1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Manage cache of swap slots to be used for and returned from 4 * swap. 5 * 6 * Copyright(c) 2016 Intel Corporation. 7 * 8 * Author: Tim Chen <tim.c.chen@linux.intel.com> 9 * 10 * We allocate the swap slots from the global pool and put 11 * it into local per cpu caches. This has the advantage 12 * of no needing to acquire the swap_info lock every time 13 * we need a new slot. 14 * 15 * There is also opportunity to simply return the slot 16 * to local caches without needing to acquire swap_info 17 * lock. We do not reuse the returned slots directly but 18 * move them back to the global pool in a batch. This 19 * allows the slots to coalesce and reduce fragmentation. 20 * 21 * The swap entry allocated is marked with SWAP_HAS_CACHE 22 * flag in map_count that prevents it from being allocated 23 * again from the global pool. 24 * 25 * The swap slots cache is protected by a mutex instead of 26 * a spin lock as when we search for slots with scan_swap_map, 27 * we can possibly sleep. 28 */ 29 30 #include <linux/swap_slots.h> 31 #include <linux/cpu.h> 32 #include <linux/cpumask.h> 33 #include <linux/slab.h> 34 #include <linux/vmalloc.h> 35 #include <linux/mutex.h> 36 #include <linux/mm.h> 37 38 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots); 39 static bool swap_slot_cache_active; 40 bool swap_slot_cache_enabled; 41 static bool swap_slot_cache_initialized; 42 static DEFINE_MUTEX(swap_slots_cache_mutex); 43 /* Serialize swap slots cache enable/disable operations */ 44 static DEFINE_MUTEX(swap_slots_cache_enable_mutex); 45 46 static void __drain_swap_slots_cache(unsigned int type); 47 48 #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled) 49 #define SLOTS_CACHE 0x1 50 #define SLOTS_CACHE_RET 0x2 51 52 static void deactivate_swap_slots_cache(void) 53 { 54 mutex_lock(&swap_slots_cache_mutex); 55 swap_slot_cache_active = false; 56 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); 57 mutex_unlock(&swap_slots_cache_mutex); 58 } 59 60 static void reactivate_swap_slots_cache(void) 61 { 62 mutex_lock(&swap_slots_cache_mutex); 63 swap_slot_cache_active = true; 64 mutex_unlock(&swap_slots_cache_mutex); 65 } 66 67 /* Must not be called with cpu hot plug lock */ 68 void disable_swap_slots_cache_lock(void) 69 { 70 mutex_lock(&swap_slots_cache_enable_mutex); 71 swap_slot_cache_enabled = false; 72 if (swap_slot_cache_initialized) { 73 /* serialize with cpu hotplug operations */ 74 cpus_read_lock(); 75 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); 76 cpus_read_unlock(); 77 } 78 } 79 80 static void __reenable_swap_slots_cache(void) 81 { 82 swap_slot_cache_enabled = has_usable_swap(); 83 } 84 85 void reenable_swap_slots_cache_unlock(void) 86 { 87 __reenable_swap_slots_cache(); 88 mutex_unlock(&swap_slots_cache_enable_mutex); 89 } 90 91 static bool check_cache_active(void) 92 { 93 long pages; 94 95 if (!swap_slot_cache_enabled) 96 return false; 97 98 pages = get_nr_swap_pages(); 99 if (!swap_slot_cache_active) { 100 if (pages > num_online_cpus() * 101 THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE) 102 reactivate_swap_slots_cache(); 103 goto out; 104 } 105 106 /* if global pool of slot caches too low, deactivate cache */ 107 if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE) 108 deactivate_swap_slots_cache(); 109 out: 110 return swap_slot_cache_active; 111 } 112 113 static int alloc_swap_slot_cache(unsigned int cpu) 114 { 115 struct swap_slots_cache *cache; 116 swp_entry_t *slots, *slots_ret; 117 118 /* 119 * Do allocation outside swap_slots_cache_mutex 120 * as kvzalloc could trigger reclaim and get_swap_page, 121 * which can lock swap_slots_cache_mutex. 122 */ 123 slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), 124 GFP_KERNEL); 125 if (!slots) 126 return -ENOMEM; 127 128 slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), 129 GFP_KERNEL); 130 if (!slots_ret) { 131 kvfree(slots); 132 return -ENOMEM; 133 } 134 135 mutex_lock(&swap_slots_cache_mutex); 136 cache = &per_cpu(swp_slots, cpu); 137 if (cache->slots || cache->slots_ret) { 138 /* cache already allocated */ 139 mutex_unlock(&swap_slots_cache_mutex); 140 141 kvfree(slots); 142 kvfree(slots_ret); 143 144 return 0; 145 } 146 147 if (!cache->lock_initialized) { 148 mutex_init(&cache->alloc_lock); 149 spin_lock_init(&cache->free_lock); 150 cache->lock_initialized = true; 151 } 152 cache->nr = 0; 153 cache->cur = 0; 154 cache->n_ret = 0; 155 /* 156 * We initialized alloc_lock and free_lock earlier. We use 157 * !cache->slots or !cache->slots_ret to know if it is safe to acquire 158 * the corresponding lock and use the cache. Memory barrier below 159 * ensures the assumption. 160 */ 161 mb(); 162 cache->slots = slots; 163 cache->slots_ret = slots_ret; 164 mutex_unlock(&swap_slots_cache_mutex); 165 return 0; 166 } 167 168 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type, 169 bool free_slots) 170 { 171 struct swap_slots_cache *cache; 172 swp_entry_t *slots = NULL; 173 174 cache = &per_cpu(swp_slots, cpu); 175 if ((type & SLOTS_CACHE) && cache->slots) { 176 mutex_lock(&cache->alloc_lock); 177 swapcache_free_entries(cache->slots + cache->cur, cache->nr); 178 cache->cur = 0; 179 cache->nr = 0; 180 if (free_slots && cache->slots) { 181 kvfree(cache->slots); 182 cache->slots = NULL; 183 } 184 mutex_unlock(&cache->alloc_lock); 185 } 186 if ((type & SLOTS_CACHE_RET) && cache->slots_ret) { 187 spin_lock_irq(&cache->free_lock); 188 swapcache_free_entries(cache->slots_ret, cache->n_ret); 189 cache->n_ret = 0; 190 if (free_slots && cache->slots_ret) { 191 slots = cache->slots_ret; 192 cache->slots_ret = NULL; 193 } 194 spin_unlock_irq(&cache->free_lock); 195 kvfree(slots); 196 } 197 } 198 199 static void __drain_swap_slots_cache(unsigned int type) 200 { 201 unsigned int cpu; 202 203 /* 204 * This function is called during 205 * 1) swapoff, when we have to make sure no 206 * left over slots are in cache when we remove 207 * a swap device; 208 * 2) disabling of swap slot cache, when we run low 209 * on swap slots when allocating memory and need 210 * to return swap slots to global pool. 211 * 212 * We cannot acquire cpu hot plug lock here as 213 * this function can be invoked in the cpu 214 * hot plug path: 215 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback 216 * -> memory allocation -> direct reclaim -> get_swap_page 217 * -> drain_swap_slots_cache 218 * 219 * Hence the loop over current online cpu below could miss cpu that 220 * is being brought online but not yet marked as online. 221 * That is okay as we do not schedule and run anything on a 222 * cpu before it has been marked online. Hence, we will not 223 * fill any swap slots in slots cache of such cpu. 224 * There are no slots on such cpu that need to be drained. 225 */ 226 for_each_online_cpu(cpu) 227 drain_slots_cache_cpu(cpu, type, false); 228 } 229 230 static int free_slot_cache(unsigned int cpu) 231 { 232 mutex_lock(&swap_slots_cache_mutex); 233 drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true); 234 mutex_unlock(&swap_slots_cache_mutex); 235 return 0; 236 } 237 238 void enable_swap_slots_cache(void) 239 { 240 mutex_lock(&swap_slots_cache_enable_mutex); 241 if (!swap_slot_cache_initialized) { 242 int ret; 243 244 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", 245 alloc_swap_slot_cache, free_slot_cache); 246 if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " 247 "without swap slots cache.\n", __func__)) 248 goto out_unlock; 249 250 swap_slot_cache_initialized = true; 251 } 252 253 __reenable_swap_slots_cache(); 254 out_unlock: 255 mutex_unlock(&swap_slots_cache_enable_mutex); 256 } 257 258 /* called with swap slot cache's alloc lock held */ 259 static int refill_swap_slots_cache(struct swap_slots_cache *cache) 260 { 261 if (!use_swap_slot_cache || cache->nr) 262 return 0; 263 264 cache->cur = 0; 265 if (swap_slot_cache_active) 266 cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, 267 cache->slots, 1); 268 269 return cache->nr; 270 } 271 272 int free_swap_slot(swp_entry_t entry) 273 { 274 struct swap_slots_cache *cache; 275 276 cache = raw_cpu_ptr(&swp_slots); 277 if (likely(use_swap_slot_cache && cache->slots_ret)) { 278 spin_lock_irq(&cache->free_lock); 279 /* Swap slots cache may be deactivated before acquiring lock */ 280 if (!use_swap_slot_cache || !cache->slots_ret) { 281 spin_unlock_irq(&cache->free_lock); 282 goto direct_free; 283 } 284 if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) { 285 /* 286 * Return slots to global pool. 287 * The current swap_map value is SWAP_HAS_CACHE. 288 * Set it to 0 to indicate it is available for 289 * allocation in global pool 290 */ 291 swapcache_free_entries(cache->slots_ret, cache->n_ret); 292 cache->n_ret = 0; 293 } 294 cache->slots_ret[cache->n_ret++] = entry; 295 spin_unlock_irq(&cache->free_lock); 296 } else { 297 direct_free: 298 swapcache_free_entries(&entry, 1); 299 } 300 301 return 0; 302 } 303 304 swp_entry_t get_swap_page(struct page *page) 305 { 306 swp_entry_t entry; 307 struct swap_slots_cache *cache; 308 309 entry.val = 0; 310 311 if (PageTransHuge(page)) { 312 if (IS_ENABLED(CONFIG_THP_SWAP)) 313 get_swap_pages(1, &entry, HPAGE_PMD_NR); 314 goto out; 315 } 316 317 /* 318 * Preemption is allowed here, because we may sleep 319 * in refill_swap_slots_cache(). But it is safe, because 320 * accesses to the per-CPU data structure are protected by the 321 * mutex cache->alloc_lock. 322 * 323 * The alloc path here does not touch cache->slots_ret 324 * so cache->free_lock is not taken. 325 */ 326 cache = raw_cpu_ptr(&swp_slots); 327 328 if (likely(check_cache_active() && cache->slots)) { 329 mutex_lock(&cache->alloc_lock); 330 if (cache->slots) { 331 repeat: 332 if (cache->nr) { 333 entry = cache->slots[cache->cur]; 334 cache->slots[cache->cur++].val = 0; 335 cache->nr--; 336 } else if (refill_swap_slots_cache(cache)) { 337 goto repeat; 338 } 339 } 340 mutex_unlock(&cache->alloc_lock); 341 if (entry.val) 342 goto out; 343 } 344 345 get_swap_pages(1, &entry, 1); 346 out: 347 if (mem_cgroup_try_charge_swap(page, entry)) { 348 put_swap_page(page, entry); 349 entry.val = 0; 350 } 351 return entry; 352 } 353