma_swap_readahead ra_info = { 796 .win = 1, 797 }; 798 799 swap_ra_info(vmf, &ra_info); 800 if (ra_info.win == 1) 801 goto skip; 802 803 blk_start_plug(&plug); 804 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; 805 i++, pte++) { 806 pentry = *pte; 807 if (!is_swap_pte(pentry)) 808 continue; 809 entry = pte_to_swp_entry(pentry); 810 if (unlikely(non_swap_entry(entry))) 811 continue; 812 page = __read_swap_cache_async(entry, gfp_mask, vma, 813 vmf->address, &page_allocated); 814 if (!page) 815 continue; 816 if (page_allocated) { 817 swap_readpage(page, false, &splug); 818 if (i != ra_info.offset) { 819 SetPageReadahead(page); 820 count_vm_event(SWAP_RA); 821 } 822 } 823 put_page(page); 824 } 825 blk_finish_plug(&plug); 826 swap_read_unplug(splug); 827 lru_add_drain(); 828 skip: 829 /* The page was likely read above, so no need for plugging here */ 830 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 831 ra_info.win == 1, NULL); 832 } 833 834 /** 835 * swapin_readahead - swap in pages in hope we need them soon 836 * @entry: swap entry of this memory 837 * @gfp_mask: memory allocation flags 838 * @vmf: fault information 839 * 840 * Returns the struct page for entry and addr, after queueing swapin. 841 * 842 * It's a main entry function for swap readahead. By the configuration, 843 * it will read ahead blocks by cluster-based(ie, physical disk based) 844 * or vma-based(ie, virtual address based on faulty address) readahead. 845 */ 846 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 847 struct vm_fault *vmf) 848 { 849 return swap_use_vma_readahead() ? 850 swap_vma_readahead(entry, gfp_mask, vmf) : 851 swap_cluster_readahead(entry, gfp_mask, vmf); 852 } 853 854 #ifdef CONFIG_SYSFS 855 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 856 struct kobj_attribute *attr, char *buf) 857 { 858 return sysfs_emit(buf, "%s\n", 859 enable_vma_readahead ? "true" : "false"); 860 } 861 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 862 struct kobj_attribute *attr, 863 const char *buf, size_t count) 864 { 865 ssize_t ret; 866 867 ret = kstrtobool(buf, &enable_vma_readahead); 868 if (ret) 869 return ret; 870 871 return count; 872 } 873 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 874 875 static struct attribute *swap_attrs[] = { 876 &vma_ra_enabled_attr.attr, 877 NULL, 878 }; 879 880 static const struct attribute_group swap_attr_group = { 881 .attrs = swap_attrs, 882 }; 883 884 static int __init swap_init_sysfs(void) 885 { 886 int err; 887 struct kobject *swap_kobj; 888 889 swap_kobj = kobject_create_and_add("swap", mm_kobj); 890 if (!swap_kobj) { 891 pr_err("failed to create swap kobject\n"); 892 return -ENOMEM; 893 } 894 err = sysfs_create_group(swap_kobj, &swap_attr_group); 895 if (err) { 896 pr_err("failed to register swap group\n"); 897 goto delete_obj; 898 } 899 return 0; 900 901 delete_obj: 902 kobject_put(swap_kobj); 903 return err; 904 } 905 subsys_initcall(swap_init_sysfs); 906 #endif 907