xref: /openbmc/linux/mm/swap_slots.c (revision fb960bd2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Manage cache of swap slots to be used for and returned from
4  * swap.
5  *
6  * Copyright(c) 2016 Intel Corporation.
7  *
8  * Author: Tim Chen <tim.c.chen@linux.intel.com>
9  *
10  * We allocate the swap slots from the global pool and put
11  * it into local per cpu caches.  This has the advantage
12  * of no needing to acquire the swap_info lock every time
13  * we need a new slot.
14  *
15  * There is also opportunity to simply return the slot
16  * to local caches without needing to acquire swap_info
17  * lock.  We do not reuse the returned slots directly but
18  * move them back to the global pool in a batch.  This
19  * allows the slots to coaellesce and reduce fragmentation.
20  *
21  * The swap entry allocated is marked with SWAP_HAS_CACHE
22  * flag in map_count that prevents it from being allocated
23  * again from the global pool.
24  *
25  * The swap slots cache is protected by a mutex instead of
26  * a spin lock as when we search for slots with scan_swap_map,
27  * we can possibly sleep.
28  */
29 
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/vmalloc.h>
34 #include <linux/mutex.h>
35 #include <linux/mm.h>
36 
37 #ifdef CONFIG_SWAP
38 
39 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
40 static bool	swap_slot_cache_active;
41 bool	swap_slot_cache_enabled;
42 static bool	swap_slot_cache_initialized;
43 DEFINE_MUTEX(swap_slots_cache_mutex);
44 /* Serialize swap slots cache enable/disable operations */
45 DEFINE_MUTEX(swap_slots_cache_enable_mutex);
46 
47 static void __drain_swap_slots_cache(unsigned int type);
48 static void deactivate_swap_slots_cache(void);
49 static void reactivate_swap_slots_cache(void);
50 
51 #define use_swap_slot_cache (swap_slot_cache_active && \
52 		swap_slot_cache_enabled && swap_slot_cache_initialized)
53 #define SLOTS_CACHE 0x1
54 #define SLOTS_CACHE_RET 0x2
55 
56 static void deactivate_swap_slots_cache(void)
57 {
58 	mutex_lock(&swap_slots_cache_mutex);
59 	swap_slot_cache_active = false;
60 	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
61 	mutex_unlock(&swap_slots_cache_mutex);
62 }
63 
64 static void reactivate_swap_slots_cache(void)
65 {
66 	mutex_lock(&swap_slots_cache_mutex);
67 	swap_slot_cache_active = true;
68 	mutex_unlock(&swap_slots_cache_mutex);
69 }
70 
71 /* Must not be called with cpu hot plug lock */
72 void disable_swap_slots_cache_lock(void)
73 {
74 	mutex_lock(&swap_slots_cache_enable_mutex);
75 	swap_slot_cache_enabled = false;
76 	if (swap_slot_cache_initialized) {
77 		/* serialize with cpu hotplug operations */
78 		get_online_cpus();
79 		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
80 		put_online_cpus();
81 	}
82 }
83 
84 static void __reenable_swap_slots_cache(void)
85 {
86 	swap_slot_cache_enabled = has_usable_swap();
87 }
88 
89 void reenable_swap_slots_cache_unlock(void)
90 {
91 	__reenable_swap_slots_cache();
92 	mutex_unlock(&swap_slots_cache_enable_mutex);
93 }
94 
95 static bool check_cache_active(void)
96 {
97 	long pages;
98 
99 	if (!swap_slot_cache_enabled || !swap_slot_cache_initialized)
100 		return false;
101 
102 	pages = get_nr_swap_pages();
103 	if (!swap_slot_cache_active) {
104 		if (pages > num_online_cpus() *
105 		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
106 			reactivate_swap_slots_cache();
107 		goto out;
108 	}
109 
110 	/* if global pool of slot caches too low, deactivate cache */
111 	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
112 		deactivate_swap_slots_cache();
113 out:
114 	return swap_slot_cache_active;
115 }
116 
117 static int alloc_swap_slot_cache(unsigned int cpu)
118 {
119 	struct swap_slots_cache *cache;
120 	swp_entry_t *slots, *slots_ret;
121 
122 	/*
123 	 * Do allocation outside swap_slots_cache_mutex
124 	 * as kvzalloc could trigger reclaim and get_swap_page,
125 	 * which can lock swap_slots_cache_mutex.
126 	 */
127 	slots = kvzalloc(sizeof(swp_entry_t) * SWAP_SLOTS_CACHE_SIZE,
128 			 GFP_KERNEL);
129 	if (!slots)
130 		return -ENOMEM;
131 
132 	slots_ret = kvzalloc(sizeof(swp_entry_t) * SWAP_SLOTS_CACHE_SIZE,
133 			     GFP_KERNEL);
134 	if (!slots_ret) {
135 		kvfree(slots);
136 		return -ENOMEM;
137 	}
138 
139 	mutex_lock(&swap_slots_cache_mutex);
140 	cache = &per_cpu(swp_slots, cpu);
141 	if (cache->slots || cache->slots_ret)
142 		/* cache already allocated */
143 		goto out;
144 	if (!cache->lock_initialized) {
145 		mutex_init(&cache->alloc_lock);
146 		spin_lock_init(&cache->free_lock);
147 		cache->lock_initialized = true;
148 	}
149 	cache->nr = 0;
150 	cache->cur = 0;
151 	cache->n_ret = 0;
152 	/*
153 	 * We initialized alloc_lock and free_lock earlier.  We use
154 	 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
155 	 * the corresponding lock and use the cache.  Memory barrier below
156 	 * ensures the assumption.
157 	 */
158 	mb();
159 	cache->slots = slots;
160 	slots = NULL;
161 	cache->slots_ret = slots_ret;
162 	slots_ret = NULL;
163 out:
164 	mutex_unlock(&swap_slots_cache_mutex);
165 	if (slots)
166 		kvfree(slots);
167 	if (slots_ret)
168 		kvfree(slots_ret);
169 	return 0;
170 }
171 
172 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
173 				  bool free_slots)
174 {
175 	struct swap_slots_cache *cache;
176 	swp_entry_t *slots = NULL;
177 
178 	cache = &per_cpu(swp_slots, cpu);
179 	if ((type & SLOTS_CACHE) && cache->slots) {
180 		mutex_lock(&cache->alloc_lock);
181 		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
182 		cache->cur = 0;
183 		cache->nr = 0;
184 		if (free_slots && cache->slots) {
185 			kvfree(cache->slots);
186 			cache->slots = NULL;
187 		}
188 		mutex_unlock(&cache->alloc_lock);
189 	}
190 	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
191 		spin_lock_irq(&cache->free_lock);
192 		swapcache_free_entries(cache->slots_ret, cache->n_ret);
193 		cache->n_ret = 0;
194 		if (free_slots && cache->slots_ret) {
195 			slots = cache->slots_ret;
196 			cache->slots_ret = NULL;
197 		}
198 		spin_unlock_irq(&cache->free_lock);
199 		if (slots)
200 			kvfree(slots);
201 	}
202 }
203 
204 static void __drain_swap_slots_cache(unsigned int type)
205 {
206 	unsigned int cpu;
207 
208 	/*
209 	 * This function is called during
210 	 *	1) swapoff, when we have to make sure no
211 	 *	   left over slots are in cache when we remove
212 	 *	   a swap device;
213 	 *      2) disabling of swap slot cache, when we run low
214 	 *	   on swap slots when allocating memory and need
215 	 *	   to return swap slots to global pool.
216 	 *
217 	 * We cannot acquire cpu hot plug lock here as
218 	 * this function can be invoked in the cpu
219 	 * hot plug path:
220 	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
221 	 *   -> memory allocation -> direct reclaim -> get_swap_page
222 	 *   -> drain_swap_slots_cache
223 	 *
224 	 * Hence the loop over current online cpu below could miss cpu that
225 	 * is being brought online but not yet marked as online.
226 	 * That is okay as we do not schedule and run anything on a
227 	 * cpu before it has been marked online. Hence, we will not
228 	 * fill any swap slots in slots cache of such cpu.
229 	 * There are no slots on such cpu that need to be drained.
230 	 */
231 	for_each_online_cpu(cpu)
232 		drain_slots_cache_cpu(cpu, type, false);
233 }
234 
235 static int free_slot_cache(unsigned int cpu)
236 {
237 	mutex_lock(&swap_slots_cache_mutex);
238 	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
239 	mutex_unlock(&swap_slots_cache_mutex);
240 	return 0;
241 }
242 
243 int enable_swap_slots_cache(void)
244 {
245 	int ret = 0;
246 
247 	mutex_lock(&swap_slots_cache_enable_mutex);
248 	if (swap_slot_cache_initialized) {
249 		__reenable_swap_slots_cache();
250 		goto out_unlock;
251 	}
252 
253 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
254 				alloc_swap_slot_cache, free_slot_cache);
255 	if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
256 			       "without swap slots cache.\n", __func__))
257 		goto out_unlock;
258 
259 	swap_slot_cache_initialized = true;
260 	__reenable_swap_slots_cache();
261 out_unlock:
262 	mutex_unlock(&swap_slots_cache_enable_mutex);
263 	return 0;
264 }
265 
266 /* called with swap slot cache's alloc lock held */
267 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
268 {
269 	if (!use_swap_slot_cache || cache->nr)
270 		return 0;
271 
272 	cache->cur = 0;
273 	if (swap_slot_cache_active)
274 		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, false,
275 					   cache->slots);
276 
277 	return cache->nr;
278 }
279 
280 int free_swap_slot(swp_entry_t entry)
281 {
282 	struct swap_slots_cache *cache;
283 
284 	cache = raw_cpu_ptr(&swp_slots);
285 	if (likely(use_swap_slot_cache && cache->slots_ret)) {
286 		spin_lock_irq(&cache->free_lock);
287 		/* Swap slots cache may be deactivated before acquiring lock */
288 		if (!use_swap_slot_cache || !cache->slots_ret) {
289 			spin_unlock_irq(&cache->free_lock);
290 			goto direct_free;
291 		}
292 		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
293 			/*
294 			 * Return slots to global pool.
295 			 * The current swap_map value is SWAP_HAS_CACHE.
296 			 * Set it to 0 to indicate it is available for
297 			 * allocation in global pool
298 			 */
299 			swapcache_free_entries(cache->slots_ret, cache->n_ret);
300 			cache->n_ret = 0;
301 		}
302 		cache->slots_ret[cache->n_ret++] = entry;
303 		spin_unlock_irq(&cache->free_lock);
304 	} else {
305 direct_free:
306 		swapcache_free_entries(&entry, 1);
307 	}
308 
309 	return 0;
310 }
311 
312 swp_entry_t get_swap_page(struct page *page)
313 {
314 	swp_entry_t entry, *pentry;
315 	struct swap_slots_cache *cache;
316 
317 	entry.val = 0;
318 
319 	if (PageTransHuge(page)) {
320 		if (IS_ENABLED(CONFIG_THP_SWAP))
321 			get_swap_pages(1, true, &entry);
322 		return entry;
323 	}
324 
325 	/*
326 	 * Preemption is allowed here, because we may sleep
327 	 * in refill_swap_slots_cache().  But it is safe, because
328 	 * accesses to the per-CPU data structure are protected by the
329 	 * mutex cache->alloc_lock.
330 	 *
331 	 * The alloc path here does not touch cache->slots_ret
332 	 * so cache->free_lock is not taken.
333 	 */
334 	cache = raw_cpu_ptr(&swp_slots);
335 
336 	if (likely(check_cache_active() && cache->slots)) {
337 		mutex_lock(&cache->alloc_lock);
338 		if (cache->slots) {
339 repeat:
340 			if (cache->nr) {
341 				pentry = &cache->slots[cache->cur++];
342 				entry = *pentry;
343 				pentry->val = 0;
344 				cache->nr--;
345 			} else {
346 				if (refill_swap_slots_cache(cache))
347 					goto repeat;
348 			}
349 		}
350 		mutex_unlock(&cache->alloc_lock);
351 		if (entry.val)
352 			return entry;
353 	}
354 
355 	get_swap_pages(1, false, &entry);
356 
357 	return entry;
358 }
359 
360 #endif /* CONFIG_SWAP */
361