xref: /openbmc/linux/mm/swap.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48 
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 	local_lock_t lock;
52 	struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 	.lock = INIT_LOCAL_LOCK(lock),
56 };
57 
58 /*
59  * The following struct pagevec are grouped together because they are protected
60  * by disabling preemption (and interrupts remain enabled).
61  */
62 struct lru_pvecs {
63 	local_lock_t lock;
64 	struct pagevec lru_add;
65 	struct pagevec lru_deactivate_file;
66 	struct pagevec lru_deactivate;
67 	struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 	struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 	.lock = INIT_LOCAL_LOCK(lock),
74 };
75 
76 /*
77  * This path almost never happens for VM activity - pages are normally
78  * freed via pagevecs.  But it gets used by networking.
79  */
80 static void __page_cache_release(struct page *page)
81 {
82 	if (PageLRU(page)) {
83 		struct lruvec *lruvec;
84 		unsigned long flags;
85 
86 		lruvec = lock_page_lruvec_irqsave(page, &flags);
87 		del_page_from_lru_list(page, lruvec);
88 		__clear_page_lru_flags(page);
89 		unlock_page_lruvec_irqrestore(lruvec, flags);
90 	}
91 	__ClearPageWaiters(page);
92 }
93 
94 static void __put_single_page(struct page *page)
95 {
96 	__page_cache_release(page);
97 	mem_cgroup_uncharge(page);
98 	free_unref_page(page);
99 }
100 
101 static void __put_compound_page(struct page *page)
102 {
103 	/*
104 	 * __page_cache_release() is supposed to be called for thp, not for
105 	 * hugetlb. This is because hugetlb page does never have PageLRU set
106 	 * (it's never listed to any LRU lists) and no memcg routines should
107 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 	 */
109 	if (!PageHuge(page))
110 		__page_cache_release(page);
111 	destroy_compound_page(page);
112 }
113 
114 void __put_page(struct page *page)
115 {
116 	if (is_zone_device_page(page)) {
117 		put_dev_pagemap(page->pgmap);
118 
119 		/*
120 		 * The page belongs to the device that created pgmap. Do
121 		 * not return it to page allocator.
122 		 */
123 		return;
124 	}
125 
126 	if (unlikely(PageCompound(page)))
127 		__put_compound_page(page);
128 	else
129 		__put_single_page(page);
130 }
131 EXPORT_SYMBOL(__put_page);
132 
133 /**
134  * put_pages_list() - release a list of pages
135  * @pages: list of pages threaded on page->lru
136  *
137  * Release a list of pages which are strung together on page.lru.  Currently
138  * used by read_cache_pages() and related error recovery code.
139  */
140 void put_pages_list(struct list_head *pages)
141 {
142 	while (!list_empty(pages)) {
143 		struct page *victim;
144 
145 		victim = lru_to_page(pages);
146 		list_del(&victim->lru);
147 		put_page(victim);
148 	}
149 }
150 EXPORT_SYMBOL(put_pages_list);
151 
152 /*
153  * get_kernel_pages() - pin kernel pages in memory
154  * @kiov:	An array of struct kvec structures
155  * @nr_segs:	number of segments to pin
156  * @write:	pinning for read/write, currently ignored
157  * @pages:	array that receives pointers to the pages pinned.
158  *		Should be at least nr_segs long.
159  *
160  * Returns number of pages pinned. This may be fewer than the number
161  * requested. If nr_pages is 0 or negative, returns 0. If no pages
162  * were pinned, returns -errno. Each page returned must be released
163  * with a put_page() call when it is finished with.
164  */
165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
166 		struct page **pages)
167 {
168 	int seg;
169 
170 	for (seg = 0; seg < nr_segs; seg++) {
171 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
172 			return seg;
173 
174 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
175 		get_page(pages[seg]);
176 	}
177 
178 	return seg;
179 }
180 EXPORT_SYMBOL_GPL(get_kernel_pages);
181 
182 /*
183  * get_kernel_page() - pin a kernel page in memory
184  * @start:	starting kernel address
185  * @write:	pinning for read/write, currently ignored
186  * @pages:	array that receives pointer to the page pinned.
187  *		Must be at least nr_segs long.
188  *
189  * Returns 1 if page is pinned. If the page was not pinned, returns
190  * -errno. The page returned must be released with a put_page() call
191  * when it is finished with.
192  */
193 int get_kernel_page(unsigned long start, int write, struct page **pages)
194 {
195 	const struct kvec kiov = {
196 		.iov_base = (void *)start,
197 		.iov_len = PAGE_SIZE
198 	};
199 
200 	return get_kernel_pages(&kiov, 1, write, pages);
201 }
202 EXPORT_SYMBOL_GPL(get_kernel_page);
203 
204 static void pagevec_lru_move_fn(struct pagevec *pvec,
205 	void (*move_fn)(struct page *page, struct lruvec *lruvec))
206 {
207 	int i;
208 	struct lruvec *lruvec = NULL;
209 	unsigned long flags = 0;
210 
211 	for (i = 0; i < pagevec_count(pvec); i++) {
212 		struct page *page = pvec->pages[i];
213 
214 		/* block memcg migration during page moving between lru */
215 		if (!TestClearPageLRU(page))
216 			continue;
217 
218 		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
219 		(*move_fn)(page, lruvec);
220 
221 		SetPageLRU(page);
222 	}
223 	if (lruvec)
224 		unlock_page_lruvec_irqrestore(lruvec, flags);
225 	release_pages(pvec->pages, pvec->nr);
226 	pagevec_reinit(pvec);
227 }
228 
229 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
230 {
231 	if (!PageUnevictable(page)) {
232 		del_page_from_lru_list(page, lruvec);
233 		ClearPageActive(page);
234 		add_page_to_lru_list_tail(page, lruvec);
235 		__count_vm_events(PGROTATED, thp_nr_pages(page));
236 	}
237 }
238 
239 /* return true if pagevec needs to drain */
240 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
241 {
242 	bool ret = false;
243 
244 	if (!pagevec_add(pvec, page) || PageCompound(page) ||
245 			lru_cache_disabled())
246 		ret = true;
247 
248 	return ret;
249 }
250 
251 /*
252  * Writeback is about to end against a page which has been marked for immediate
253  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
254  * inactive list.
255  *
256  * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
257  */
258 void rotate_reclaimable_page(struct page *page)
259 {
260 	if (!PageLocked(page) && !PageDirty(page) &&
261 	    !PageUnevictable(page) && PageLRU(page)) {
262 		struct pagevec *pvec;
263 		unsigned long flags;
264 
265 		get_page(page);
266 		local_lock_irqsave(&lru_rotate.lock, flags);
267 		pvec = this_cpu_ptr(&lru_rotate.pvec);
268 		if (pagevec_add_and_need_flush(pvec, page))
269 			pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
270 		local_unlock_irqrestore(&lru_rotate.lock, flags);
271 	}
272 }
273 
274 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
275 {
276 	do {
277 		unsigned long lrusize;
278 
279 		/*
280 		 * Hold lruvec->lru_lock is safe here, since
281 		 * 1) The pinned lruvec in reclaim, or
282 		 * 2) From a pre-LRU page during refault (which also holds the
283 		 *    rcu lock, so would be safe even if the page was on the LRU
284 		 *    and could move simultaneously to a new lruvec).
285 		 */
286 		spin_lock_irq(&lruvec->lru_lock);
287 		/* Record cost event */
288 		if (file)
289 			lruvec->file_cost += nr_pages;
290 		else
291 			lruvec->anon_cost += nr_pages;
292 
293 		/*
294 		 * Decay previous events
295 		 *
296 		 * Because workloads change over time (and to avoid
297 		 * overflow) we keep these statistics as a floating
298 		 * average, which ends up weighing recent refaults
299 		 * more than old ones.
300 		 */
301 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
302 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
303 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
304 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
305 
306 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
307 			lruvec->file_cost /= 2;
308 			lruvec->anon_cost /= 2;
309 		}
310 		spin_unlock_irq(&lruvec->lru_lock);
311 	} while ((lruvec = parent_lruvec(lruvec)));
312 }
313 
314 void lru_note_cost_page(struct page *page)
315 {
316 	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
317 		      page_is_file_lru(page), thp_nr_pages(page));
318 }
319 
320 static void __activate_page(struct page *page, struct lruvec *lruvec)
321 {
322 	if (!PageActive(page) && !PageUnevictable(page)) {
323 		int nr_pages = thp_nr_pages(page);
324 
325 		del_page_from_lru_list(page, lruvec);
326 		SetPageActive(page);
327 		add_page_to_lru_list(page, lruvec);
328 		trace_mm_lru_activate(page);
329 
330 		__count_vm_events(PGACTIVATE, nr_pages);
331 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
332 				     nr_pages);
333 	}
334 }
335 
336 #ifdef CONFIG_SMP
337 static void activate_page_drain(int cpu)
338 {
339 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
340 
341 	if (pagevec_count(pvec))
342 		pagevec_lru_move_fn(pvec, __activate_page);
343 }
344 
345 static bool need_activate_page_drain(int cpu)
346 {
347 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
348 }
349 
350 static void activate_page(struct page *page)
351 {
352 	page = compound_head(page);
353 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
354 		struct pagevec *pvec;
355 
356 		local_lock(&lru_pvecs.lock);
357 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
358 		get_page(page);
359 		if (pagevec_add_and_need_flush(pvec, page))
360 			pagevec_lru_move_fn(pvec, __activate_page);
361 		local_unlock(&lru_pvecs.lock);
362 	}
363 }
364 
365 #else
366 static inline void activate_page_drain(int cpu)
367 {
368 }
369 
370 static void activate_page(struct page *page)
371 {
372 	struct lruvec *lruvec;
373 
374 	page = compound_head(page);
375 	if (TestClearPageLRU(page)) {
376 		lruvec = lock_page_lruvec_irq(page);
377 		__activate_page(page, lruvec);
378 		unlock_page_lruvec_irq(lruvec);
379 		SetPageLRU(page);
380 	}
381 }
382 #endif
383 
384 static void __lru_cache_activate_page(struct page *page)
385 {
386 	struct pagevec *pvec;
387 	int i;
388 
389 	local_lock(&lru_pvecs.lock);
390 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
391 
392 	/*
393 	 * Search backwards on the optimistic assumption that the page being
394 	 * activated has just been added to this pagevec. Note that only
395 	 * the local pagevec is examined as a !PageLRU page could be in the
396 	 * process of being released, reclaimed, migrated or on a remote
397 	 * pagevec that is currently being drained. Furthermore, marking
398 	 * a remote pagevec's page PageActive potentially hits a race where
399 	 * a page is marked PageActive just after it is added to the inactive
400 	 * list causing accounting errors and BUG_ON checks to trigger.
401 	 */
402 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
403 		struct page *pagevec_page = pvec->pages[i];
404 
405 		if (pagevec_page == page) {
406 			SetPageActive(page);
407 			break;
408 		}
409 	}
410 
411 	local_unlock(&lru_pvecs.lock);
412 }
413 
414 /*
415  * Mark a page as having seen activity.
416  *
417  * inactive,unreferenced	->	inactive,referenced
418  * inactive,referenced		->	active,unreferenced
419  * active,unreferenced		->	active,referenced
420  *
421  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
422  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
423  */
424 void mark_page_accessed(struct page *page)
425 {
426 	page = compound_head(page);
427 
428 	if (!PageReferenced(page)) {
429 		SetPageReferenced(page);
430 	} else if (PageUnevictable(page)) {
431 		/*
432 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
433 		 * this list is never rotated or maintained, so marking an
434 		 * evictable page accessed has no effect.
435 		 */
436 	} else if (!PageActive(page)) {
437 		/*
438 		 * If the page is on the LRU, queue it for activation via
439 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
440 		 * pagevec, mark it active and it'll be moved to the active
441 		 * LRU on the next drain.
442 		 */
443 		if (PageLRU(page))
444 			activate_page(page);
445 		else
446 			__lru_cache_activate_page(page);
447 		ClearPageReferenced(page);
448 		workingset_activation(page);
449 	}
450 	if (page_is_idle(page))
451 		clear_page_idle(page);
452 }
453 EXPORT_SYMBOL(mark_page_accessed);
454 
455 /**
456  * lru_cache_add - add a page to a page list
457  * @page: the page to be added to the LRU.
458  *
459  * Queue the page for addition to the LRU via pagevec. The decision on whether
460  * to add the page to the [in]active [file|anon] list is deferred until the
461  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
462  * have the page added to the active list using mark_page_accessed().
463  */
464 void lru_cache_add(struct page *page)
465 {
466 	struct pagevec *pvec;
467 
468 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
469 	VM_BUG_ON_PAGE(PageLRU(page), page);
470 
471 	get_page(page);
472 	local_lock(&lru_pvecs.lock);
473 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
474 	if (pagevec_add_and_need_flush(pvec, page))
475 		__pagevec_lru_add(pvec);
476 	local_unlock(&lru_pvecs.lock);
477 }
478 EXPORT_SYMBOL(lru_cache_add);
479 
480 /**
481  * lru_cache_add_inactive_or_unevictable
482  * @page:  the page to be added to LRU
483  * @vma:   vma in which page is mapped for determining reclaimability
484  *
485  * Place @page on the inactive or unevictable LRU list, depending on its
486  * evictability.
487  */
488 void lru_cache_add_inactive_or_unevictable(struct page *page,
489 					 struct vm_area_struct *vma)
490 {
491 	bool unevictable;
492 
493 	VM_BUG_ON_PAGE(PageLRU(page), page);
494 
495 	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
496 	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
497 		int nr_pages = thp_nr_pages(page);
498 		/*
499 		 * We use the irq-unsafe __mod_zone_page_state because this
500 		 * counter is not modified from interrupt context, and the pte
501 		 * lock is held(spinlock), which implies preemption disabled.
502 		 */
503 		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
504 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
505 	}
506 	lru_cache_add(page);
507 }
508 
509 /*
510  * If the page can not be invalidated, it is moved to the
511  * inactive list to speed up its reclaim.  It is moved to the
512  * head of the list, rather than the tail, to give the flusher
513  * threads some time to write it out, as this is much more
514  * effective than the single-page writeout from reclaim.
515  *
516  * If the page isn't page_mapped and dirty/writeback, the page
517  * could reclaim asap using PG_reclaim.
518  *
519  * 1. active, mapped page -> none
520  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
521  * 3. inactive, mapped page -> none
522  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
523  * 5. inactive, clean -> inactive, tail
524  * 6. Others -> none
525  *
526  * In 4, why it moves inactive's head, the VM expects the page would
527  * be write it out by flusher threads as this is much more effective
528  * than the single-page writeout from reclaim.
529  */
530 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
531 {
532 	bool active = PageActive(page);
533 	int nr_pages = thp_nr_pages(page);
534 
535 	if (PageUnevictable(page))
536 		return;
537 
538 	/* Some processes are using the page */
539 	if (page_mapped(page))
540 		return;
541 
542 	del_page_from_lru_list(page, lruvec);
543 	ClearPageActive(page);
544 	ClearPageReferenced(page);
545 
546 	if (PageWriteback(page) || PageDirty(page)) {
547 		/*
548 		 * PG_reclaim could be raced with end_page_writeback
549 		 * It can make readahead confusing.  But race window
550 		 * is _really_ small and  it's non-critical problem.
551 		 */
552 		add_page_to_lru_list(page, lruvec);
553 		SetPageReclaim(page);
554 	} else {
555 		/*
556 		 * The page's writeback ends up during pagevec
557 		 * We moves tha page into tail of inactive.
558 		 */
559 		add_page_to_lru_list_tail(page, lruvec);
560 		__count_vm_events(PGROTATED, nr_pages);
561 	}
562 
563 	if (active) {
564 		__count_vm_events(PGDEACTIVATE, nr_pages);
565 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
566 				     nr_pages);
567 	}
568 }
569 
570 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
571 {
572 	if (PageActive(page) && !PageUnevictable(page)) {
573 		int nr_pages = thp_nr_pages(page);
574 
575 		del_page_from_lru_list(page, lruvec);
576 		ClearPageActive(page);
577 		ClearPageReferenced(page);
578 		add_page_to_lru_list(page, lruvec);
579 
580 		__count_vm_events(PGDEACTIVATE, nr_pages);
581 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
582 				     nr_pages);
583 	}
584 }
585 
586 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
587 {
588 	if (PageAnon(page) && PageSwapBacked(page) &&
589 	    !PageSwapCache(page) && !PageUnevictable(page)) {
590 		int nr_pages = thp_nr_pages(page);
591 
592 		del_page_from_lru_list(page, lruvec);
593 		ClearPageActive(page);
594 		ClearPageReferenced(page);
595 		/*
596 		 * Lazyfree pages are clean anonymous pages.  They have
597 		 * PG_swapbacked flag cleared, to distinguish them from normal
598 		 * anonymous pages
599 		 */
600 		ClearPageSwapBacked(page);
601 		add_page_to_lru_list(page, lruvec);
602 
603 		__count_vm_events(PGLAZYFREE, nr_pages);
604 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
605 				     nr_pages);
606 	}
607 }
608 
609 /*
610  * Drain pages out of the cpu's pagevecs.
611  * Either "cpu" is the current CPU, and preemption has already been
612  * disabled; or "cpu" is being hot-unplugged, and is already dead.
613  */
614 void lru_add_drain_cpu(int cpu)
615 {
616 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
617 
618 	if (pagevec_count(pvec))
619 		__pagevec_lru_add(pvec);
620 
621 	pvec = &per_cpu(lru_rotate.pvec, cpu);
622 	/* Disabling interrupts below acts as a compiler barrier. */
623 	if (data_race(pagevec_count(pvec))) {
624 		unsigned long flags;
625 
626 		/* No harm done if a racing interrupt already did this */
627 		local_lock_irqsave(&lru_rotate.lock, flags);
628 		pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
629 		local_unlock_irqrestore(&lru_rotate.lock, flags);
630 	}
631 
632 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
633 	if (pagevec_count(pvec))
634 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
635 
636 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
637 	if (pagevec_count(pvec))
638 		pagevec_lru_move_fn(pvec, lru_deactivate_fn);
639 
640 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
641 	if (pagevec_count(pvec))
642 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
643 
644 	activate_page_drain(cpu);
645 	invalidate_bh_lrus_cpu(cpu);
646 }
647 
648 /**
649  * deactivate_file_page - forcefully deactivate a file page
650  * @page: page to deactivate
651  *
652  * This function hints the VM that @page is a good reclaim candidate,
653  * for example if its invalidation fails due to the page being dirty
654  * or under writeback.
655  */
656 void deactivate_file_page(struct page *page)
657 {
658 	/*
659 	 * In a workload with many unevictable page such as mprotect,
660 	 * unevictable page deactivation for accelerating reclaim is pointless.
661 	 */
662 	if (PageUnevictable(page))
663 		return;
664 
665 	if (likely(get_page_unless_zero(page))) {
666 		struct pagevec *pvec;
667 
668 		local_lock(&lru_pvecs.lock);
669 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
670 
671 		if (pagevec_add_and_need_flush(pvec, page))
672 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
673 		local_unlock(&lru_pvecs.lock);
674 	}
675 }
676 
677 /*
678  * deactivate_page - deactivate a page
679  * @page: page to deactivate
680  *
681  * deactivate_page() moves @page to the inactive list if @page was on the active
682  * list and was not an unevictable page.  This is done to accelerate the reclaim
683  * of @page.
684  */
685 void deactivate_page(struct page *page)
686 {
687 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
688 		struct pagevec *pvec;
689 
690 		local_lock(&lru_pvecs.lock);
691 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
692 		get_page(page);
693 		if (pagevec_add_and_need_flush(pvec, page))
694 			pagevec_lru_move_fn(pvec, lru_deactivate_fn);
695 		local_unlock(&lru_pvecs.lock);
696 	}
697 }
698 
699 /**
700  * mark_page_lazyfree - make an anon page lazyfree
701  * @page: page to deactivate
702  *
703  * mark_page_lazyfree() moves @page to the inactive file list.
704  * This is done to accelerate the reclaim of @page.
705  */
706 void mark_page_lazyfree(struct page *page)
707 {
708 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
709 	    !PageSwapCache(page) && !PageUnevictable(page)) {
710 		struct pagevec *pvec;
711 
712 		local_lock(&lru_pvecs.lock);
713 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
714 		get_page(page);
715 		if (pagevec_add_and_need_flush(pvec, page))
716 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
717 		local_unlock(&lru_pvecs.lock);
718 	}
719 }
720 
721 void lru_add_drain(void)
722 {
723 	local_lock(&lru_pvecs.lock);
724 	lru_add_drain_cpu(smp_processor_id());
725 	local_unlock(&lru_pvecs.lock);
726 }
727 
728 void lru_add_drain_cpu_zone(struct zone *zone)
729 {
730 	local_lock(&lru_pvecs.lock);
731 	lru_add_drain_cpu(smp_processor_id());
732 	drain_local_pages(zone);
733 	local_unlock(&lru_pvecs.lock);
734 }
735 
736 #ifdef CONFIG_SMP
737 
738 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
739 
740 static void lru_add_drain_per_cpu(struct work_struct *dummy)
741 {
742 	lru_add_drain();
743 }
744 
745 /*
746  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
747  * kworkers being shut down before our page_alloc_cpu_dead callback is
748  * executed on the offlined cpu.
749  * Calling this function with cpu hotplug locks held can actually lead
750  * to obscure indirect dependencies via WQ context.
751  */
752 inline void __lru_add_drain_all(bool force_all_cpus)
753 {
754 	/*
755 	 * lru_drain_gen - Global pages generation number
756 	 *
757 	 * (A) Definition: global lru_drain_gen = x implies that all generations
758 	 *     0 < n <= x are already *scheduled* for draining.
759 	 *
760 	 * This is an optimization for the highly-contended use case where a
761 	 * user space workload keeps constantly generating a flow of pages for
762 	 * each CPU.
763 	 */
764 	static unsigned int lru_drain_gen;
765 	static struct cpumask has_work;
766 	static DEFINE_MUTEX(lock);
767 	unsigned cpu, this_gen;
768 
769 	/*
770 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
771 	 * initialized.
772 	 */
773 	if (WARN_ON(!mm_percpu_wq))
774 		return;
775 
776 	/*
777 	 * Guarantee pagevec counter stores visible by this CPU are visible to
778 	 * other CPUs before loading the current drain generation.
779 	 */
780 	smp_mb();
781 
782 	/*
783 	 * (B) Locally cache global LRU draining generation number
784 	 *
785 	 * The read barrier ensures that the counter is loaded before the mutex
786 	 * is taken. It pairs with smp_mb() inside the mutex critical section
787 	 * at (D).
788 	 */
789 	this_gen = smp_load_acquire(&lru_drain_gen);
790 
791 	mutex_lock(&lock);
792 
793 	/*
794 	 * (C) Exit the draining operation if a newer generation, from another
795 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
796 	 */
797 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
798 		goto done;
799 
800 	/*
801 	 * (D) Increment global generation number
802 	 *
803 	 * Pairs with smp_load_acquire() at (B), outside of the critical
804 	 * section. Use a full memory barrier to guarantee that the new global
805 	 * drain generation number is stored before loading pagevec counters.
806 	 *
807 	 * This pairing must be done here, before the for_each_online_cpu loop
808 	 * below which drains the page vectors.
809 	 *
810 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
811 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
812 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
813 	 * along, adds some pages to its per-cpu vectors, then calls
814 	 * lru_add_drain_all().
815 	 *
816 	 * If the paired barrier is done at any later step, e.g. after the
817 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
818 	 * added pages.
819 	 */
820 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
821 	smp_mb();
822 
823 	cpumask_clear(&has_work);
824 	for_each_online_cpu(cpu) {
825 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
826 
827 		if (force_all_cpus ||
828 		    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
829 		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
830 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
831 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
832 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
833 		    need_activate_page_drain(cpu) ||
834 		    has_bh_in_lru(cpu, NULL)) {
835 			INIT_WORK(work, lru_add_drain_per_cpu);
836 			queue_work_on(cpu, mm_percpu_wq, work);
837 			__cpumask_set_cpu(cpu, &has_work);
838 		}
839 	}
840 
841 	for_each_cpu(cpu, &has_work)
842 		flush_work(&per_cpu(lru_add_drain_work, cpu));
843 
844 done:
845 	mutex_unlock(&lock);
846 }
847 
848 void lru_add_drain_all(void)
849 {
850 	__lru_add_drain_all(false);
851 }
852 #else
853 void lru_add_drain_all(void)
854 {
855 	lru_add_drain();
856 }
857 #endif /* CONFIG_SMP */
858 
859 atomic_t lru_disable_count = ATOMIC_INIT(0);
860 
861 /*
862  * lru_cache_disable() needs to be called before we start compiling
863  * a list of pages to be migrated using isolate_lru_page().
864  * It drains pages on LRU cache and then disable on all cpus until
865  * lru_cache_enable is called.
866  *
867  * Must be paired with a call to lru_cache_enable().
868  */
869 void lru_cache_disable(void)
870 {
871 	atomic_inc(&lru_disable_count);
872 #ifdef CONFIG_SMP
873 	/*
874 	 * lru_add_drain_all in the force mode will schedule draining on
875 	 * all online CPUs so any calls of lru_cache_disabled wrapped by
876 	 * local_lock or preemption disabled would be ordered by that.
877 	 * The atomic operation doesn't need to have stronger ordering
878 	 * requirements because that is enforeced by the scheduling
879 	 * guarantees.
880 	 */
881 	__lru_add_drain_all(true);
882 #else
883 	lru_add_drain();
884 #endif
885 }
886 
887 /**
888  * release_pages - batched put_page()
889  * @pages: array of pages to release
890  * @nr: number of pages
891  *
892  * Decrement the reference count on all the pages in @pages.  If it
893  * fell to zero, remove the page from the LRU and free it.
894  */
895 void release_pages(struct page **pages, int nr)
896 {
897 	int i;
898 	LIST_HEAD(pages_to_free);
899 	struct lruvec *lruvec = NULL;
900 	unsigned long flags;
901 	unsigned int lock_batch;
902 
903 	for (i = 0; i < nr; i++) {
904 		struct page *page = pages[i];
905 
906 		/*
907 		 * Make sure the IRQ-safe lock-holding time does not get
908 		 * excessive with a continuous string of pages from the
909 		 * same lruvec. The lock is held only if lruvec != NULL.
910 		 */
911 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
912 			unlock_page_lruvec_irqrestore(lruvec, flags);
913 			lruvec = NULL;
914 		}
915 
916 		page = compound_head(page);
917 		if (is_huge_zero_page(page))
918 			continue;
919 
920 		if (is_zone_device_page(page)) {
921 			if (lruvec) {
922 				unlock_page_lruvec_irqrestore(lruvec, flags);
923 				lruvec = NULL;
924 			}
925 			/*
926 			 * ZONE_DEVICE pages that return 'false' from
927 			 * page_is_devmap_managed() do not require special
928 			 * processing, and instead, expect a call to
929 			 * put_page_testzero().
930 			 */
931 			if (page_is_devmap_managed(page)) {
932 				put_devmap_managed_page(page);
933 				continue;
934 			}
935 			if (put_page_testzero(page))
936 				put_dev_pagemap(page->pgmap);
937 			continue;
938 		}
939 
940 		if (!put_page_testzero(page))
941 			continue;
942 
943 		if (PageCompound(page)) {
944 			if (lruvec) {
945 				unlock_page_lruvec_irqrestore(lruvec, flags);
946 				lruvec = NULL;
947 			}
948 			__put_compound_page(page);
949 			continue;
950 		}
951 
952 		if (PageLRU(page)) {
953 			struct lruvec *prev_lruvec = lruvec;
954 
955 			lruvec = relock_page_lruvec_irqsave(page, lruvec,
956 									&flags);
957 			if (prev_lruvec != lruvec)
958 				lock_batch = 0;
959 
960 			del_page_from_lru_list(page, lruvec);
961 			__clear_page_lru_flags(page);
962 		}
963 
964 		__ClearPageWaiters(page);
965 
966 		list_add(&page->lru, &pages_to_free);
967 	}
968 	if (lruvec)
969 		unlock_page_lruvec_irqrestore(lruvec, flags);
970 
971 	mem_cgroup_uncharge_list(&pages_to_free);
972 	free_unref_page_list(&pages_to_free);
973 }
974 EXPORT_SYMBOL(release_pages);
975 
976 /*
977  * The pages which we're about to release may be in the deferred lru-addition
978  * queues.  That would prevent them from really being freed right now.  That's
979  * OK from a correctness point of view but is inefficient - those pages may be
980  * cache-warm and we want to give them back to the page allocator ASAP.
981  *
982  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
983  * and __pagevec_lru_add_active() call release_pages() directly to avoid
984  * mutual recursion.
985  */
986 void __pagevec_release(struct pagevec *pvec)
987 {
988 	if (!pvec->percpu_pvec_drained) {
989 		lru_add_drain();
990 		pvec->percpu_pvec_drained = true;
991 	}
992 	release_pages(pvec->pages, pagevec_count(pvec));
993 	pagevec_reinit(pvec);
994 }
995 EXPORT_SYMBOL(__pagevec_release);
996 
997 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
998 {
999 	int was_unevictable = TestClearPageUnevictable(page);
1000 	int nr_pages = thp_nr_pages(page);
1001 
1002 	VM_BUG_ON_PAGE(PageLRU(page), page);
1003 
1004 	/*
1005 	 * Page becomes evictable in two ways:
1006 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1007 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1008 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1009 	 *   b) do PageLRU check before lock [clear_page_mlock]
1010 	 *
1011 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1012 	 * following strict ordering:
1013 	 *
1014 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1015 	 *
1016 	 * SetPageLRU()				TestClearPageMlocked()
1017 	 * smp_mb() // explicit ordering	// above provides strict
1018 	 *					// ordering
1019 	 * PageMlocked()			PageLRU()
1020 	 *
1021 	 *
1022 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
1023 	 * isolation, the explicit barrier will make sure that page_evictable
1024 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1025 	 * can be reordered after PageMlocked check and can make '#1' to fail
1026 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1027 	 * looking at the same page) and the evictable page will be stranded
1028 	 * in an unevictable LRU.
1029 	 */
1030 	SetPageLRU(page);
1031 	smp_mb__after_atomic();
1032 
1033 	if (page_evictable(page)) {
1034 		if (was_unevictable)
1035 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1036 	} else {
1037 		ClearPageActive(page);
1038 		SetPageUnevictable(page);
1039 		if (!was_unevictable)
1040 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1041 	}
1042 
1043 	add_page_to_lru_list(page, lruvec);
1044 	trace_mm_lru_insertion(page);
1045 }
1046 
1047 /*
1048  * Add the passed pages to the LRU, then drop the caller's refcount
1049  * on them.  Reinitialises the caller's pagevec.
1050  */
1051 void __pagevec_lru_add(struct pagevec *pvec)
1052 {
1053 	int i;
1054 	struct lruvec *lruvec = NULL;
1055 	unsigned long flags = 0;
1056 
1057 	for (i = 0; i < pagevec_count(pvec); i++) {
1058 		struct page *page = pvec->pages[i];
1059 
1060 		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1061 		__pagevec_lru_add_fn(page, lruvec);
1062 	}
1063 	if (lruvec)
1064 		unlock_page_lruvec_irqrestore(lruvec, flags);
1065 	release_pages(pvec->pages, pvec->nr);
1066 	pagevec_reinit(pvec);
1067 }
1068 
1069 /**
1070  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1071  * @pvec:	The pagevec to prune
1072  *
1073  * find_get_entries() fills both pages and XArray value entries (aka
1074  * exceptional entries) into the pagevec.  This function prunes all
1075  * exceptionals from @pvec without leaving holes, so that it can be
1076  * passed on to page-only pagevec operations.
1077  */
1078 void pagevec_remove_exceptionals(struct pagevec *pvec)
1079 {
1080 	int i, j;
1081 
1082 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1083 		struct page *page = pvec->pages[i];
1084 		if (!xa_is_value(page))
1085 			pvec->pages[j++] = page;
1086 	}
1087 	pvec->nr = j;
1088 }
1089 
1090 /**
1091  * pagevec_lookup_range - gang pagecache lookup
1092  * @pvec:	Where the resulting pages are placed
1093  * @mapping:	The address_space to search
1094  * @start:	The starting page index
1095  * @end:	The final page index
1096  *
1097  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1098  * pages in the mapping starting from index @start and upto index @end
1099  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1100  * reference against the pages in @pvec.
1101  *
1102  * The search returns a group of mapping-contiguous pages with ascending
1103  * indexes.  There may be holes in the indices due to not-present pages. We
1104  * also update @start to index the next page for the traversal.
1105  *
1106  * pagevec_lookup_range() returns the number of pages which were found. If this
1107  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1108  * reached.
1109  */
1110 unsigned pagevec_lookup_range(struct pagevec *pvec,
1111 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1112 {
1113 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1114 					pvec->pages);
1115 	return pagevec_count(pvec);
1116 }
1117 EXPORT_SYMBOL(pagevec_lookup_range);
1118 
1119 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1120 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1121 		xa_mark_t tag)
1122 {
1123 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1124 					PAGEVEC_SIZE, pvec->pages);
1125 	return pagevec_count(pvec);
1126 }
1127 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1128 
1129 /*
1130  * Perform any setup for the swap system
1131  */
1132 void __init swap_setup(void)
1133 {
1134 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1135 
1136 	/* Use a smaller cluster for small-memory machines */
1137 	if (megs < 16)
1138 		page_cluster = 2;
1139 	else
1140 		page_cluster = 3;
1141 	/*
1142 	 * Right now other parts of the system means that we
1143 	 * _really_ don't want to cluster much more
1144 	 */
1145 }
1146 
1147 #ifdef CONFIG_DEV_PAGEMAP_OPS
1148 void put_devmap_managed_page(struct page *page)
1149 {
1150 	int count;
1151 
1152 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1153 		return;
1154 
1155 	count = page_ref_dec_return(page);
1156 
1157 	/*
1158 	 * devmap page refcounts are 1-based, rather than 0-based: if
1159 	 * refcount is 1, then the page is free and the refcount is
1160 	 * stable because nobody holds a reference on the page.
1161 	 */
1162 	if (count == 1)
1163 		free_devmap_managed_page(page);
1164 	else if (!count)
1165 		__put_page(page);
1166 }
1167 EXPORT_SYMBOL(put_devmap_managed_page);
1168 #endif
1169