xref: /openbmc/linux/mm/swap_slots.c (revision c9933d49)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Manage cache of swap slots to be used for and returned from
4  * swap.
5  *
6  * Copyright(c) 2016 Intel Corporation.
7  *
8  * Author: Tim Chen <tim.c.chen@linux.intel.com>
9  *
10  * We allocate the swap slots from the global pool and put
11  * it into local per cpu caches.  This has the advantage
12  * of no needing to acquire the swap_info lock every time
13  * we need a new slot.
14  *
15  * There is also opportunity to simply return the slot
16  * to local caches without needing to acquire swap_info
17  * lock.  We do not reuse the returned slots directly but
18  * move them back to the global pool in a batch.  This
19  * allows the slots to coalesce and reduce fragmentation.
20  *
21  * The swap entry allocated is marked with SWAP_HAS_CACHE
22  * flag in map_count that prevents it from being allocated
23  * again from the global pool.
24  *
25  * The swap slots cache is protected by a mutex instead of
26  * a spin lock as when we search for slots with scan_swap_map,
27  * we can possibly sleep.
28  */
29 
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/slab.h>
34 #include <linux/vmalloc.h>
35 #include <linux/mutex.h>
36 #include <linux/mm.h>
37 
38 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
39 static bool	swap_slot_cache_active;
40 bool	swap_slot_cache_enabled;
41 static bool	swap_slot_cache_initialized;
42 static DEFINE_MUTEX(swap_slots_cache_mutex);
43 /* Serialize swap slots cache enable/disable operations */
44 static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
45 
46 static void __drain_swap_slots_cache(unsigned int type);
47 
48 #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
49 #define SLOTS_CACHE 0x1
50 #define SLOTS_CACHE_RET 0x2
51 
52 static void deactivate_swap_slots_cache(void)
53 {
54 	mutex_lock(&swap_slots_cache_mutex);
55 	swap_slot_cache_active = false;
56 	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
57 	mutex_unlock(&swap_slots_cache_mutex);
58 }
59 
60 static void reactivate_swap_slots_cache(void)
61 {
62 	mutex_lock(&swap_slots_cache_mutex);
63 	swap_slot_cache_active = true;
64 	mutex_unlock(&swap_slots_cache_mutex);
65 }
66 
67 /* Must not be called with cpu hot plug lock */
68 void disable_swap_slots_cache_lock(void)
69 {
70 	mutex_lock(&swap_slots_cache_enable_mutex);
71 	swap_slot_cache_enabled = false;
72 	if (swap_slot_cache_initialized) {
73 		/* serialize with cpu hotplug operations */
74 		cpus_read_lock();
75 		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
76 		cpus_read_unlock();
77 	}
78 }
79 
80 static void __reenable_swap_slots_cache(void)
81 {
82 	swap_slot_cache_enabled = has_usable_swap();
83 }
84 
85 void reenable_swap_slots_cache_unlock(void)
86 {
87 	__reenable_swap_slots_cache();
88 	mutex_unlock(&swap_slots_cache_enable_mutex);
89 }
90 
91 static bool check_cache_active(void)
92 {
93 	long pages;
94 
95 	if (!swap_slot_cache_enabled)
96 		return false;
97 
98 	pages = get_nr_swap_pages();
99 	if (!swap_slot_cache_active) {
100 		if (pages > num_online_cpus() *
101 		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
102 			reactivate_swap_slots_cache();
103 		goto out;
104 	}
105 
106 	/* if global pool of slot caches too low, deactivate cache */
107 	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
108 		deactivate_swap_slots_cache();
109 out:
110 	return swap_slot_cache_active;
111 }
112 
113 static int alloc_swap_slot_cache(unsigned int cpu)
114 {
115 	struct swap_slots_cache *cache;
116 	swp_entry_t *slots, *slots_ret;
117 
118 	/*
119 	 * Do allocation outside swap_slots_cache_mutex
120 	 * as kvzalloc could trigger reclaim and get_swap_page,
121 	 * which can lock swap_slots_cache_mutex.
122 	 */
123 	slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
124 			 GFP_KERNEL);
125 	if (!slots)
126 		return -ENOMEM;
127 
128 	slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
129 			     GFP_KERNEL);
130 	if (!slots_ret) {
131 		kvfree(slots);
132 		return -ENOMEM;
133 	}
134 
135 	mutex_lock(&swap_slots_cache_mutex);
136 	cache = &per_cpu(swp_slots, cpu);
137 	if (cache->slots || cache->slots_ret) {
138 		/* cache already allocated */
139 		mutex_unlock(&swap_slots_cache_mutex);
140 
141 		kvfree(slots);
142 		kvfree(slots_ret);
143 
144 		return 0;
145 	}
146 
147 	if (!cache->lock_initialized) {
148 		mutex_init(&cache->alloc_lock);
149 		spin_lock_init(&cache->free_lock);
150 		cache->lock_initialized = true;
151 	}
152 	cache->nr = 0;
153 	cache->cur = 0;
154 	cache->n_ret = 0;
155 	/*
156 	 * We initialized alloc_lock and free_lock earlier.  We use
157 	 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
158 	 * the corresponding lock and use the cache.  Memory barrier below
159 	 * ensures the assumption.
160 	 */
161 	mb();
162 	cache->slots = slots;
163 	cache->slots_ret = slots_ret;
164 	mutex_unlock(&swap_slots_cache_mutex);
165 	return 0;
166 }
167 
168 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
169 				  bool free_slots)
170 {
171 	struct swap_slots_cache *cache;
172 	swp_entry_t *slots = NULL;
173 
174 	cache = &per_cpu(swp_slots, cpu);
175 	if ((type & SLOTS_CACHE) && cache->slots) {
176 		mutex_lock(&cache->alloc_lock);
177 		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
178 		cache->cur = 0;
179 		cache->nr = 0;
180 		if (free_slots && cache->slots) {
181 			kvfree(cache->slots);
182 			cache->slots = NULL;
183 		}
184 		mutex_unlock(&cache->alloc_lock);
185 	}
186 	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
187 		spin_lock_irq(&cache->free_lock);
188 		swapcache_free_entries(cache->slots_ret, cache->n_ret);
189 		cache->n_ret = 0;
190 		if (free_slots && cache->slots_ret) {
191 			slots = cache->slots_ret;
192 			cache->slots_ret = NULL;
193 		}
194 		spin_unlock_irq(&cache->free_lock);
195 		kvfree(slots);
196 	}
197 }
198 
199 static void __drain_swap_slots_cache(unsigned int type)
200 {
201 	unsigned int cpu;
202 
203 	/*
204 	 * This function is called during
205 	 *	1) swapoff, when we have to make sure no
206 	 *	   left over slots are in cache when we remove
207 	 *	   a swap device;
208 	 *      2) disabling of swap slot cache, when we run low
209 	 *	   on swap slots when allocating memory and need
210 	 *	   to return swap slots to global pool.
211 	 *
212 	 * We cannot acquire cpu hot plug lock here as
213 	 * this function can be invoked in the cpu
214 	 * hot plug path:
215 	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
216 	 *   -> memory allocation -> direct reclaim -> get_swap_page
217 	 *   -> drain_swap_slots_cache
218 	 *
219 	 * Hence the loop over current online cpu below could miss cpu that
220 	 * is being brought online but not yet marked as online.
221 	 * That is okay as we do not schedule and run anything on a
222 	 * cpu before it has been marked online. Hence, we will not
223 	 * fill any swap slots in slots cache of such cpu.
224 	 * There are no slots on such cpu that need to be drained.
225 	 */
226 	for_each_online_cpu(cpu)
227 		drain_slots_cache_cpu(cpu, type, false);
228 }
229 
230 static int free_slot_cache(unsigned int cpu)
231 {
232 	mutex_lock(&swap_slots_cache_mutex);
233 	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
234 	mutex_unlock(&swap_slots_cache_mutex);
235 	return 0;
236 }
237 
238 void enable_swap_slots_cache(void)
239 {
240 	mutex_lock(&swap_slots_cache_enable_mutex);
241 	if (!swap_slot_cache_initialized) {
242 		int ret;
243 
244 		ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
245 					alloc_swap_slot_cache, free_slot_cache);
246 		if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
247 				       "without swap slots cache.\n", __func__))
248 			goto out_unlock;
249 
250 		swap_slot_cache_initialized = true;
251 	}
252 
253 	__reenable_swap_slots_cache();
254 out_unlock:
255 	mutex_unlock(&swap_slots_cache_enable_mutex);
256 }
257 
258 /* called with swap slot cache's alloc lock held */
259 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
260 {
261 	if (!use_swap_slot_cache || cache->nr)
262 		return 0;
263 
264 	cache->cur = 0;
265 	if (swap_slot_cache_active)
266 		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
267 					   cache->slots, 1);
268 
269 	return cache->nr;
270 }
271 
272 int free_swap_slot(swp_entry_t entry)
273 {
274 	struct swap_slots_cache *cache;
275 
276 	cache = raw_cpu_ptr(&swp_slots);
277 	if (likely(use_swap_slot_cache && cache->slots_ret)) {
278 		spin_lock_irq(&cache->free_lock);
279 		/* Swap slots cache may be deactivated before acquiring lock */
280 		if (!use_swap_slot_cache || !cache->slots_ret) {
281 			spin_unlock_irq(&cache->free_lock);
282 			goto direct_free;
283 		}
284 		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
285 			/*
286 			 * Return slots to global pool.
287 			 * The current swap_map value is SWAP_HAS_CACHE.
288 			 * Set it to 0 to indicate it is available for
289 			 * allocation in global pool
290 			 */
291 			swapcache_free_entries(cache->slots_ret, cache->n_ret);
292 			cache->n_ret = 0;
293 		}
294 		cache->slots_ret[cache->n_ret++] = entry;
295 		spin_unlock_irq(&cache->free_lock);
296 	} else {
297 direct_free:
298 		swapcache_free_entries(&entry, 1);
299 	}
300 
301 	return 0;
302 }
303 
304 swp_entry_t get_swap_page(struct page *page)
305 {
306 	swp_entry_t entry;
307 	struct swap_slots_cache *cache;
308 
309 	entry.val = 0;
310 
311 	if (PageTransHuge(page)) {
312 		if (IS_ENABLED(CONFIG_THP_SWAP))
313 			get_swap_pages(1, &entry, HPAGE_PMD_NR);
314 		goto out;
315 	}
316 
317 	/*
318 	 * Preemption is allowed here, because we may sleep
319 	 * in refill_swap_slots_cache().  But it is safe, because
320 	 * accesses to the per-CPU data structure are protected by the
321 	 * mutex cache->alloc_lock.
322 	 *
323 	 * The alloc path here does not touch cache->slots_ret
324 	 * so cache->free_lock is not taken.
325 	 */
326 	cache = raw_cpu_ptr(&swp_slots);
327 
328 	if (likely(check_cache_active() && cache->slots)) {
329 		mutex_lock(&cache->alloc_lock);
330 		if (cache->slots) {
331 repeat:
332 			if (cache->nr) {
333 				entry = cache->slots[cache->cur];
334 				cache->slots[cache->cur++].val = 0;
335 				cache->nr--;
336 			} else if (refill_swap_slots_cache(cache)) {
337 				goto repeat;
338 			}
339 		}
340 		mutex_unlock(&cache->alloc_lock);
341 		if (entry.val)
342 			goto out;
343 	}
344 
345 	get_swap_pages(1, &entry, 1);
346 out:
347 	if (mem_cgroup_try_charge_swap(page, entry)) {
348 		put_swap_page(page, entry);
349 		entry.val = 0;
350 	}
351 	return entry;
352 }
353