xref: /openbmc/linux/mm/swap_slots.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Manage cache of swap slots to be used for and returned from
4  * swap.
5  *
6  * Copyright(c) 2016 Intel Corporation.
7  *
8  * Author: Tim Chen <tim.c.chen@linux.intel.com>
9  *
10  * We allocate the swap slots from the global pool and put
11  * it into local per cpu caches.  This has the advantage
12  * of no needing to acquire the swap_info lock every time
13  * we need a new slot.
14  *
15  * There is also opportunity to simply return the slot
16  * to local caches without needing to acquire swap_info
17  * lock.  We do not reuse the returned slots directly but
18  * move them back to the global pool in a batch.  This
19  * allows the slots to coaellesce and reduce fragmentation.
20  *
21  * The swap entry allocated is marked with SWAP_HAS_CACHE
22  * flag in map_count that prevents it from being allocated
23  * again from the global pool.
24  *
25  * The swap slots cache is protected by a mutex instead of
26  * a spin lock as when we search for slots with scan_swap_map,
27  * we can possibly sleep.
28  */
29 
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/vmalloc.h>
34 #include <linux/mutex.h>
35 #include <linux/mm.h>
36 
37 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
38 static bool	swap_slot_cache_active;
39 bool	swap_slot_cache_enabled;
40 static bool	swap_slot_cache_initialized;
41 static DEFINE_MUTEX(swap_slots_cache_mutex);
42 /* Serialize swap slots cache enable/disable operations */
43 static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
44 
45 static void __drain_swap_slots_cache(unsigned int type);
46 static void deactivate_swap_slots_cache(void);
47 static void reactivate_swap_slots_cache(void);
48 
49 #define use_swap_slot_cache (swap_slot_cache_active && \
50 		swap_slot_cache_enabled && swap_slot_cache_initialized)
51 #define SLOTS_CACHE 0x1
52 #define SLOTS_CACHE_RET 0x2
53 
54 static void deactivate_swap_slots_cache(void)
55 {
56 	mutex_lock(&swap_slots_cache_mutex);
57 	swap_slot_cache_active = false;
58 	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
59 	mutex_unlock(&swap_slots_cache_mutex);
60 }
61 
62 static void reactivate_swap_slots_cache(void)
63 {
64 	mutex_lock(&swap_slots_cache_mutex);
65 	swap_slot_cache_active = true;
66 	mutex_unlock(&swap_slots_cache_mutex);
67 }
68 
69 /* Must not be called with cpu hot plug lock */
70 void disable_swap_slots_cache_lock(void)
71 {
72 	mutex_lock(&swap_slots_cache_enable_mutex);
73 	swap_slot_cache_enabled = false;
74 	if (swap_slot_cache_initialized) {
75 		/* serialize with cpu hotplug operations */
76 		get_online_cpus();
77 		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
78 		put_online_cpus();
79 	}
80 }
81 
82 static void __reenable_swap_slots_cache(void)
83 {
84 	swap_slot_cache_enabled = has_usable_swap();
85 }
86 
87 void reenable_swap_slots_cache_unlock(void)
88 {
89 	__reenable_swap_slots_cache();
90 	mutex_unlock(&swap_slots_cache_enable_mutex);
91 }
92 
93 static bool check_cache_active(void)
94 {
95 	long pages;
96 
97 	if (!swap_slot_cache_enabled || !swap_slot_cache_initialized)
98 		return false;
99 
100 	pages = get_nr_swap_pages();
101 	if (!swap_slot_cache_active) {
102 		if (pages > num_online_cpus() *
103 		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
104 			reactivate_swap_slots_cache();
105 		goto out;
106 	}
107 
108 	/* if global pool of slot caches too low, deactivate cache */
109 	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
110 		deactivate_swap_slots_cache();
111 out:
112 	return swap_slot_cache_active;
113 }
114 
115 static int alloc_swap_slot_cache(unsigned int cpu)
116 {
117 	struct swap_slots_cache *cache;
118 	swp_entry_t *slots, *slots_ret;
119 
120 	/*
121 	 * Do allocation outside swap_slots_cache_mutex
122 	 * as kvzalloc could trigger reclaim and get_swap_page,
123 	 * which can lock swap_slots_cache_mutex.
124 	 */
125 	slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
126 			 GFP_KERNEL);
127 	if (!slots)
128 		return -ENOMEM;
129 
130 	slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
131 			     GFP_KERNEL);
132 	if (!slots_ret) {
133 		kvfree(slots);
134 		return -ENOMEM;
135 	}
136 
137 	mutex_lock(&swap_slots_cache_mutex);
138 	cache = &per_cpu(swp_slots, cpu);
139 	if (cache->slots || cache->slots_ret)
140 		/* cache already allocated */
141 		goto out;
142 	if (!cache->lock_initialized) {
143 		mutex_init(&cache->alloc_lock);
144 		spin_lock_init(&cache->free_lock);
145 		cache->lock_initialized = true;
146 	}
147 	cache->nr = 0;
148 	cache->cur = 0;
149 	cache->n_ret = 0;
150 	/*
151 	 * We initialized alloc_lock and free_lock earlier.  We use
152 	 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
153 	 * the corresponding lock and use the cache.  Memory barrier below
154 	 * ensures the assumption.
155 	 */
156 	mb();
157 	cache->slots = slots;
158 	slots = NULL;
159 	cache->slots_ret = slots_ret;
160 	slots_ret = NULL;
161 out:
162 	mutex_unlock(&swap_slots_cache_mutex);
163 	if (slots)
164 		kvfree(slots);
165 	if (slots_ret)
166 		kvfree(slots_ret);
167 	return 0;
168 }
169 
170 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
171 				  bool free_slots)
172 {
173 	struct swap_slots_cache *cache;
174 	swp_entry_t *slots = NULL;
175 
176 	cache = &per_cpu(swp_slots, cpu);
177 	if ((type & SLOTS_CACHE) && cache->slots) {
178 		mutex_lock(&cache->alloc_lock);
179 		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
180 		cache->cur = 0;
181 		cache->nr = 0;
182 		if (free_slots && cache->slots) {
183 			kvfree(cache->slots);
184 			cache->slots = NULL;
185 		}
186 		mutex_unlock(&cache->alloc_lock);
187 	}
188 	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
189 		spin_lock_irq(&cache->free_lock);
190 		swapcache_free_entries(cache->slots_ret, cache->n_ret);
191 		cache->n_ret = 0;
192 		if (free_slots && cache->slots_ret) {
193 			slots = cache->slots_ret;
194 			cache->slots_ret = NULL;
195 		}
196 		spin_unlock_irq(&cache->free_lock);
197 		if (slots)
198 			kvfree(slots);
199 	}
200 }
201 
202 static void __drain_swap_slots_cache(unsigned int type)
203 {
204 	unsigned int cpu;
205 
206 	/*
207 	 * This function is called during
208 	 *	1) swapoff, when we have to make sure no
209 	 *	   left over slots are in cache when we remove
210 	 *	   a swap device;
211 	 *      2) disabling of swap slot cache, when we run low
212 	 *	   on swap slots when allocating memory and need
213 	 *	   to return swap slots to global pool.
214 	 *
215 	 * We cannot acquire cpu hot plug lock here as
216 	 * this function can be invoked in the cpu
217 	 * hot plug path:
218 	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
219 	 *   -> memory allocation -> direct reclaim -> get_swap_page
220 	 *   -> drain_swap_slots_cache
221 	 *
222 	 * Hence the loop over current online cpu below could miss cpu that
223 	 * is being brought online but not yet marked as online.
224 	 * That is okay as we do not schedule and run anything on a
225 	 * cpu before it has been marked online. Hence, we will not
226 	 * fill any swap slots in slots cache of such cpu.
227 	 * There are no slots on such cpu that need to be drained.
228 	 */
229 	for_each_online_cpu(cpu)
230 		drain_slots_cache_cpu(cpu, type, false);
231 }
232 
233 static int free_slot_cache(unsigned int cpu)
234 {
235 	mutex_lock(&swap_slots_cache_mutex);
236 	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
237 	mutex_unlock(&swap_slots_cache_mutex);
238 	return 0;
239 }
240 
241 int enable_swap_slots_cache(void)
242 {
243 	int ret = 0;
244 
245 	mutex_lock(&swap_slots_cache_enable_mutex);
246 	if (swap_slot_cache_initialized) {
247 		__reenable_swap_slots_cache();
248 		goto out_unlock;
249 	}
250 
251 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
252 				alloc_swap_slot_cache, free_slot_cache);
253 	if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
254 			       "without swap slots cache.\n", __func__))
255 		goto out_unlock;
256 
257 	swap_slot_cache_initialized = true;
258 	__reenable_swap_slots_cache();
259 out_unlock:
260 	mutex_unlock(&swap_slots_cache_enable_mutex);
261 	return 0;
262 }
263 
264 /* called with swap slot cache's alloc lock held */
265 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
266 {
267 	if (!use_swap_slot_cache || cache->nr)
268 		return 0;
269 
270 	cache->cur = 0;
271 	if (swap_slot_cache_active)
272 		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
273 					   cache->slots, 1);
274 
275 	return cache->nr;
276 }
277 
278 int free_swap_slot(swp_entry_t entry)
279 {
280 	struct swap_slots_cache *cache;
281 
282 	cache = raw_cpu_ptr(&swp_slots);
283 	if (likely(use_swap_slot_cache && cache->slots_ret)) {
284 		spin_lock_irq(&cache->free_lock);
285 		/* Swap slots cache may be deactivated before acquiring lock */
286 		if (!use_swap_slot_cache || !cache->slots_ret) {
287 			spin_unlock_irq(&cache->free_lock);
288 			goto direct_free;
289 		}
290 		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
291 			/*
292 			 * Return slots to global pool.
293 			 * The current swap_map value is SWAP_HAS_CACHE.
294 			 * Set it to 0 to indicate it is available for
295 			 * allocation in global pool
296 			 */
297 			swapcache_free_entries(cache->slots_ret, cache->n_ret);
298 			cache->n_ret = 0;
299 		}
300 		cache->slots_ret[cache->n_ret++] = entry;
301 		spin_unlock_irq(&cache->free_lock);
302 	} else {
303 direct_free:
304 		swapcache_free_entries(&entry, 1);
305 	}
306 
307 	return 0;
308 }
309 
310 swp_entry_t get_swap_page(struct page *page)
311 {
312 	swp_entry_t entry, *pentry;
313 	struct swap_slots_cache *cache;
314 
315 	entry.val = 0;
316 
317 	if (PageTransHuge(page)) {
318 		if (IS_ENABLED(CONFIG_THP_SWAP))
319 			get_swap_pages(1, &entry, HPAGE_PMD_NR);
320 		goto out;
321 	}
322 
323 	/*
324 	 * Preemption is allowed here, because we may sleep
325 	 * in refill_swap_slots_cache().  But it is safe, because
326 	 * accesses to the per-CPU data structure are protected by the
327 	 * mutex cache->alloc_lock.
328 	 *
329 	 * The alloc path here does not touch cache->slots_ret
330 	 * so cache->free_lock is not taken.
331 	 */
332 	cache = raw_cpu_ptr(&swp_slots);
333 
334 	if (likely(check_cache_active() && cache->slots)) {
335 		mutex_lock(&cache->alloc_lock);
336 		if (cache->slots) {
337 repeat:
338 			if (cache->nr) {
339 				pentry = &cache->slots[cache->cur++];
340 				entry = *pentry;
341 				pentry->val = 0;
342 				cache->nr--;
343 			} else {
344 				if (refill_swap_slots_cache(cache))
345 					goto repeat;
346 			}
347 		}
348 		mutex_unlock(&cache->alloc_lock);
349 		if (entry.val)
350 			goto out;
351 	}
352 
353 	get_swap_pages(1, &entry, 1);
354 out:
355 	if (mem_cgroup_try_charge_swap(page, entry)) {
356 		put_swap_page(page, entry);
357 		entry.val = 0;
358 	}
359 	return entry;
360 }
361