xref: /openbmc/linux/mm/swap_slots.c (revision 1b1f98dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Manage cache of swap slots to be used for and returned from
4  * swap.
5  *
6  * Copyright(c) 2016 Intel Corporation.
7  *
8  * Author: Tim Chen <tim.c.chen@linux.intel.com>
9  *
10  * We allocate the swap slots from the global pool and put
11  * it into local per cpu caches.  This has the advantage
12  * of no needing to acquire the swap_info lock every time
13  * we need a new slot.
14  *
15  * There is also opportunity to simply return the slot
16  * to local caches without needing to acquire swap_info
17  * lock.  We do not reuse the returned slots directly but
18  * move them back to the global pool in a batch.  This
19  * allows the slots to coalesce and reduce fragmentation.
20  *
21  * The swap entry allocated is marked with SWAP_HAS_CACHE
22  * flag in map_count that prevents it from being allocated
23  * again from the global pool.
24  *
25  * The swap slots cache is protected by a mutex instead of
26  * a spin lock as when we search for slots with scan_swap_map,
27  * we can possibly sleep.
28  */
29 
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/vmalloc.h>
34 #include <linux/mutex.h>
35 #include <linux/mm.h>
36 
37 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
38 static bool	swap_slot_cache_active;
39 bool	swap_slot_cache_enabled;
40 static bool	swap_slot_cache_initialized;
41 static DEFINE_MUTEX(swap_slots_cache_mutex);
42 /* Serialize swap slots cache enable/disable operations */
43 static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
44 
45 static void __drain_swap_slots_cache(unsigned int type);
46 
47 #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
48 #define SLOTS_CACHE 0x1
49 #define SLOTS_CACHE_RET 0x2
50 
51 static void deactivate_swap_slots_cache(void)
52 {
53 	mutex_lock(&swap_slots_cache_mutex);
54 	swap_slot_cache_active = false;
55 	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
56 	mutex_unlock(&swap_slots_cache_mutex);
57 }
58 
59 static void reactivate_swap_slots_cache(void)
60 {
61 	mutex_lock(&swap_slots_cache_mutex);
62 	swap_slot_cache_active = true;
63 	mutex_unlock(&swap_slots_cache_mutex);
64 }
65 
66 /* Must not be called with cpu hot plug lock */
67 void disable_swap_slots_cache_lock(void)
68 {
69 	mutex_lock(&swap_slots_cache_enable_mutex);
70 	swap_slot_cache_enabled = false;
71 	if (swap_slot_cache_initialized) {
72 		/* serialize with cpu hotplug operations */
73 		cpus_read_lock();
74 		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
75 		cpus_read_unlock();
76 	}
77 }
78 
79 static void __reenable_swap_slots_cache(void)
80 {
81 	swap_slot_cache_enabled = has_usable_swap();
82 }
83 
84 void reenable_swap_slots_cache_unlock(void)
85 {
86 	__reenable_swap_slots_cache();
87 	mutex_unlock(&swap_slots_cache_enable_mutex);
88 }
89 
90 static bool check_cache_active(void)
91 {
92 	long pages;
93 
94 	if (!swap_slot_cache_enabled)
95 		return false;
96 
97 	pages = get_nr_swap_pages();
98 	if (!swap_slot_cache_active) {
99 		if (pages > num_online_cpus() *
100 		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
101 			reactivate_swap_slots_cache();
102 		goto out;
103 	}
104 
105 	/* if global pool of slot caches too low, deactivate cache */
106 	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
107 		deactivate_swap_slots_cache();
108 out:
109 	return swap_slot_cache_active;
110 }
111 
112 static int alloc_swap_slot_cache(unsigned int cpu)
113 {
114 	struct swap_slots_cache *cache;
115 	swp_entry_t *slots, *slots_ret;
116 
117 	/*
118 	 * Do allocation outside swap_slots_cache_mutex
119 	 * as kvzalloc could trigger reclaim and get_swap_page,
120 	 * which can lock swap_slots_cache_mutex.
121 	 */
122 	slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
123 			 GFP_KERNEL);
124 	if (!slots)
125 		return -ENOMEM;
126 
127 	slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
128 			     GFP_KERNEL);
129 	if (!slots_ret) {
130 		kvfree(slots);
131 		return -ENOMEM;
132 	}
133 
134 	mutex_lock(&swap_slots_cache_mutex);
135 	cache = &per_cpu(swp_slots, cpu);
136 	if (cache->slots || cache->slots_ret) {
137 		/* cache already allocated */
138 		mutex_unlock(&swap_slots_cache_mutex);
139 
140 		kvfree(slots);
141 		kvfree(slots_ret);
142 
143 		return 0;
144 	}
145 
146 	if (!cache->lock_initialized) {
147 		mutex_init(&cache->alloc_lock);
148 		spin_lock_init(&cache->free_lock);
149 		cache->lock_initialized = true;
150 	}
151 	cache->nr = 0;
152 	cache->cur = 0;
153 	cache->n_ret = 0;
154 	/*
155 	 * We initialized alloc_lock and free_lock earlier.  We use
156 	 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
157 	 * the corresponding lock and use the cache.  Memory barrier below
158 	 * ensures the assumption.
159 	 */
160 	mb();
161 	cache->slots = slots;
162 	cache->slots_ret = slots_ret;
163 	mutex_unlock(&swap_slots_cache_mutex);
164 	return 0;
165 }
166 
167 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
168 				  bool free_slots)
169 {
170 	struct swap_slots_cache *cache;
171 	swp_entry_t *slots = NULL;
172 
173 	cache = &per_cpu(swp_slots, cpu);
174 	if ((type & SLOTS_CACHE) && cache->slots) {
175 		mutex_lock(&cache->alloc_lock);
176 		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
177 		cache->cur = 0;
178 		cache->nr = 0;
179 		if (free_slots && cache->slots) {
180 			kvfree(cache->slots);
181 			cache->slots = NULL;
182 		}
183 		mutex_unlock(&cache->alloc_lock);
184 	}
185 	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
186 		spin_lock_irq(&cache->free_lock);
187 		swapcache_free_entries(cache->slots_ret, cache->n_ret);
188 		cache->n_ret = 0;
189 		if (free_slots && cache->slots_ret) {
190 			slots = cache->slots_ret;
191 			cache->slots_ret = NULL;
192 		}
193 		spin_unlock_irq(&cache->free_lock);
194 		kvfree(slots);
195 	}
196 }
197 
198 static void __drain_swap_slots_cache(unsigned int type)
199 {
200 	unsigned int cpu;
201 
202 	/*
203 	 * This function is called during
204 	 *	1) swapoff, when we have to make sure no
205 	 *	   left over slots are in cache when we remove
206 	 *	   a swap device;
207 	 *      2) disabling of swap slot cache, when we run low
208 	 *	   on swap slots when allocating memory and need
209 	 *	   to return swap slots to global pool.
210 	 *
211 	 * We cannot acquire cpu hot plug lock here as
212 	 * this function can be invoked in the cpu
213 	 * hot plug path:
214 	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
215 	 *   -> memory allocation -> direct reclaim -> get_swap_page
216 	 *   -> drain_swap_slots_cache
217 	 *
218 	 * Hence the loop over current online cpu below could miss cpu that
219 	 * is being brought online but not yet marked as online.
220 	 * That is okay as we do not schedule and run anything on a
221 	 * cpu before it has been marked online. Hence, we will not
222 	 * fill any swap slots in slots cache of such cpu.
223 	 * There are no slots on such cpu that need to be drained.
224 	 */
225 	for_each_online_cpu(cpu)
226 		drain_slots_cache_cpu(cpu, type, false);
227 }
228 
229 static int free_slot_cache(unsigned int cpu)
230 {
231 	mutex_lock(&swap_slots_cache_mutex);
232 	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
233 	mutex_unlock(&swap_slots_cache_mutex);
234 	return 0;
235 }
236 
237 void enable_swap_slots_cache(void)
238 {
239 	mutex_lock(&swap_slots_cache_enable_mutex);
240 	if (!swap_slot_cache_initialized) {
241 		int ret;
242 
243 		ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
244 					alloc_swap_slot_cache, free_slot_cache);
245 		if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
246 				       "without swap slots cache.\n", __func__))
247 			goto out_unlock;
248 
249 		swap_slot_cache_initialized = true;
250 	}
251 
252 	__reenable_swap_slots_cache();
253 out_unlock:
254 	mutex_unlock(&swap_slots_cache_enable_mutex);
255 }
256 
257 /* called with swap slot cache's alloc lock held */
258 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
259 {
260 	if (!use_swap_slot_cache || cache->nr)
261 		return 0;
262 
263 	cache->cur = 0;
264 	if (swap_slot_cache_active)
265 		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
266 					   cache->slots, 1);
267 
268 	return cache->nr;
269 }
270 
271 int free_swap_slot(swp_entry_t entry)
272 {
273 	struct swap_slots_cache *cache;
274 
275 	cache = raw_cpu_ptr(&swp_slots);
276 	if (likely(use_swap_slot_cache && cache->slots_ret)) {
277 		spin_lock_irq(&cache->free_lock);
278 		/* Swap slots cache may be deactivated before acquiring lock */
279 		if (!use_swap_slot_cache || !cache->slots_ret) {
280 			spin_unlock_irq(&cache->free_lock);
281 			goto direct_free;
282 		}
283 		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
284 			/*
285 			 * Return slots to global pool.
286 			 * The current swap_map value is SWAP_HAS_CACHE.
287 			 * Set it to 0 to indicate it is available for
288 			 * allocation in global pool
289 			 */
290 			swapcache_free_entries(cache->slots_ret, cache->n_ret);
291 			cache->n_ret = 0;
292 		}
293 		cache->slots_ret[cache->n_ret++] = entry;
294 		spin_unlock_irq(&cache->free_lock);
295 	} else {
296 direct_free:
297 		swapcache_free_entries(&entry, 1);
298 	}
299 
300 	return 0;
301 }
302 
303 swp_entry_t get_swap_page(struct page *page)
304 {
305 	swp_entry_t entry;
306 	struct swap_slots_cache *cache;
307 
308 	entry.val = 0;
309 
310 	if (PageTransHuge(page)) {
311 		if (IS_ENABLED(CONFIG_THP_SWAP))
312 			get_swap_pages(1, &entry, HPAGE_PMD_NR);
313 		goto out;
314 	}
315 
316 	/*
317 	 * Preemption is allowed here, because we may sleep
318 	 * in refill_swap_slots_cache().  But it is safe, because
319 	 * accesses to the per-CPU data structure are protected by the
320 	 * mutex cache->alloc_lock.
321 	 *
322 	 * The alloc path here does not touch cache->slots_ret
323 	 * so cache->free_lock is not taken.
324 	 */
325 	cache = raw_cpu_ptr(&swp_slots);
326 
327 	if (likely(check_cache_active() && cache->slots)) {
328 		mutex_lock(&cache->alloc_lock);
329 		if (cache->slots) {
330 repeat:
331 			if (cache->nr) {
332 				entry = cache->slots[cache->cur];
333 				cache->slots[cache->cur++].val = 0;
334 				cache->nr--;
335 			} else if (refill_swap_slots_cache(cache)) {
336 				goto repeat;
337 			}
338 		}
339 		mutex_unlock(&cache->alloc_lock);
340 		if (entry.val)
341 			goto out;
342 	}
343 
344 	get_swap_pages(1, &entry, 1);
345 out:
346 	if (mem_cgroup_try_charge_swap(page, entry)) {
347 		put_swap_page(page, entry);
348 		entry.val = 0;
349 	}
350 	return entry;
351 }
352