1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Manage cache of swap slots to be used for and returned from 4 * swap. 5 * 6 * Copyright(c) 2016 Intel Corporation. 7 * 8 * Author: Tim Chen <tim.c.chen@linux.intel.com> 9 * 10 * We allocate the swap slots from the global pool and put 11 * it into local per cpu caches. This has the advantage 12 * of no needing to acquire the swap_info lock every time 13 * we need a new slot. 14 * 15 * There is also opportunity to simply return the slot 16 * to local caches without needing to acquire swap_info 17 * lock. We do not reuse the returned slots directly but 18 * move them back to the global pool in a batch. This 19 * allows the slots to coaellesce and reduce fragmentation. 20 * 21 * The swap entry allocated is marked with SWAP_HAS_CACHE 22 * flag in map_count that prevents it from being allocated 23 * again from the global pool. 24 * 25 * The swap slots cache is protected by a mutex instead of 26 * a spin lock as when we search for slots with scan_swap_map, 27 * we can possibly sleep. 28 */ 29 30 #include <linux/swap_slots.h> 31 #include <linux/cpu.h> 32 #include <linux/cpumask.h> 33 #include <linux/vmalloc.h> 34 #include <linux/mutex.h> 35 #include <linux/mm.h> 36 37 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots); 38 static bool swap_slot_cache_active; 39 bool swap_slot_cache_enabled; 40 static bool swap_slot_cache_initialized; 41 static DEFINE_MUTEX(swap_slots_cache_mutex); 42 /* Serialize swap slots cache enable/disable operations */ 43 static DEFINE_MUTEX(swap_slots_cache_enable_mutex); 44 45 static void __drain_swap_slots_cache(unsigned int type); 46 static void deactivate_swap_slots_cache(void); 47 static void reactivate_swap_slots_cache(void); 48 49 #define use_swap_slot_cache (swap_slot_cache_active && \ 50 swap_slot_cache_enabled && swap_slot_cache_initialized) 51 #define SLOTS_CACHE 0x1 52 #define SLOTS_CACHE_RET 0x2 53 54 static void deactivate_swap_slots_cache(void) 55 { 56 mutex_lock(&swap_slots_cache_mutex); 57 swap_slot_cache_active = false; 58 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); 59 mutex_unlock(&swap_slots_cache_mutex); 60 } 61 62 static void reactivate_swap_slots_cache(void) 63 { 64 mutex_lock(&swap_slots_cache_mutex); 65 swap_slot_cache_active = true; 66 mutex_unlock(&swap_slots_cache_mutex); 67 } 68 69 /* Must not be called with cpu hot plug lock */ 70 void disable_swap_slots_cache_lock(void) 71 { 72 mutex_lock(&swap_slots_cache_enable_mutex); 73 swap_slot_cache_enabled = false; 74 if (swap_slot_cache_initialized) { 75 /* serialize with cpu hotplug operations */ 76 get_online_cpus(); 77 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); 78 put_online_cpus(); 79 } 80 } 81 82 static void __reenable_swap_slots_cache(void) 83 { 84 swap_slot_cache_enabled = has_usable_swap(); 85 } 86 87 void reenable_swap_slots_cache_unlock(void) 88 { 89 __reenable_swap_slots_cache(); 90 mutex_unlock(&swap_slots_cache_enable_mutex); 91 } 92 93 static bool check_cache_active(void) 94 { 95 long pages; 96 97 if (!swap_slot_cache_enabled || !swap_slot_cache_initialized) 98 return false; 99 100 pages = get_nr_swap_pages(); 101 if (!swap_slot_cache_active) { 102 if (pages > num_online_cpus() * 103 THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE) 104 reactivate_swap_slots_cache(); 105 goto out; 106 } 107 108 /* if global pool of slot caches too low, deactivate cache */ 109 if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE) 110 deactivate_swap_slots_cache(); 111 out: 112 return swap_slot_cache_active; 113 } 114 115 static int alloc_swap_slot_cache(unsigned int cpu) 116 { 117 struct swap_slots_cache *cache; 118 swp_entry_t *slots, *slots_ret; 119 120 /* 121 * Do allocation outside swap_slots_cache_mutex 122 * as kvzalloc could trigger reclaim and get_swap_page, 123 * which can lock swap_slots_cache_mutex. 124 */ 125 slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), 126 GFP_KERNEL); 127 if (!slots) 128 return -ENOMEM; 129 130 slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), 131 GFP_KERNEL); 132 if (!slots_ret) { 133 kvfree(slots); 134 return -ENOMEM; 135 } 136 137 mutex_lock(&swap_slots_cache_mutex); 138 cache = &per_cpu(swp_slots, cpu); 139 if (cache->slots || cache->slots_ret) 140 /* cache already allocated */ 141 goto out; 142 if (!cache->lock_initialized) { 143 mutex_init(&cache->alloc_lock); 144 spin_lock_init(&cache->free_lock); 145 cache->lock_initialized = true; 146 } 147 cache->nr = 0; 148 cache->cur = 0; 149 cache->n_ret = 0; 150 /* 151 * We initialized alloc_lock and free_lock earlier. We use 152 * !cache->slots or !cache->slots_ret to know if it is safe to acquire 153 * the corresponding lock and use the cache. Memory barrier below 154 * ensures the assumption. 155 */ 156 mb(); 157 cache->slots = slots; 158 slots = NULL; 159 cache->slots_ret = slots_ret; 160 slots_ret = NULL; 161 out: 162 mutex_unlock(&swap_slots_cache_mutex); 163 if (slots) 164 kvfree(slots); 165 if (slots_ret) 166 kvfree(slots_ret); 167 return 0; 168 } 169 170 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type, 171 bool free_slots) 172 { 173 struct swap_slots_cache *cache; 174 swp_entry_t *slots = NULL; 175 176 cache = &per_cpu(swp_slots, cpu); 177 if ((type & SLOTS_CACHE) && cache->slots) { 178 mutex_lock(&cache->alloc_lock); 179 swapcache_free_entries(cache->slots + cache->cur, cache->nr); 180 cache->cur = 0; 181 cache->nr = 0; 182 if (free_slots && cache->slots) { 183 kvfree(cache->slots); 184 cache->slots = NULL; 185 } 186 mutex_unlock(&cache->alloc_lock); 187 } 188 if ((type & SLOTS_CACHE_RET) && cache->slots_ret) { 189 spin_lock_irq(&cache->free_lock); 190 swapcache_free_entries(cache->slots_ret, cache->n_ret); 191 cache->n_ret = 0; 192 if (free_slots && cache->slots_ret) { 193 slots = cache->slots_ret; 194 cache->slots_ret = NULL; 195 } 196 spin_unlock_irq(&cache->free_lock); 197 if (slots) 198 kvfree(slots); 199 } 200 } 201 202 static void __drain_swap_slots_cache(unsigned int type) 203 { 204 unsigned int cpu; 205 206 /* 207 * This function is called during 208 * 1) swapoff, when we have to make sure no 209 * left over slots are in cache when we remove 210 * a swap device; 211 * 2) disabling of swap slot cache, when we run low 212 * on swap slots when allocating memory and need 213 * to return swap slots to global pool. 214 * 215 * We cannot acquire cpu hot plug lock here as 216 * this function can be invoked in the cpu 217 * hot plug path: 218 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback 219 * -> memory allocation -> direct reclaim -> get_swap_page 220 * -> drain_swap_slots_cache 221 * 222 * Hence the loop over current online cpu below could miss cpu that 223 * is being brought online but not yet marked as online. 224 * That is okay as we do not schedule and run anything on a 225 * cpu before it has been marked online. Hence, we will not 226 * fill any swap slots in slots cache of such cpu. 227 * There are no slots on such cpu that need to be drained. 228 */ 229 for_each_online_cpu(cpu) 230 drain_slots_cache_cpu(cpu, type, false); 231 } 232 233 static int free_slot_cache(unsigned int cpu) 234 { 235 mutex_lock(&swap_slots_cache_mutex); 236 drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true); 237 mutex_unlock(&swap_slots_cache_mutex); 238 return 0; 239 } 240 241 int enable_swap_slots_cache(void) 242 { 243 int ret = 0; 244 245 mutex_lock(&swap_slots_cache_enable_mutex); 246 if (swap_slot_cache_initialized) { 247 __reenable_swap_slots_cache(); 248 goto out_unlock; 249 } 250 251 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", 252 alloc_swap_slot_cache, free_slot_cache); 253 if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " 254 "without swap slots cache.\n", __func__)) 255 goto out_unlock; 256 257 swap_slot_cache_initialized = true; 258 __reenable_swap_slots_cache(); 259 out_unlock: 260 mutex_unlock(&swap_slots_cache_enable_mutex); 261 return 0; 262 } 263 264 /* called with swap slot cache's alloc lock held */ 265 static int refill_swap_slots_cache(struct swap_slots_cache *cache) 266 { 267 if (!use_swap_slot_cache || cache->nr) 268 return 0; 269 270 cache->cur = 0; 271 if (swap_slot_cache_active) 272 cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, 273 cache->slots, 1); 274 275 return cache->nr; 276 } 277 278 int free_swap_slot(swp_entry_t entry) 279 { 280 struct swap_slots_cache *cache; 281 282 cache = raw_cpu_ptr(&swp_slots); 283 if (likely(use_swap_slot_cache && cache->slots_ret)) { 284 spin_lock_irq(&cache->free_lock); 285 /* Swap slots cache may be deactivated before acquiring lock */ 286 if (!use_swap_slot_cache || !cache->slots_ret) { 287 spin_unlock_irq(&cache->free_lock); 288 goto direct_free; 289 } 290 if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) { 291 /* 292 * Return slots to global pool. 293 * The current swap_map value is SWAP_HAS_CACHE. 294 * Set it to 0 to indicate it is available for 295 * allocation in global pool 296 */ 297 swapcache_free_entries(cache->slots_ret, cache->n_ret); 298 cache->n_ret = 0; 299 } 300 cache->slots_ret[cache->n_ret++] = entry; 301 spin_unlock_irq(&cache->free_lock); 302 } else { 303 direct_free: 304 swapcache_free_entries(&entry, 1); 305 } 306 307 return 0; 308 } 309 310 swp_entry_t get_swap_page(struct page *page) 311 { 312 swp_entry_t entry, *pentry; 313 struct swap_slots_cache *cache; 314 315 entry.val = 0; 316 317 if (PageTransHuge(page)) { 318 if (IS_ENABLED(CONFIG_THP_SWAP)) 319 get_swap_pages(1, &entry, HPAGE_PMD_NR); 320 goto out; 321 } 322 323 /* 324 * Preemption is allowed here, because we may sleep 325 * in refill_swap_slots_cache(). But it is safe, because 326 * accesses to the per-CPU data structure are protected by the 327 * mutex cache->alloc_lock. 328 * 329 * The alloc path here does not touch cache->slots_ret 330 * so cache->free_lock is not taken. 331 */ 332 cache = raw_cpu_ptr(&swp_slots); 333 334 if (likely(check_cache_active() && cache->slots)) { 335 mutex_lock(&cache->alloc_lock); 336 if (cache->slots) { 337 repeat: 338 if (cache->nr) { 339 pentry = &cache->slots[cache->cur++]; 340 entry = *pentry; 341 pentry->val = 0; 342 cache->nr--; 343 } else { 344 if (refill_swap_slots_cache(cache)) 345 goto repeat; 346 } 347 } 348 mutex_unlock(&cache->alloc_lock); 349 if (entry.val) 350 goto out; 351 } 352 353 get_swap_pages(1, &entry, 1); 354 out: 355 if (mem_cgroup_try_charge_swap(page, entry)) { 356 put_swap_page(page, entry); 357 entry.val = 0; 358 } 359 return entry; 360 } 361