xref: /openbmc/linux/mm/swap_slots.c (revision d0807da7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Manage cache of swap slots to be used for and returned from
4  * swap.
5  *
6  * Copyright(c) 2016 Intel Corporation.
7  *
8  * Author: Tim Chen <tim.c.chen@linux.intel.com>
9  *
10  * We allocate the swap slots from the global pool and put
11  * it into local per cpu caches.  This has the advantage
12  * of no needing to acquire the swap_info lock every time
13  * we need a new slot.
14  *
15  * There is also opportunity to simply return the slot
16  * to local caches without needing to acquire swap_info
17  * lock.  We do not reuse the returned slots directly but
18  * move them back to the global pool in a batch.  This
19  * allows the slots to coaellesce and reduce fragmentation.
20  *
21  * The swap entry allocated is marked with SWAP_HAS_CACHE
22  * flag in map_count that prevents it from being allocated
23  * again from the global pool.
24  *
25  * The swap slots cache is protected by a mutex instead of
26  * a spin lock as when we search for slots with scan_swap_map,
27  * we can possibly sleep.
28  */
29 
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/vmalloc.h>
34 #include <linux/mutex.h>
35 #include <linux/mm.h>
36 
37 #ifdef CONFIG_SWAP
38 
39 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
40 static bool	swap_slot_cache_active;
41 bool	swap_slot_cache_enabled;
42 static bool	swap_slot_cache_initialized;
43 DEFINE_MUTEX(swap_slots_cache_mutex);
44 /* Serialize swap slots cache enable/disable operations */
45 DEFINE_MUTEX(swap_slots_cache_enable_mutex);
46 
47 static void __drain_swap_slots_cache(unsigned int type);
48 static void deactivate_swap_slots_cache(void);
49 static void reactivate_swap_slots_cache(void);
50 
51 #define use_swap_slot_cache (swap_slot_cache_active && \
52 		swap_slot_cache_enabled && swap_slot_cache_initialized)
53 #define SLOTS_CACHE 0x1
54 #define SLOTS_CACHE_RET 0x2
55 
56 static void deactivate_swap_slots_cache(void)
57 {
58 	mutex_lock(&swap_slots_cache_mutex);
59 	swap_slot_cache_active = false;
60 	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
61 	mutex_unlock(&swap_slots_cache_mutex);
62 }
63 
64 static void reactivate_swap_slots_cache(void)
65 {
66 	mutex_lock(&swap_slots_cache_mutex);
67 	swap_slot_cache_active = true;
68 	mutex_unlock(&swap_slots_cache_mutex);
69 }
70 
71 /* Must not be called with cpu hot plug lock */
72 void disable_swap_slots_cache_lock(void)
73 {
74 	mutex_lock(&swap_slots_cache_enable_mutex);
75 	swap_slot_cache_enabled = false;
76 	if (swap_slot_cache_initialized) {
77 		/* serialize with cpu hotplug operations */
78 		get_online_cpus();
79 		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
80 		put_online_cpus();
81 	}
82 }
83 
84 static void __reenable_swap_slots_cache(void)
85 {
86 	swap_slot_cache_enabled = has_usable_swap();
87 }
88 
89 void reenable_swap_slots_cache_unlock(void)
90 {
91 	__reenable_swap_slots_cache();
92 	mutex_unlock(&swap_slots_cache_enable_mutex);
93 }
94 
95 static bool check_cache_active(void)
96 {
97 	long pages;
98 
99 	if (!swap_slot_cache_enabled || !swap_slot_cache_initialized)
100 		return false;
101 
102 	pages = get_nr_swap_pages();
103 	if (!swap_slot_cache_active) {
104 		if (pages > num_online_cpus() *
105 		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
106 			reactivate_swap_slots_cache();
107 		goto out;
108 	}
109 
110 	/* if global pool of slot caches too low, deactivate cache */
111 	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
112 		deactivate_swap_slots_cache();
113 out:
114 	return swap_slot_cache_active;
115 }
116 
117 static int alloc_swap_slot_cache(unsigned int cpu)
118 {
119 	struct swap_slots_cache *cache;
120 	swp_entry_t *slots, *slots_ret;
121 
122 	/*
123 	 * Do allocation outside swap_slots_cache_mutex
124 	 * as kvzalloc could trigger reclaim and get_swap_page,
125 	 * which can lock swap_slots_cache_mutex.
126 	 */
127 	slots = kvzalloc(sizeof(swp_entry_t) * SWAP_SLOTS_CACHE_SIZE,
128 			 GFP_KERNEL);
129 	if (!slots)
130 		return -ENOMEM;
131 
132 	slots_ret = kvzalloc(sizeof(swp_entry_t) * SWAP_SLOTS_CACHE_SIZE,
133 			     GFP_KERNEL);
134 	if (!slots_ret) {
135 		kvfree(slots);
136 		return -ENOMEM;
137 	}
138 
139 	mutex_lock(&swap_slots_cache_mutex);
140 	cache = &per_cpu(swp_slots, cpu);
141 	if (cache->slots || cache->slots_ret)
142 		/* cache already allocated */
143 		goto out;
144 	if (!cache->lock_initialized) {
145 		mutex_init(&cache->alloc_lock);
146 		spin_lock_init(&cache->free_lock);
147 		cache->lock_initialized = true;
148 	}
149 	cache->nr = 0;
150 	cache->cur = 0;
151 	cache->n_ret = 0;
152 	cache->slots = slots;
153 	slots = NULL;
154 	cache->slots_ret = slots_ret;
155 	slots_ret = NULL;
156 out:
157 	mutex_unlock(&swap_slots_cache_mutex);
158 	if (slots)
159 		kvfree(slots);
160 	if (slots_ret)
161 		kvfree(slots_ret);
162 	return 0;
163 }
164 
165 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
166 				  bool free_slots)
167 {
168 	struct swap_slots_cache *cache;
169 	swp_entry_t *slots = NULL;
170 
171 	cache = &per_cpu(swp_slots, cpu);
172 	if ((type & SLOTS_CACHE) && cache->slots) {
173 		mutex_lock(&cache->alloc_lock);
174 		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
175 		cache->cur = 0;
176 		cache->nr = 0;
177 		if (free_slots && cache->slots) {
178 			kvfree(cache->slots);
179 			cache->slots = NULL;
180 		}
181 		mutex_unlock(&cache->alloc_lock);
182 	}
183 	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
184 		spin_lock_irq(&cache->free_lock);
185 		swapcache_free_entries(cache->slots_ret, cache->n_ret);
186 		cache->n_ret = 0;
187 		if (free_slots && cache->slots_ret) {
188 			slots = cache->slots_ret;
189 			cache->slots_ret = NULL;
190 		}
191 		spin_unlock_irq(&cache->free_lock);
192 		if (slots)
193 			kvfree(slots);
194 	}
195 }
196 
197 static void __drain_swap_slots_cache(unsigned int type)
198 {
199 	unsigned int cpu;
200 
201 	/*
202 	 * This function is called during
203 	 *	1) swapoff, when we have to make sure no
204 	 *	   left over slots are in cache when we remove
205 	 *	   a swap device;
206 	 *      2) disabling of swap slot cache, when we run low
207 	 *	   on swap slots when allocating memory and need
208 	 *	   to return swap slots to global pool.
209 	 *
210 	 * We cannot acquire cpu hot plug lock here as
211 	 * this function can be invoked in the cpu
212 	 * hot plug path:
213 	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
214 	 *   -> memory allocation -> direct reclaim -> get_swap_page
215 	 *   -> drain_swap_slots_cache
216 	 *
217 	 * Hence the loop over current online cpu below could miss cpu that
218 	 * is being brought online but not yet marked as online.
219 	 * That is okay as we do not schedule and run anything on a
220 	 * cpu before it has been marked online. Hence, we will not
221 	 * fill any swap slots in slots cache of such cpu.
222 	 * There are no slots on such cpu that need to be drained.
223 	 */
224 	for_each_online_cpu(cpu)
225 		drain_slots_cache_cpu(cpu, type, false);
226 }
227 
228 static int free_slot_cache(unsigned int cpu)
229 {
230 	mutex_lock(&swap_slots_cache_mutex);
231 	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
232 	mutex_unlock(&swap_slots_cache_mutex);
233 	return 0;
234 }
235 
236 int enable_swap_slots_cache(void)
237 {
238 	int ret = 0;
239 
240 	mutex_lock(&swap_slots_cache_enable_mutex);
241 	if (swap_slot_cache_initialized) {
242 		__reenable_swap_slots_cache();
243 		goto out_unlock;
244 	}
245 
246 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
247 				alloc_swap_slot_cache, free_slot_cache);
248 	if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
249 			       "without swap slots cache.\n", __func__))
250 		goto out_unlock;
251 
252 	swap_slot_cache_initialized = true;
253 	__reenable_swap_slots_cache();
254 out_unlock:
255 	mutex_unlock(&swap_slots_cache_enable_mutex);
256 	return 0;
257 }
258 
259 /* called with swap slot cache's alloc lock held */
260 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
261 {
262 	if (!use_swap_slot_cache || cache->nr)
263 		return 0;
264 
265 	cache->cur = 0;
266 	if (swap_slot_cache_active)
267 		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, false,
268 					   cache->slots);
269 
270 	return cache->nr;
271 }
272 
273 int free_swap_slot(swp_entry_t entry)
274 {
275 	struct swap_slots_cache *cache;
276 
277 	cache = raw_cpu_ptr(&swp_slots);
278 	if (use_swap_slot_cache && cache->slots_ret) {
279 		spin_lock_irq(&cache->free_lock);
280 		/* Swap slots cache may be deactivated before acquiring lock */
281 		if (!use_swap_slot_cache || !cache->slots_ret) {
282 			spin_unlock_irq(&cache->free_lock);
283 			goto direct_free;
284 		}
285 		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
286 			/*
287 			 * Return slots to global pool.
288 			 * The current swap_map value is SWAP_HAS_CACHE.
289 			 * Set it to 0 to indicate it is available for
290 			 * allocation in global pool
291 			 */
292 			swapcache_free_entries(cache->slots_ret, cache->n_ret);
293 			cache->n_ret = 0;
294 		}
295 		cache->slots_ret[cache->n_ret++] = entry;
296 		spin_unlock_irq(&cache->free_lock);
297 	} else {
298 direct_free:
299 		swapcache_free_entries(&entry, 1);
300 	}
301 
302 	return 0;
303 }
304 
305 swp_entry_t get_swap_page(struct page *page)
306 {
307 	swp_entry_t entry, *pentry;
308 	struct swap_slots_cache *cache;
309 
310 	entry.val = 0;
311 
312 	if (PageTransHuge(page)) {
313 		if (IS_ENABLED(CONFIG_THP_SWAP))
314 			get_swap_pages(1, true, &entry);
315 		return entry;
316 	}
317 
318 	/*
319 	 * Preemption is allowed here, because we may sleep
320 	 * in refill_swap_slots_cache().  But it is safe, because
321 	 * accesses to the per-CPU data structure are protected by the
322 	 * mutex cache->alloc_lock.
323 	 *
324 	 * The alloc path here does not touch cache->slots_ret
325 	 * so cache->free_lock is not taken.
326 	 */
327 	cache = raw_cpu_ptr(&swp_slots);
328 
329 	if (check_cache_active()) {
330 		mutex_lock(&cache->alloc_lock);
331 		if (cache->slots) {
332 repeat:
333 			if (cache->nr) {
334 				pentry = &cache->slots[cache->cur++];
335 				entry = *pentry;
336 				pentry->val = 0;
337 				cache->nr--;
338 			} else {
339 				if (refill_swap_slots_cache(cache))
340 					goto repeat;
341 			}
342 		}
343 		mutex_unlock(&cache->alloc_lock);
344 		if (entry.val)
345 			return entry;
346 	}
347 
348 	get_swap_pages(1, false, &entry);
349 
350 	return entry;
351 }
352 
353 #endif /* CONFIG_SWAP */
354