1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 40 #include "internal.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/pagemap.h> 44 45 /* How many pages do we try to swap or page in/out together? */ 46 int page_cluster; 47 48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 49 struct lru_rotate { 50 local_lock_t lock; 51 struct pagevec pvec; 52 }; 53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 54 .lock = INIT_LOCAL_LOCK(lock), 55 }; 56 57 /* 58 * The following struct pagevec are grouped together because they are protected 59 * by disabling preemption (and interrupts remain enabled). 60 */ 61 struct lru_pvecs { 62 local_lock_t lock; 63 struct pagevec lru_add; 64 struct pagevec lru_deactivate_file; 65 struct pagevec lru_deactivate; 66 struct pagevec lru_lazyfree; 67 #ifdef CONFIG_SMP 68 struct pagevec activate_page; 69 #endif 70 }; 71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 72 .lock = INIT_LOCAL_LOCK(lock), 73 }; 74 75 /* 76 * This path almost never happens for VM activity - pages are normally 77 * freed via pagevecs. But it gets used by networking. 78 */ 79 static void __page_cache_release(struct page *page) 80 { 81 if (PageLRU(page)) { 82 pg_data_t *pgdat = page_pgdat(page); 83 struct lruvec *lruvec; 84 unsigned long flags; 85 86 spin_lock_irqsave(&pgdat->lru_lock, flags); 87 lruvec = mem_cgroup_page_lruvec(page, pgdat); 88 VM_BUG_ON_PAGE(!PageLRU(page), page); 89 __ClearPageLRU(page); 90 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 91 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 92 } 93 __ClearPageWaiters(page); 94 } 95 96 static void __put_single_page(struct page *page) 97 { 98 __page_cache_release(page); 99 mem_cgroup_uncharge(page); 100 free_unref_page(page); 101 } 102 103 static void __put_compound_page(struct page *page) 104 { 105 /* 106 * __page_cache_release() is supposed to be called for thp, not for 107 * hugetlb. This is because hugetlb page does never have PageLRU set 108 * (it's never listed to any LRU lists) and no memcg routines should 109 * be called for hugetlb (it has a separate hugetlb_cgroup.) 110 */ 111 if (!PageHuge(page)) 112 __page_cache_release(page); 113 destroy_compound_page(page); 114 } 115 116 void __put_page(struct page *page) 117 { 118 if (is_zone_device_page(page)) { 119 put_dev_pagemap(page->pgmap); 120 121 /* 122 * The page belongs to the device that created pgmap. Do 123 * not return it to page allocator. 124 */ 125 return; 126 } 127 128 if (unlikely(PageCompound(page))) 129 __put_compound_page(page); 130 else 131 __put_single_page(page); 132 } 133 EXPORT_SYMBOL(__put_page); 134 135 /** 136 * put_pages_list() - release a list of pages 137 * @pages: list of pages threaded on page->lru 138 * 139 * Release a list of pages which are strung together on page.lru. Currently 140 * used by read_cache_pages() and related error recovery code. 141 */ 142 void put_pages_list(struct list_head *pages) 143 { 144 while (!list_empty(pages)) { 145 struct page *victim; 146 147 victim = lru_to_page(pages); 148 list_del(&victim->lru); 149 put_page(victim); 150 } 151 } 152 EXPORT_SYMBOL(put_pages_list); 153 154 /* 155 * get_kernel_pages() - pin kernel pages in memory 156 * @kiov: An array of struct kvec structures 157 * @nr_segs: number of segments to pin 158 * @write: pinning for read/write, currently ignored 159 * @pages: array that receives pointers to the pages pinned. 160 * Should be at least nr_segs long. 161 * 162 * Returns number of pages pinned. This may be fewer than the number 163 * requested. If nr_pages is 0 or negative, returns 0. If no pages 164 * were pinned, returns -errno. Each page returned must be released 165 * with a put_page() call when it is finished with. 166 */ 167 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 168 struct page **pages) 169 { 170 int seg; 171 172 for (seg = 0; seg < nr_segs; seg++) { 173 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 174 return seg; 175 176 pages[seg] = kmap_to_page(kiov[seg].iov_base); 177 get_page(pages[seg]); 178 } 179 180 return seg; 181 } 182 EXPORT_SYMBOL_GPL(get_kernel_pages); 183 184 /* 185 * get_kernel_page() - pin a kernel page in memory 186 * @start: starting kernel address 187 * @write: pinning for read/write, currently ignored 188 * @pages: array that receives pointer to the page pinned. 189 * Must be at least nr_segs long. 190 * 191 * Returns 1 if page is pinned. If the page was not pinned, returns 192 * -errno. The page returned must be released with a put_page() call 193 * when it is finished with. 194 */ 195 int get_kernel_page(unsigned long start, int write, struct page **pages) 196 { 197 const struct kvec kiov = { 198 .iov_base = (void *)start, 199 .iov_len = PAGE_SIZE 200 }; 201 202 return get_kernel_pages(&kiov, 1, write, pages); 203 } 204 EXPORT_SYMBOL_GPL(get_kernel_page); 205 206 static void pagevec_lru_move_fn(struct pagevec *pvec, 207 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 208 void *arg) 209 { 210 int i; 211 struct pglist_data *pgdat = NULL; 212 struct lruvec *lruvec; 213 unsigned long flags = 0; 214 215 for (i = 0; i < pagevec_count(pvec); i++) { 216 struct page *page = pvec->pages[i]; 217 struct pglist_data *pagepgdat = page_pgdat(page); 218 219 if (pagepgdat != pgdat) { 220 if (pgdat) 221 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 222 pgdat = pagepgdat; 223 spin_lock_irqsave(&pgdat->lru_lock, flags); 224 } 225 226 lruvec = mem_cgroup_page_lruvec(page, pgdat); 227 (*move_fn)(page, lruvec, arg); 228 } 229 if (pgdat) 230 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 231 release_pages(pvec->pages, pvec->nr); 232 pagevec_reinit(pvec); 233 } 234 235 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 236 void *arg) 237 { 238 int *pgmoved = arg; 239 240 if (PageLRU(page) && !PageUnevictable(page)) { 241 del_page_from_lru_list(page, lruvec, page_lru(page)); 242 ClearPageActive(page); 243 add_page_to_lru_list_tail(page, lruvec, page_lru(page)); 244 (*pgmoved) += thp_nr_pages(page); 245 } 246 } 247 248 /* 249 * pagevec_move_tail() must be called with IRQ disabled. 250 * Otherwise this may cause nasty races. 251 */ 252 static void pagevec_move_tail(struct pagevec *pvec) 253 { 254 int pgmoved = 0; 255 256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 257 __count_vm_events(PGROTATED, pgmoved); 258 } 259 260 /* 261 * Writeback is about to end against a page which has been marked for immediate 262 * reclaim. If it still appears to be reclaimable, move it to the tail of the 263 * inactive list. 264 */ 265 void rotate_reclaimable_page(struct page *page) 266 { 267 if (!PageLocked(page) && !PageDirty(page) && 268 !PageUnevictable(page) && PageLRU(page)) { 269 struct pagevec *pvec; 270 unsigned long flags; 271 272 get_page(page); 273 local_lock_irqsave(&lru_rotate.lock, flags); 274 pvec = this_cpu_ptr(&lru_rotate.pvec); 275 if (!pagevec_add(pvec, page) || PageCompound(page)) 276 pagevec_move_tail(pvec); 277 local_unlock_irqrestore(&lru_rotate.lock, flags); 278 } 279 } 280 281 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 282 { 283 do { 284 unsigned long lrusize; 285 286 /* Record cost event */ 287 if (file) 288 lruvec->file_cost += nr_pages; 289 else 290 lruvec->anon_cost += nr_pages; 291 292 /* 293 * Decay previous events 294 * 295 * Because workloads change over time (and to avoid 296 * overflow) we keep these statistics as a floating 297 * average, which ends up weighing recent refaults 298 * more than old ones. 299 */ 300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 303 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 304 305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 306 lruvec->file_cost /= 2; 307 lruvec->anon_cost /= 2; 308 } 309 } while ((lruvec = parent_lruvec(lruvec))); 310 } 311 312 void lru_note_cost_page(struct page *page) 313 { 314 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)), 315 page_is_file_lru(page), thp_nr_pages(page)); 316 } 317 318 static void __activate_page(struct page *page, struct lruvec *lruvec, 319 void *arg) 320 { 321 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 322 int lru = page_lru_base_type(page); 323 int nr_pages = thp_nr_pages(page); 324 325 del_page_from_lru_list(page, lruvec, lru); 326 SetPageActive(page); 327 lru += LRU_ACTIVE; 328 add_page_to_lru_list(page, lruvec, lru); 329 trace_mm_lru_activate(page); 330 331 __count_vm_events(PGACTIVATE, nr_pages); 332 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 333 nr_pages); 334 } 335 } 336 337 #ifdef CONFIG_SMP 338 static void activate_page_drain(int cpu) 339 { 340 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 341 342 if (pagevec_count(pvec)) 343 pagevec_lru_move_fn(pvec, __activate_page, NULL); 344 } 345 346 static bool need_activate_page_drain(int cpu) 347 { 348 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 349 } 350 351 static void activate_page(struct page *page) 352 { 353 page = compound_head(page); 354 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 355 struct pagevec *pvec; 356 357 local_lock(&lru_pvecs.lock); 358 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 359 get_page(page); 360 if (!pagevec_add(pvec, page) || PageCompound(page)) 361 pagevec_lru_move_fn(pvec, __activate_page, NULL); 362 local_unlock(&lru_pvecs.lock); 363 } 364 } 365 366 #else 367 static inline void activate_page_drain(int cpu) 368 { 369 } 370 371 static void activate_page(struct page *page) 372 { 373 pg_data_t *pgdat = page_pgdat(page); 374 375 page = compound_head(page); 376 spin_lock_irq(&pgdat->lru_lock); 377 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL); 378 spin_unlock_irq(&pgdat->lru_lock); 379 } 380 #endif 381 382 static void __lru_cache_activate_page(struct page *page) 383 { 384 struct pagevec *pvec; 385 int i; 386 387 local_lock(&lru_pvecs.lock); 388 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 389 390 /* 391 * Search backwards on the optimistic assumption that the page being 392 * activated has just been added to this pagevec. Note that only 393 * the local pagevec is examined as a !PageLRU page could be in the 394 * process of being released, reclaimed, migrated or on a remote 395 * pagevec that is currently being drained. Furthermore, marking 396 * a remote pagevec's page PageActive potentially hits a race where 397 * a page is marked PageActive just after it is added to the inactive 398 * list causing accounting errors and BUG_ON checks to trigger. 399 */ 400 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 401 struct page *pagevec_page = pvec->pages[i]; 402 403 if (pagevec_page == page) { 404 SetPageActive(page); 405 break; 406 } 407 } 408 409 local_unlock(&lru_pvecs.lock); 410 } 411 412 /* 413 * Mark a page as having seen activity. 414 * 415 * inactive,unreferenced -> inactive,referenced 416 * inactive,referenced -> active,unreferenced 417 * active,unreferenced -> active,referenced 418 * 419 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 421 */ 422 void mark_page_accessed(struct page *page) 423 { 424 page = compound_head(page); 425 426 if (!PageReferenced(page)) { 427 SetPageReferenced(page); 428 } else if (PageUnevictable(page)) { 429 /* 430 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 431 * this list is never rotated or maintained, so marking an 432 * evictable page accessed has no effect. 433 */ 434 } else if (!PageActive(page)) { 435 /* 436 * If the page is on the LRU, queue it for activation via 437 * lru_pvecs.activate_page. Otherwise, assume the page is on a 438 * pagevec, mark it active and it'll be moved to the active 439 * LRU on the next drain. 440 */ 441 if (PageLRU(page)) 442 activate_page(page); 443 else 444 __lru_cache_activate_page(page); 445 ClearPageReferenced(page); 446 workingset_activation(page); 447 } 448 if (page_is_idle(page)) 449 clear_page_idle(page); 450 } 451 EXPORT_SYMBOL(mark_page_accessed); 452 453 /** 454 * lru_cache_add - add a page to a page list 455 * @page: the page to be added to the LRU. 456 * 457 * Queue the page for addition to the LRU via pagevec. The decision on whether 458 * to add the page to the [in]active [file|anon] list is deferred until the 459 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 460 * have the page added to the active list using mark_page_accessed(). 461 */ 462 void lru_cache_add(struct page *page) 463 { 464 struct pagevec *pvec; 465 466 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 467 VM_BUG_ON_PAGE(PageLRU(page), page); 468 469 get_page(page); 470 local_lock(&lru_pvecs.lock); 471 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 472 if (!pagevec_add(pvec, page) || PageCompound(page)) 473 __pagevec_lru_add(pvec); 474 local_unlock(&lru_pvecs.lock); 475 } 476 EXPORT_SYMBOL(lru_cache_add); 477 478 /** 479 * lru_cache_add_inactive_or_unevictable 480 * @page: the page to be added to LRU 481 * @vma: vma in which page is mapped for determining reclaimability 482 * 483 * Place @page on the inactive or unevictable LRU list, depending on its 484 * evictability. 485 */ 486 void lru_cache_add_inactive_or_unevictable(struct page *page, 487 struct vm_area_struct *vma) 488 { 489 bool unevictable; 490 491 VM_BUG_ON_PAGE(PageLRU(page), page); 492 493 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED; 494 if (unlikely(unevictable) && !TestSetPageMlocked(page)) { 495 int nr_pages = thp_nr_pages(page); 496 /* 497 * We use the irq-unsafe __mod_zone_page_stat because this 498 * counter is not modified from interrupt context, and the pte 499 * lock is held(spinlock), which implies preemption disabled. 500 */ 501 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 502 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 503 } 504 lru_cache_add(page); 505 } 506 507 /* 508 * If the page can not be invalidated, it is moved to the 509 * inactive list to speed up its reclaim. It is moved to the 510 * head of the list, rather than the tail, to give the flusher 511 * threads some time to write it out, as this is much more 512 * effective than the single-page writeout from reclaim. 513 * 514 * If the page isn't page_mapped and dirty/writeback, the page 515 * could reclaim asap using PG_reclaim. 516 * 517 * 1. active, mapped page -> none 518 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 519 * 3. inactive, mapped page -> none 520 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 521 * 5. inactive, clean -> inactive, tail 522 * 6. Others -> none 523 * 524 * In 4, why it moves inactive's head, the VM expects the page would 525 * be write it out by flusher threads as this is much more effective 526 * than the single-page writeout from reclaim. 527 */ 528 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 529 void *arg) 530 { 531 int lru; 532 bool active; 533 int nr_pages = thp_nr_pages(page); 534 535 if (!PageLRU(page)) 536 return; 537 538 if (PageUnevictable(page)) 539 return; 540 541 /* Some processes are using the page */ 542 if (page_mapped(page)) 543 return; 544 545 active = PageActive(page); 546 lru = page_lru_base_type(page); 547 548 del_page_from_lru_list(page, lruvec, lru + active); 549 ClearPageActive(page); 550 ClearPageReferenced(page); 551 552 if (PageWriteback(page) || PageDirty(page)) { 553 /* 554 * PG_reclaim could be raced with end_page_writeback 555 * It can make readahead confusing. But race window 556 * is _really_ small and it's non-critical problem. 557 */ 558 add_page_to_lru_list(page, lruvec, lru); 559 SetPageReclaim(page); 560 } else { 561 /* 562 * The page's writeback ends up during pagevec 563 * We moves tha page into tail of inactive. 564 */ 565 add_page_to_lru_list_tail(page, lruvec, lru); 566 __count_vm_events(PGROTATED, nr_pages); 567 } 568 569 if (active) { 570 __count_vm_events(PGDEACTIVATE, nr_pages); 571 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 572 nr_pages); 573 } 574 } 575 576 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 577 void *arg) 578 { 579 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 580 int lru = page_lru_base_type(page); 581 int nr_pages = thp_nr_pages(page); 582 583 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); 584 ClearPageActive(page); 585 ClearPageReferenced(page); 586 add_page_to_lru_list(page, lruvec, lru); 587 588 __count_vm_events(PGDEACTIVATE, nr_pages); 589 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 590 nr_pages); 591 } 592 } 593 594 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec, 595 void *arg) 596 { 597 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 598 !PageSwapCache(page) && !PageUnevictable(page)) { 599 bool active = PageActive(page); 600 int nr_pages = thp_nr_pages(page); 601 602 del_page_from_lru_list(page, lruvec, 603 LRU_INACTIVE_ANON + active); 604 ClearPageActive(page); 605 ClearPageReferenced(page); 606 /* 607 * Lazyfree pages are clean anonymous pages. They have 608 * PG_swapbacked flag cleared, to distinguish them from normal 609 * anonymous pages 610 */ 611 ClearPageSwapBacked(page); 612 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE); 613 614 __count_vm_events(PGLAZYFREE, nr_pages); 615 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 616 nr_pages); 617 } 618 } 619 620 /* 621 * Drain pages out of the cpu's pagevecs. 622 * Either "cpu" is the current CPU, and preemption has already been 623 * disabled; or "cpu" is being hot-unplugged, and is already dead. 624 */ 625 void lru_add_drain_cpu(int cpu) 626 { 627 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 628 629 if (pagevec_count(pvec)) 630 __pagevec_lru_add(pvec); 631 632 pvec = &per_cpu(lru_rotate.pvec, cpu); 633 /* Disabling interrupts below acts as a compiler barrier. */ 634 if (data_race(pagevec_count(pvec))) { 635 unsigned long flags; 636 637 /* No harm done if a racing interrupt already did this */ 638 local_lock_irqsave(&lru_rotate.lock, flags); 639 pagevec_move_tail(pvec); 640 local_unlock_irqrestore(&lru_rotate.lock, flags); 641 } 642 643 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 644 if (pagevec_count(pvec)) 645 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 646 647 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 648 if (pagevec_count(pvec)) 649 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 650 651 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 652 if (pagevec_count(pvec)) 653 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 654 655 activate_page_drain(cpu); 656 } 657 658 /** 659 * deactivate_file_page - forcefully deactivate a file page 660 * @page: page to deactivate 661 * 662 * This function hints the VM that @page is a good reclaim candidate, 663 * for example if its invalidation fails due to the page being dirty 664 * or under writeback. 665 */ 666 void deactivate_file_page(struct page *page) 667 { 668 /* 669 * In a workload with many unevictable page such as mprotect, 670 * unevictable page deactivation for accelerating reclaim is pointless. 671 */ 672 if (PageUnevictable(page)) 673 return; 674 675 if (likely(get_page_unless_zero(page))) { 676 struct pagevec *pvec; 677 678 local_lock(&lru_pvecs.lock); 679 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 680 681 if (!pagevec_add(pvec, page) || PageCompound(page)) 682 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 683 local_unlock(&lru_pvecs.lock); 684 } 685 } 686 687 /* 688 * deactivate_page - deactivate a page 689 * @page: page to deactivate 690 * 691 * deactivate_page() moves @page to the inactive list if @page was on the active 692 * list and was not an unevictable page. This is done to accelerate the reclaim 693 * of @page. 694 */ 695 void deactivate_page(struct page *page) 696 { 697 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 698 struct pagevec *pvec; 699 700 local_lock(&lru_pvecs.lock); 701 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 702 get_page(page); 703 if (!pagevec_add(pvec, page) || PageCompound(page)) 704 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 705 local_unlock(&lru_pvecs.lock); 706 } 707 } 708 709 /** 710 * mark_page_lazyfree - make an anon page lazyfree 711 * @page: page to deactivate 712 * 713 * mark_page_lazyfree() moves @page to the inactive file list. 714 * This is done to accelerate the reclaim of @page. 715 */ 716 void mark_page_lazyfree(struct page *page) 717 { 718 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 719 !PageSwapCache(page) && !PageUnevictable(page)) { 720 struct pagevec *pvec; 721 722 local_lock(&lru_pvecs.lock); 723 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 724 get_page(page); 725 if (!pagevec_add(pvec, page) || PageCompound(page)) 726 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 727 local_unlock(&lru_pvecs.lock); 728 } 729 } 730 731 void lru_add_drain(void) 732 { 733 local_lock(&lru_pvecs.lock); 734 lru_add_drain_cpu(smp_processor_id()); 735 local_unlock(&lru_pvecs.lock); 736 } 737 738 void lru_add_drain_cpu_zone(struct zone *zone) 739 { 740 local_lock(&lru_pvecs.lock); 741 lru_add_drain_cpu(smp_processor_id()); 742 drain_local_pages(zone); 743 local_unlock(&lru_pvecs.lock); 744 } 745 746 #ifdef CONFIG_SMP 747 748 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 749 750 static void lru_add_drain_per_cpu(struct work_struct *dummy) 751 { 752 lru_add_drain(); 753 } 754 755 /* 756 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 757 * kworkers being shut down before our page_alloc_cpu_dead callback is 758 * executed on the offlined cpu. 759 * Calling this function with cpu hotplug locks held can actually lead 760 * to obscure indirect dependencies via WQ context. 761 */ 762 void lru_add_drain_all(void) 763 { 764 /* 765 * lru_drain_gen - Global pages generation number 766 * 767 * (A) Definition: global lru_drain_gen = x implies that all generations 768 * 0 < n <= x are already *scheduled* for draining. 769 * 770 * This is an optimization for the highly-contended use case where a 771 * user space workload keeps constantly generating a flow of pages for 772 * each CPU. 773 */ 774 static unsigned int lru_drain_gen; 775 static struct cpumask has_work; 776 static DEFINE_MUTEX(lock); 777 unsigned cpu, this_gen; 778 779 /* 780 * Make sure nobody triggers this path before mm_percpu_wq is fully 781 * initialized. 782 */ 783 if (WARN_ON(!mm_percpu_wq)) 784 return; 785 786 /* 787 * Guarantee pagevec counter stores visible by this CPU are visible to 788 * other CPUs before loading the current drain generation. 789 */ 790 smp_mb(); 791 792 /* 793 * (B) Locally cache global LRU draining generation number 794 * 795 * The read barrier ensures that the counter is loaded before the mutex 796 * is taken. It pairs with smp_mb() inside the mutex critical section 797 * at (D). 798 */ 799 this_gen = smp_load_acquire(&lru_drain_gen); 800 801 mutex_lock(&lock); 802 803 /* 804 * (C) Exit the draining operation if a newer generation, from another 805 * lru_add_drain_all(), was already scheduled for draining. Check (A). 806 */ 807 if (unlikely(this_gen != lru_drain_gen)) 808 goto done; 809 810 /* 811 * (D) Increment global generation number 812 * 813 * Pairs with smp_load_acquire() at (B), outside of the critical 814 * section. Use a full memory barrier to guarantee that the new global 815 * drain generation number is stored before loading pagevec counters. 816 * 817 * This pairing must be done here, before the for_each_online_cpu loop 818 * below which drains the page vectors. 819 * 820 * Let x, y, and z represent some system CPU numbers, where x < y < z. 821 * Assume CPU #z is is in the middle of the for_each_online_cpu loop 822 * below and has already reached CPU #y's per-cpu data. CPU #x comes 823 * along, adds some pages to its per-cpu vectors, then calls 824 * lru_add_drain_all(). 825 * 826 * If the paired barrier is done at any later step, e.g. after the 827 * loop, CPU #x will just exit at (C) and miss flushing out all of its 828 * added pages. 829 */ 830 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 831 smp_mb(); 832 833 cpumask_clear(&has_work); 834 for_each_online_cpu(cpu) { 835 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 836 837 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 838 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 839 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 840 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 841 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 842 need_activate_page_drain(cpu)) { 843 INIT_WORK(work, lru_add_drain_per_cpu); 844 queue_work_on(cpu, mm_percpu_wq, work); 845 __cpumask_set_cpu(cpu, &has_work); 846 } 847 } 848 849 for_each_cpu(cpu, &has_work) 850 flush_work(&per_cpu(lru_add_drain_work, cpu)); 851 852 done: 853 mutex_unlock(&lock); 854 } 855 #else 856 void lru_add_drain_all(void) 857 { 858 lru_add_drain(); 859 } 860 #endif /* CONFIG_SMP */ 861 862 /** 863 * release_pages - batched put_page() 864 * @pages: array of pages to release 865 * @nr: number of pages 866 * 867 * Decrement the reference count on all the pages in @pages. If it 868 * fell to zero, remove the page from the LRU and free it. 869 */ 870 void release_pages(struct page **pages, int nr) 871 { 872 int i; 873 LIST_HEAD(pages_to_free); 874 struct pglist_data *locked_pgdat = NULL; 875 struct lruvec *lruvec; 876 unsigned long flags; 877 unsigned int lock_batch; 878 879 for (i = 0; i < nr; i++) { 880 struct page *page = pages[i]; 881 882 /* 883 * Make sure the IRQ-safe lock-holding time does not get 884 * excessive with a continuous string of pages from the 885 * same pgdat. The lock is held only if pgdat != NULL. 886 */ 887 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) { 888 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 889 locked_pgdat = NULL; 890 } 891 892 page = compound_head(page); 893 if (is_huge_zero_page(page)) 894 continue; 895 896 if (is_zone_device_page(page)) { 897 if (locked_pgdat) { 898 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 899 flags); 900 locked_pgdat = NULL; 901 } 902 /* 903 * ZONE_DEVICE pages that return 'false' from 904 * page_is_devmap_managed() do not require special 905 * processing, and instead, expect a call to 906 * put_page_testzero(). 907 */ 908 if (page_is_devmap_managed(page)) { 909 put_devmap_managed_page(page); 910 continue; 911 } 912 } 913 914 if (!put_page_testzero(page)) 915 continue; 916 917 if (PageCompound(page)) { 918 if (locked_pgdat) { 919 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 920 locked_pgdat = NULL; 921 } 922 __put_compound_page(page); 923 continue; 924 } 925 926 if (PageLRU(page)) { 927 struct pglist_data *pgdat = page_pgdat(page); 928 929 if (pgdat != locked_pgdat) { 930 if (locked_pgdat) 931 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 932 flags); 933 lock_batch = 0; 934 locked_pgdat = pgdat; 935 spin_lock_irqsave(&locked_pgdat->lru_lock, flags); 936 } 937 938 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat); 939 VM_BUG_ON_PAGE(!PageLRU(page), page); 940 __ClearPageLRU(page); 941 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 942 } 943 944 __ClearPageWaiters(page); 945 946 list_add(&page->lru, &pages_to_free); 947 } 948 if (locked_pgdat) 949 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 950 951 mem_cgroup_uncharge_list(&pages_to_free); 952 free_unref_page_list(&pages_to_free); 953 } 954 EXPORT_SYMBOL(release_pages); 955 956 /* 957 * The pages which we're about to release may be in the deferred lru-addition 958 * queues. That would prevent them from really being freed right now. That's 959 * OK from a correctness point of view but is inefficient - those pages may be 960 * cache-warm and we want to give them back to the page allocator ASAP. 961 * 962 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 963 * and __pagevec_lru_add_active() call release_pages() directly to avoid 964 * mutual recursion. 965 */ 966 void __pagevec_release(struct pagevec *pvec) 967 { 968 if (!pvec->percpu_pvec_drained) { 969 lru_add_drain(); 970 pvec->percpu_pvec_drained = true; 971 } 972 release_pages(pvec->pages, pagevec_count(pvec)); 973 pagevec_reinit(pvec); 974 } 975 EXPORT_SYMBOL(__pagevec_release); 976 977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 978 /* used by __split_huge_page_refcount() */ 979 void lru_add_page_tail(struct page *page, struct page *page_tail, 980 struct lruvec *lruvec, struct list_head *list) 981 { 982 VM_BUG_ON_PAGE(!PageHead(page), page); 983 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 984 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 985 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock); 986 987 if (!list) 988 SetPageLRU(page_tail); 989 990 if (likely(PageLRU(page))) 991 list_add_tail(&page_tail->lru, &page->lru); 992 else if (list) { 993 /* page reclaim is reclaiming a huge page */ 994 get_page(page_tail); 995 list_add_tail(&page_tail->lru, list); 996 } else { 997 /* 998 * Head page has not yet been counted, as an hpage, 999 * so we must account for each subpage individually. 1000 * 1001 * Put page_tail on the list at the correct position 1002 * so they all end up in order. 1003 */ 1004 add_page_to_lru_list_tail(page_tail, lruvec, 1005 page_lru(page_tail)); 1006 } 1007 } 1008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1009 1010 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 1011 void *arg) 1012 { 1013 enum lru_list lru; 1014 int was_unevictable = TestClearPageUnevictable(page); 1015 int nr_pages = thp_nr_pages(page); 1016 1017 VM_BUG_ON_PAGE(PageLRU(page), page); 1018 1019 /* 1020 * Page becomes evictable in two ways: 1021 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 1022 * 2) Before acquiring LRU lock to put the page to correct LRU and then 1023 * a) do PageLRU check with lock [check_move_unevictable_pages] 1024 * b) do PageLRU check before lock [clear_page_mlock] 1025 * 1026 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 1027 * following strict ordering: 1028 * 1029 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 1030 * 1031 * SetPageLRU() TestClearPageMlocked() 1032 * smp_mb() // explicit ordering // above provides strict 1033 * // ordering 1034 * PageMlocked() PageLRU() 1035 * 1036 * 1037 * if '#1' does not observe setting of PG_lru by '#0' and fails 1038 * isolation, the explicit barrier will make sure that page_evictable 1039 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 1040 * can be reordered after PageMlocked check and can make '#1' to fail 1041 * the isolation of the page whose Mlocked bit is cleared (#0 is also 1042 * looking at the same page) and the evictable page will be stranded 1043 * in an unevictable LRU. 1044 */ 1045 SetPageLRU(page); 1046 smp_mb__after_atomic(); 1047 1048 if (page_evictable(page)) { 1049 lru = page_lru(page); 1050 if (was_unevictable) 1051 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 1052 } else { 1053 lru = LRU_UNEVICTABLE; 1054 ClearPageActive(page); 1055 SetPageUnevictable(page); 1056 if (!was_unevictable) 1057 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 1058 } 1059 1060 add_page_to_lru_list(page, lruvec, lru); 1061 trace_mm_lru_insertion(page, lru); 1062 } 1063 1064 /* 1065 * Add the passed pages to the LRU, then drop the caller's refcount 1066 * on them. Reinitialises the caller's pagevec. 1067 */ 1068 void __pagevec_lru_add(struct pagevec *pvec) 1069 { 1070 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 1071 } 1072 1073 /** 1074 * pagevec_lookup_entries - gang pagecache lookup 1075 * @pvec: Where the resulting entries are placed 1076 * @mapping: The address_space to search 1077 * @start: The starting entry index 1078 * @nr_entries: The maximum number of pages 1079 * @indices: The cache indices corresponding to the entries in @pvec 1080 * 1081 * pagevec_lookup_entries() will search for and return a group of up 1082 * to @nr_pages pages and shadow entries in the mapping. All 1083 * entries are placed in @pvec. pagevec_lookup_entries() takes a 1084 * reference against actual pages in @pvec. 1085 * 1086 * The search returns a group of mapping-contiguous entries with 1087 * ascending indexes. There may be holes in the indices due to 1088 * not-present entries. 1089 * 1090 * Only one subpage of a Transparent Huge Page is returned in one call: 1091 * allowing truncate_inode_pages_range() to evict the whole THP without 1092 * cycling through a pagevec of extra references. 1093 * 1094 * pagevec_lookup_entries() returns the number of entries which were 1095 * found. 1096 */ 1097 unsigned pagevec_lookup_entries(struct pagevec *pvec, 1098 struct address_space *mapping, 1099 pgoff_t start, unsigned nr_entries, 1100 pgoff_t *indices) 1101 { 1102 pvec->nr = find_get_entries(mapping, start, nr_entries, 1103 pvec->pages, indices); 1104 return pagevec_count(pvec); 1105 } 1106 1107 /** 1108 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1109 * @pvec: The pagevec to prune 1110 * 1111 * pagevec_lookup_entries() fills both pages and exceptional radix 1112 * tree entries into the pagevec. This function prunes all 1113 * exceptionals from @pvec without leaving holes, so that it can be 1114 * passed on to page-only pagevec operations. 1115 */ 1116 void pagevec_remove_exceptionals(struct pagevec *pvec) 1117 { 1118 int i, j; 1119 1120 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1121 struct page *page = pvec->pages[i]; 1122 if (!xa_is_value(page)) 1123 pvec->pages[j++] = page; 1124 } 1125 pvec->nr = j; 1126 } 1127 1128 /** 1129 * pagevec_lookup_range - gang pagecache lookup 1130 * @pvec: Where the resulting pages are placed 1131 * @mapping: The address_space to search 1132 * @start: The starting page index 1133 * @end: The final page index 1134 * 1135 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1136 * pages in the mapping starting from index @start and upto index @end 1137 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1138 * reference against the pages in @pvec. 1139 * 1140 * The search returns a group of mapping-contiguous pages with ascending 1141 * indexes. There may be holes in the indices due to not-present pages. We 1142 * also update @start to index the next page for the traversal. 1143 * 1144 * pagevec_lookup_range() returns the number of pages which were found. If this 1145 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1146 * reached. 1147 */ 1148 unsigned pagevec_lookup_range(struct pagevec *pvec, 1149 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1150 { 1151 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1152 pvec->pages); 1153 return pagevec_count(pvec); 1154 } 1155 EXPORT_SYMBOL(pagevec_lookup_range); 1156 1157 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1158 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1159 xa_mark_t tag) 1160 { 1161 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1162 PAGEVEC_SIZE, pvec->pages); 1163 return pagevec_count(pvec); 1164 } 1165 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1166 1167 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, 1168 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1169 xa_mark_t tag, unsigned max_pages) 1170 { 1171 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1172 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages); 1173 return pagevec_count(pvec); 1174 } 1175 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag); 1176 /* 1177 * Perform any setup for the swap system 1178 */ 1179 void __init swap_setup(void) 1180 { 1181 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1182 1183 /* Use a smaller cluster for small-memory machines */ 1184 if (megs < 16) 1185 page_cluster = 2; 1186 else 1187 page_cluster = 3; 1188 /* 1189 * Right now other parts of the system means that we 1190 * _really_ don't want to cluster much more 1191 */ 1192 } 1193 1194 #ifdef CONFIG_DEV_PAGEMAP_OPS 1195 void put_devmap_managed_page(struct page *page) 1196 { 1197 int count; 1198 1199 if (WARN_ON_ONCE(!page_is_devmap_managed(page))) 1200 return; 1201 1202 count = page_ref_dec_return(page); 1203 1204 /* 1205 * devmap page refcounts are 1-based, rather than 0-based: if 1206 * refcount is 1, then the page is free and the refcount is 1207 * stable because nobody holds a reference on the page. 1208 */ 1209 if (count == 1) 1210 free_devmap_managed_page(page); 1211 else if (!count) 1212 __put_page(page); 1213 } 1214 EXPORT_SYMBOL(put_devmap_managed_page); 1215 #endif 1216