1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Manage cache of swap slots to be used for and returned from 4 * swap. 5 * 6 * Copyright(c) 2016 Intel Corporation. 7 * 8 * Author: Tim Chen <tim.c.chen@linux.intel.com> 9 * 10 * We allocate the swap slots from the global pool and put 11 * it into local per cpu caches. This has the advantage 12 * of no needing to acquire the swap_info lock every time 13 * we need a new slot. 14 * 15 * There is also opportunity to simply return the slot 16 * to local caches without needing to acquire swap_info 17 * lock. We do not reuse the returned slots directly but 18 * move them back to the global pool in a batch. This 19 * allows the slots to coalesce and reduce fragmentation. 20 * 21 * The swap entry allocated is marked with SWAP_HAS_CACHE 22 * flag in map_count that prevents it from being allocated 23 * again from the global pool. 24 * 25 * The swap slots cache is protected by a mutex instead of 26 * a spin lock as when we search for slots with scan_swap_map, 27 * we can possibly sleep. 28 */ 29 30 #include <linux/swap_slots.h> 31 #include <linux/cpu.h> 32 #include <linux/cpumask.h> 33 #include <linux/vmalloc.h> 34 #include <linux/mutex.h> 35 #include <linux/mm.h> 36 37 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots); 38 static bool swap_slot_cache_active; 39 bool swap_slot_cache_enabled; 40 static bool swap_slot_cache_initialized; 41 static DEFINE_MUTEX(swap_slots_cache_mutex); 42 /* Serialize swap slots cache enable/disable operations */ 43 static DEFINE_MUTEX(swap_slots_cache_enable_mutex); 44 45 static void __drain_swap_slots_cache(unsigned int type); 46 static void deactivate_swap_slots_cache(void); 47 static void reactivate_swap_slots_cache(void); 48 49 #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled) 50 #define SLOTS_CACHE 0x1 51 #define SLOTS_CACHE_RET 0x2 52 53 static void deactivate_swap_slots_cache(void) 54 { 55 mutex_lock(&swap_slots_cache_mutex); 56 swap_slot_cache_active = false; 57 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); 58 mutex_unlock(&swap_slots_cache_mutex); 59 } 60 61 static void reactivate_swap_slots_cache(void) 62 { 63 mutex_lock(&swap_slots_cache_mutex); 64 swap_slot_cache_active = true; 65 mutex_unlock(&swap_slots_cache_mutex); 66 } 67 68 /* Must not be called with cpu hot plug lock */ 69 void disable_swap_slots_cache_lock(void) 70 { 71 mutex_lock(&swap_slots_cache_enable_mutex); 72 swap_slot_cache_enabled = false; 73 if (swap_slot_cache_initialized) { 74 /* serialize with cpu hotplug operations */ 75 get_online_cpus(); 76 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); 77 put_online_cpus(); 78 } 79 } 80 81 static void __reenable_swap_slots_cache(void) 82 { 83 swap_slot_cache_enabled = has_usable_swap(); 84 } 85 86 void reenable_swap_slots_cache_unlock(void) 87 { 88 __reenable_swap_slots_cache(); 89 mutex_unlock(&swap_slots_cache_enable_mutex); 90 } 91 92 static bool check_cache_active(void) 93 { 94 long pages; 95 96 if (!swap_slot_cache_enabled) 97 return false; 98 99 pages = get_nr_swap_pages(); 100 if (!swap_slot_cache_active) { 101 if (pages > num_online_cpus() * 102 THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE) 103 reactivate_swap_slots_cache(); 104 goto out; 105 } 106 107 /* if global pool of slot caches too low, deactivate cache */ 108 if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE) 109 deactivate_swap_slots_cache(); 110 out: 111 return swap_slot_cache_active; 112 } 113 114 static int alloc_swap_slot_cache(unsigned int cpu) 115 { 116 struct swap_slots_cache *cache; 117 swp_entry_t *slots, *slots_ret; 118 119 /* 120 * Do allocation outside swap_slots_cache_mutex 121 * as kvzalloc could trigger reclaim and get_swap_page, 122 * which can lock swap_slots_cache_mutex. 123 */ 124 slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), 125 GFP_KERNEL); 126 if (!slots) 127 return -ENOMEM; 128 129 slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), 130 GFP_KERNEL); 131 if (!slots_ret) { 132 kvfree(slots); 133 return -ENOMEM; 134 } 135 136 mutex_lock(&swap_slots_cache_mutex); 137 cache = &per_cpu(swp_slots, cpu); 138 if (cache->slots || cache->slots_ret) { 139 /* cache already allocated */ 140 mutex_unlock(&swap_slots_cache_mutex); 141 142 kvfree(slots); 143 kvfree(slots_ret); 144 145 return 0; 146 } 147 148 if (!cache->lock_initialized) { 149 mutex_init(&cache->alloc_lock); 150 spin_lock_init(&cache->free_lock); 151 cache->lock_initialized = true; 152 } 153 cache->nr = 0; 154 cache->cur = 0; 155 cache->n_ret = 0; 156 /* 157 * We initialized alloc_lock and free_lock earlier. We use 158 * !cache->slots or !cache->slots_ret to know if it is safe to acquire 159 * the corresponding lock and use the cache. Memory barrier below 160 * ensures the assumption. 161 */ 162 mb(); 163 cache->slots = slots; 164 cache->slots_ret = slots_ret; 165 mutex_unlock(&swap_slots_cache_mutex); 166 return 0; 167 } 168 169 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type, 170 bool free_slots) 171 { 172 struct swap_slots_cache *cache; 173 swp_entry_t *slots = NULL; 174 175 cache = &per_cpu(swp_slots, cpu); 176 if ((type & SLOTS_CACHE) && cache->slots) { 177 mutex_lock(&cache->alloc_lock); 178 swapcache_free_entries(cache->slots + cache->cur, cache->nr); 179 cache->cur = 0; 180 cache->nr = 0; 181 if (free_slots && cache->slots) { 182 kvfree(cache->slots); 183 cache->slots = NULL; 184 } 185 mutex_unlock(&cache->alloc_lock); 186 } 187 if ((type & SLOTS_CACHE_RET) && cache->slots_ret) { 188 spin_lock_irq(&cache->free_lock); 189 swapcache_free_entries(cache->slots_ret, cache->n_ret); 190 cache->n_ret = 0; 191 if (free_slots && cache->slots_ret) { 192 slots = cache->slots_ret; 193 cache->slots_ret = NULL; 194 } 195 spin_unlock_irq(&cache->free_lock); 196 kvfree(slots); 197 } 198 } 199 200 static void __drain_swap_slots_cache(unsigned int type) 201 { 202 unsigned int cpu; 203 204 /* 205 * This function is called during 206 * 1) swapoff, when we have to make sure no 207 * left over slots are in cache when we remove 208 * a swap device; 209 * 2) disabling of swap slot cache, when we run low 210 * on swap slots when allocating memory and need 211 * to return swap slots to global pool. 212 * 213 * We cannot acquire cpu hot plug lock here as 214 * this function can be invoked in the cpu 215 * hot plug path: 216 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback 217 * -> memory allocation -> direct reclaim -> get_swap_page 218 * -> drain_swap_slots_cache 219 * 220 * Hence the loop over current online cpu below could miss cpu that 221 * is being brought online but not yet marked as online. 222 * That is okay as we do not schedule and run anything on a 223 * cpu before it has been marked online. Hence, we will not 224 * fill any swap slots in slots cache of such cpu. 225 * There are no slots on such cpu that need to be drained. 226 */ 227 for_each_online_cpu(cpu) 228 drain_slots_cache_cpu(cpu, type, false); 229 } 230 231 static int free_slot_cache(unsigned int cpu) 232 { 233 mutex_lock(&swap_slots_cache_mutex); 234 drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true); 235 mutex_unlock(&swap_slots_cache_mutex); 236 return 0; 237 } 238 239 void enable_swap_slots_cache(void) 240 { 241 mutex_lock(&swap_slots_cache_enable_mutex); 242 if (!swap_slot_cache_initialized) { 243 int ret; 244 245 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", 246 alloc_swap_slot_cache, free_slot_cache); 247 if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " 248 "without swap slots cache.\n", __func__)) 249 goto out_unlock; 250 251 swap_slot_cache_initialized = true; 252 } 253 254 __reenable_swap_slots_cache(); 255 out_unlock: 256 mutex_unlock(&swap_slots_cache_enable_mutex); 257 } 258 259 /* called with swap slot cache's alloc lock held */ 260 static int refill_swap_slots_cache(struct swap_slots_cache *cache) 261 { 262 if (!use_swap_slot_cache || cache->nr) 263 return 0; 264 265 cache->cur = 0; 266 if (swap_slot_cache_active) 267 cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, 268 cache->slots, 1); 269 270 return cache->nr; 271 } 272 273 int free_swap_slot(swp_entry_t entry) 274 { 275 struct swap_slots_cache *cache; 276 277 cache = raw_cpu_ptr(&swp_slots); 278 if (likely(use_swap_slot_cache && cache->slots_ret)) { 279 spin_lock_irq(&cache->free_lock); 280 /* Swap slots cache may be deactivated before acquiring lock */ 281 if (!use_swap_slot_cache || !cache->slots_ret) { 282 spin_unlock_irq(&cache->free_lock); 283 goto direct_free; 284 } 285 if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) { 286 /* 287 * Return slots to global pool. 288 * The current swap_map value is SWAP_HAS_CACHE. 289 * Set it to 0 to indicate it is available for 290 * allocation in global pool 291 */ 292 swapcache_free_entries(cache->slots_ret, cache->n_ret); 293 cache->n_ret = 0; 294 } 295 cache->slots_ret[cache->n_ret++] = entry; 296 spin_unlock_irq(&cache->free_lock); 297 } else { 298 direct_free: 299 swapcache_free_entries(&entry, 1); 300 } 301 302 return 0; 303 } 304 305 swp_entry_t get_swap_page(struct page *page) 306 { 307 swp_entry_t entry; 308 struct swap_slots_cache *cache; 309 310 entry.val = 0; 311 312 if (PageTransHuge(page)) { 313 if (IS_ENABLED(CONFIG_THP_SWAP)) 314 get_swap_pages(1, &entry, HPAGE_PMD_NR); 315 goto out; 316 } 317 318 /* 319 * Preemption is allowed here, because we may sleep 320 * in refill_swap_slots_cache(). But it is safe, because 321 * accesses to the per-CPU data structure are protected by the 322 * mutex cache->alloc_lock. 323 * 324 * The alloc path here does not touch cache->slots_ret 325 * so cache->free_lock is not taken. 326 */ 327 cache = raw_cpu_ptr(&swp_slots); 328 329 if (likely(check_cache_active() && cache->slots)) { 330 mutex_lock(&cache->alloc_lock); 331 if (cache->slots) { 332 repeat: 333 if (cache->nr) { 334 entry = cache->slots[cache->cur]; 335 cache->slots[cache->cur++].val = 0; 336 cache->nr--; 337 } else if (refill_swap_slots_cache(cache)) { 338 goto repeat; 339 } 340 } 341 mutex_unlock(&cache->alloc_lock); 342 if (entry.val) 343 goto out; 344 } 345 346 get_swap_pages(1, &entry, 1); 347 out: 348 if (mem_cgroup_try_charge_swap(page, entry)) { 349 put_swap_page(page, entry); 350 entry.val = 0; 351 } 352 return entry; 353 } 354