xref: /openbmc/linux/mm/swap.c (revision f3a8b664)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37 
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42 
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45 
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53 
54 /*
55  * This path almost never happens for VM activity - pages are normally
56  * freed via pagevecs.  But it gets used by networking.
57  */
58 static void __page_cache_release(struct page *page)
59 {
60 	if (PageLRU(page)) {
61 		struct zone *zone = page_zone(page);
62 		struct lruvec *lruvec;
63 		unsigned long flags;
64 
65 		spin_lock_irqsave(zone_lru_lock(zone), flags);
66 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 		VM_BUG_ON_PAGE(!PageLRU(page), page);
68 		__ClearPageLRU(page);
69 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 	}
72 	mem_cgroup_uncharge(page);
73 }
74 
75 static void __put_single_page(struct page *page)
76 {
77 	__page_cache_release(page);
78 	free_hot_cold_page(page, false);
79 }
80 
81 static void __put_compound_page(struct page *page)
82 {
83 	compound_page_dtor *dtor;
84 
85 	/*
86 	 * __page_cache_release() is supposed to be called for thp, not for
87 	 * hugetlb. This is because hugetlb page does never have PageLRU set
88 	 * (it's never listed to any LRU lists) and no memcg routines should
89 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
90 	 */
91 	if (!PageHuge(page))
92 		__page_cache_release(page);
93 	dtor = get_compound_page_dtor(page);
94 	(*dtor)(page);
95 }
96 
97 void __put_page(struct page *page)
98 {
99 	if (unlikely(PageCompound(page)))
100 		__put_compound_page(page);
101 	else
102 		__put_single_page(page);
103 }
104 EXPORT_SYMBOL(__put_page);
105 
106 /**
107  * put_pages_list() - release a list of pages
108  * @pages: list of pages threaded on page->lru
109  *
110  * Release a list of pages which are strung together on page.lru.  Currently
111  * used by read_cache_pages() and related error recovery code.
112  */
113 void put_pages_list(struct list_head *pages)
114 {
115 	while (!list_empty(pages)) {
116 		struct page *victim;
117 
118 		victim = list_entry(pages->prev, struct page, lru);
119 		list_del(&victim->lru);
120 		put_page(victim);
121 	}
122 }
123 EXPORT_SYMBOL(put_pages_list);
124 
125 /*
126  * get_kernel_pages() - pin kernel pages in memory
127  * @kiov:	An array of struct kvec structures
128  * @nr_segs:	number of segments to pin
129  * @write:	pinning for read/write, currently ignored
130  * @pages:	array that receives pointers to the pages pinned.
131  *		Should be at least nr_segs long.
132  *
133  * Returns number of pages pinned. This may be fewer than the number
134  * requested. If nr_pages is 0 or negative, returns 0. If no pages
135  * were pinned, returns -errno. Each page returned must be released
136  * with a put_page() call when it is finished with.
137  */
138 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
139 		struct page **pages)
140 {
141 	int seg;
142 
143 	for (seg = 0; seg < nr_segs; seg++) {
144 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
145 			return seg;
146 
147 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
148 		get_page(pages[seg]);
149 	}
150 
151 	return seg;
152 }
153 EXPORT_SYMBOL_GPL(get_kernel_pages);
154 
155 /*
156  * get_kernel_page() - pin a kernel page in memory
157  * @start:	starting kernel address
158  * @write:	pinning for read/write, currently ignored
159  * @pages:	array that receives pointer to the page pinned.
160  *		Must be at least nr_segs long.
161  *
162  * Returns 1 if page is pinned. If the page was not pinned, returns
163  * -errno. The page returned must be released with a put_page() call
164  * when it is finished with.
165  */
166 int get_kernel_page(unsigned long start, int write, struct page **pages)
167 {
168 	const struct kvec kiov = {
169 		.iov_base = (void *)start,
170 		.iov_len = PAGE_SIZE
171 	};
172 
173 	return get_kernel_pages(&kiov, 1, write, pages);
174 }
175 EXPORT_SYMBOL_GPL(get_kernel_page);
176 
177 static void pagevec_lru_move_fn(struct pagevec *pvec,
178 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
179 	void *arg)
180 {
181 	int i;
182 	struct pglist_data *pgdat = NULL;
183 	struct lruvec *lruvec;
184 	unsigned long flags = 0;
185 
186 	for (i = 0; i < pagevec_count(pvec); i++) {
187 		struct page *page = pvec->pages[i];
188 		struct pglist_data *pagepgdat = page_pgdat(page);
189 
190 		if (pagepgdat != pgdat) {
191 			if (pgdat)
192 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
193 			pgdat = pagepgdat;
194 			spin_lock_irqsave(&pgdat->lru_lock, flags);
195 		}
196 
197 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
198 		(*move_fn)(page, lruvec, arg);
199 	}
200 	if (pgdat)
201 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
202 	release_pages(pvec->pages, pvec->nr, pvec->cold);
203 	pagevec_reinit(pvec);
204 }
205 
206 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
207 				 void *arg)
208 {
209 	int *pgmoved = arg;
210 
211 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
212 		enum lru_list lru = page_lru_base_type(page);
213 		list_move_tail(&page->lru, &lruvec->lists[lru]);
214 		(*pgmoved)++;
215 	}
216 }
217 
218 /*
219  * pagevec_move_tail() must be called with IRQ disabled.
220  * Otherwise this may cause nasty races.
221  */
222 static void pagevec_move_tail(struct pagevec *pvec)
223 {
224 	int pgmoved = 0;
225 
226 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
227 	__count_vm_events(PGROTATED, pgmoved);
228 }
229 
230 /*
231  * Writeback is about to end against a page which has been marked for immediate
232  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
233  * inactive list.
234  */
235 void rotate_reclaimable_page(struct page *page)
236 {
237 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
238 	    !PageUnevictable(page) && PageLRU(page)) {
239 		struct pagevec *pvec;
240 		unsigned long flags;
241 
242 		get_page(page);
243 		local_irq_save(flags);
244 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
245 		if (!pagevec_add(pvec, page) || PageCompound(page))
246 			pagevec_move_tail(pvec);
247 		local_irq_restore(flags);
248 	}
249 }
250 
251 static void update_page_reclaim_stat(struct lruvec *lruvec,
252 				     int file, int rotated)
253 {
254 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
255 
256 	reclaim_stat->recent_scanned[file]++;
257 	if (rotated)
258 		reclaim_stat->recent_rotated[file]++;
259 }
260 
261 static void __activate_page(struct page *page, struct lruvec *lruvec,
262 			    void *arg)
263 {
264 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
265 		int file = page_is_file_cache(page);
266 		int lru = page_lru_base_type(page);
267 
268 		del_page_from_lru_list(page, lruvec, lru);
269 		SetPageActive(page);
270 		lru += LRU_ACTIVE;
271 		add_page_to_lru_list(page, lruvec, lru);
272 		trace_mm_lru_activate(page);
273 
274 		__count_vm_event(PGACTIVATE);
275 		update_page_reclaim_stat(lruvec, file, 1);
276 	}
277 }
278 
279 #ifdef CONFIG_SMP
280 static void activate_page_drain(int cpu)
281 {
282 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
283 
284 	if (pagevec_count(pvec))
285 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
286 }
287 
288 static bool need_activate_page_drain(int cpu)
289 {
290 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
291 }
292 
293 void activate_page(struct page *page)
294 {
295 	page = compound_head(page);
296 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
297 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
298 
299 		get_page(page);
300 		if (!pagevec_add(pvec, page) || PageCompound(page))
301 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
302 		put_cpu_var(activate_page_pvecs);
303 	}
304 }
305 
306 #else
307 static inline void activate_page_drain(int cpu)
308 {
309 }
310 
311 static bool need_activate_page_drain(int cpu)
312 {
313 	return false;
314 }
315 
316 void activate_page(struct page *page)
317 {
318 	struct zone *zone = page_zone(page);
319 
320 	page = compound_head(page);
321 	spin_lock_irq(zone_lru_lock(zone));
322 	__activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
323 	spin_unlock_irq(zone_lru_lock(zone));
324 }
325 #endif
326 
327 static void __lru_cache_activate_page(struct page *page)
328 {
329 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
330 	int i;
331 
332 	/*
333 	 * Search backwards on the optimistic assumption that the page being
334 	 * activated has just been added to this pagevec. Note that only
335 	 * the local pagevec is examined as a !PageLRU page could be in the
336 	 * process of being released, reclaimed, migrated or on a remote
337 	 * pagevec that is currently being drained. Furthermore, marking
338 	 * a remote pagevec's page PageActive potentially hits a race where
339 	 * a page is marked PageActive just after it is added to the inactive
340 	 * list causing accounting errors and BUG_ON checks to trigger.
341 	 */
342 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
343 		struct page *pagevec_page = pvec->pages[i];
344 
345 		if (pagevec_page == page) {
346 			SetPageActive(page);
347 			break;
348 		}
349 	}
350 
351 	put_cpu_var(lru_add_pvec);
352 }
353 
354 /*
355  * Mark a page as having seen activity.
356  *
357  * inactive,unreferenced	->	inactive,referenced
358  * inactive,referenced		->	active,unreferenced
359  * active,unreferenced		->	active,referenced
360  *
361  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
362  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
363  */
364 void mark_page_accessed(struct page *page)
365 {
366 	page = compound_head(page);
367 	if (!PageActive(page) && !PageUnevictable(page) &&
368 			PageReferenced(page)) {
369 
370 		/*
371 		 * If the page is on the LRU, queue it for activation via
372 		 * activate_page_pvecs. Otherwise, assume the page is on a
373 		 * pagevec, mark it active and it'll be moved to the active
374 		 * LRU on the next drain.
375 		 */
376 		if (PageLRU(page))
377 			activate_page(page);
378 		else
379 			__lru_cache_activate_page(page);
380 		ClearPageReferenced(page);
381 		if (page_is_file_cache(page))
382 			workingset_activation(page);
383 	} else if (!PageReferenced(page)) {
384 		SetPageReferenced(page);
385 	}
386 	if (page_is_idle(page))
387 		clear_page_idle(page);
388 }
389 EXPORT_SYMBOL(mark_page_accessed);
390 
391 static void __lru_cache_add(struct page *page)
392 {
393 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
394 
395 	get_page(page);
396 	if (!pagevec_add(pvec, page) || PageCompound(page))
397 		__pagevec_lru_add(pvec);
398 	put_cpu_var(lru_add_pvec);
399 }
400 
401 /**
402  * lru_cache_add: add a page to the page lists
403  * @page: the page to add
404  */
405 void lru_cache_add_anon(struct page *page)
406 {
407 	if (PageActive(page))
408 		ClearPageActive(page);
409 	__lru_cache_add(page);
410 }
411 
412 void lru_cache_add_file(struct page *page)
413 {
414 	if (PageActive(page))
415 		ClearPageActive(page);
416 	__lru_cache_add(page);
417 }
418 EXPORT_SYMBOL(lru_cache_add_file);
419 
420 /**
421  * lru_cache_add - add a page to a page list
422  * @page: the page to be added to the LRU.
423  *
424  * Queue the page for addition to the LRU via pagevec. The decision on whether
425  * to add the page to the [in]active [file|anon] list is deferred until the
426  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
427  * have the page added to the active list using mark_page_accessed().
428  */
429 void lru_cache_add(struct page *page)
430 {
431 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
432 	VM_BUG_ON_PAGE(PageLRU(page), page);
433 	__lru_cache_add(page);
434 }
435 
436 /**
437  * add_page_to_unevictable_list - add a page to the unevictable list
438  * @page:  the page to be added to the unevictable list
439  *
440  * Add page directly to its zone's unevictable list.  To avoid races with
441  * tasks that might be making the page evictable, through eg. munlock,
442  * munmap or exit, while it's not on the lru, we want to add the page
443  * while it's locked or otherwise "invisible" to other tasks.  This is
444  * difficult to do when using the pagevec cache, so bypass that.
445  */
446 void add_page_to_unevictable_list(struct page *page)
447 {
448 	struct pglist_data *pgdat = page_pgdat(page);
449 	struct lruvec *lruvec;
450 
451 	spin_lock_irq(&pgdat->lru_lock);
452 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
453 	ClearPageActive(page);
454 	SetPageUnevictable(page);
455 	SetPageLRU(page);
456 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
457 	spin_unlock_irq(&pgdat->lru_lock);
458 }
459 
460 /**
461  * lru_cache_add_active_or_unevictable
462  * @page:  the page to be added to LRU
463  * @vma:   vma in which page is mapped for determining reclaimability
464  *
465  * Place @page on the active or unevictable LRU list, depending on its
466  * evictability.  Note that if the page is not evictable, it goes
467  * directly back onto it's zone's unevictable list, it does NOT use a
468  * per cpu pagevec.
469  */
470 void lru_cache_add_active_or_unevictable(struct page *page,
471 					 struct vm_area_struct *vma)
472 {
473 	VM_BUG_ON_PAGE(PageLRU(page), page);
474 
475 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
476 		SetPageActive(page);
477 		lru_cache_add(page);
478 		return;
479 	}
480 
481 	if (!TestSetPageMlocked(page)) {
482 		/*
483 		 * We use the irq-unsafe __mod_zone_page_stat because this
484 		 * counter is not modified from interrupt context, and the pte
485 		 * lock is held(spinlock), which implies preemption disabled.
486 		 */
487 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
488 				    hpage_nr_pages(page));
489 		count_vm_event(UNEVICTABLE_PGMLOCKED);
490 	}
491 	add_page_to_unevictable_list(page);
492 }
493 
494 /*
495  * If the page can not be invalidated, it is moved to the
496  * inactive list to speed up its reclaim.  It is moved to the
497  * head of the list, rather than the tail, to give the flusher
498  * threads some time to write it out, as this is much more
499  * effective than the single-page writeout from reclaim.
500  *
501  * If the page isn't page_mapped and dirty/writeback, the page
502  * could reclaim asap using PG_reclaim.
503  *
504  * 1. active, mapped page -> none
505  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
506  * 3. inactive, mapped page -> none
507  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
508  * 5. inactive, clean -> inactive, tail
509  * 6. Others -> none
510  *
511  * In 4, why it moves inactive's head, the VM expects the page would
512  * be write it out by flusher threads as this is much more effective
513  * than the single-page writeout from reclaim.
514  */
515 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
516 			      void *arg)
517 {
518 	int lru, file;
519 	bool active;
520 
521 	if (!PageLRU(page))
522 		return;
523 
524 	if (PageUnevictable(page))
525 		return;
526 
527 	/* Some processes are using the page */
528 	if (page_mapped(page))
529 		return;
530 
531 	active = PageActive(page);
532 	file = page_is_file_cache(page);
533 	lru = page_lru_base_type(page);
534 
535 	del_page_from_lru_list(page, lruvec, lru + active);
536 	ClearPageActive(page);
537 	ClearPageReferenced(page);
538 	add_page_to_lru_list(page, lruvec, lru);
539 
540 	if (PageWriteback(page) || PageDirty(page)) {
541 		/*
542 		 * PG_reclaim could be raced with end_page_writeback
543 		 * It can make readahead confusing.  But race window
544 		 * is _really_ small and  it's non-critical problem.
545 		 */
546 		SetPageReclaim(page);
547 	} else {
548 		/*
549 		 * The page's writeback ends up during pagevec
550 		 * We moves tha page into tail of inactive.
551 		 */
552 		list_move_tail(&page->lru, &lruvec->lists[lru]);
553 		__count_vm_event(PGROTATED);
554 	}
555 
556 	if (active)
557 		__count_vm_event(PGDEACTIVATE);
558 	update_page_reclaim_stat(lruvec, file, 0);
559 }
560 
561 
562 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
563 			    void *arg)
564 {
565 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
566 		int file = page_is_file_cache(page);
567 		int lru = page_lru_base_type(page);
568 
569 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
570 		ClearPageActive(page);
571 		ClearPageReferenced(page);
572 		add_page_to_lru_list(page, lruvec, lru);
573 
574 		__count_vm_event(PGDEACTIVATE);
575 		update_page_reclaim_stat(lruvec, file, 0);
576 	}
577 }
578 
579 /*
580  * Drain pages out of the cpu's pagevecs.
581  * Either "cpu" is the current CPU, and preemption has already been
582  * disabled; or "cpu" is being hot-unplugged, and is already dead.
583  */
584 void lru_add_drain_cpu(int cpu)
585 {
586 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
587 
588 	if (pagevec_count(pvec))
589 		__pagevec_lru_add(pvec);
590 
591 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
592 	if (pagevec_count(pvec)) {
593 		unsigned long flags;
594 
595 		/* No harm done if a racing interrupt already did this */
596 		local_irq_save(flags);
597 		pagevec_move_tail(pvec);
598 		local_irq_restore(flags);
599 	}
600 
601 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
602 	if (pagevec_count(pvec))
603 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
604 
605 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
606 	if (pagevec_count(pvec))
607 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
608 
609 	activate_page_drain(cpu);
610 }
611 
612 /**
613  * deactivate_file_page - forcefully deactivate a file page
614  * @page: page to deactivate
615  *
616  * This function hints the VM that @page is a good reclaim candidate,
617  * for example if its invalidation fails due to the page being dirty
618  * or under writeback.
619  */
620 void deactivate_file_page(struct page *page)
621 {
622 	/*
623 	 * In a workload with many unevictable page such as mprotect,
624 	 * unevictable page deactivation for accelerating reclaim is pointless.
625 	 */
626 	if (PageUnevictable(page))
627 		return;
628 
629 	if (likely(get_page_unless_zero(page))) {
630 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
631 
632 		if (!pagevec_add(pvec, page) || PageCompound(page))
633 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
634 		put_cpu_var(lru_deactivate_file_pvecs);
635 	}
636 }
637 
638 /**
639  * deactivate_page - deactivate a page
640  * @page: page to deactivate
641  *
642  * deactivate_page() moves @page to the inactive list if @page was on the active
643  * list and was not an unevictable page.  This is done to accelerate the reclaim
644  * of @page.
645  */
646 void deactivate_page(struct page *page)
647 {
648 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
649 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
650 
651 		get_page(page);
652 		if (!pagevec_add(pvec, page) || PageCompound(page))
653 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
654 		put_cpu_var(lru_deactivate_pvecs);
655 	}
656 }
657 
658 void lru_add_drain(void)
659 {
660 	lru_add_drain_cpu(get_cpu());
661 	put_cpu();
662 }
663 
664 static void lru_add_drain_per_cpu(struct work_struct *dummy)
665 {
666 	lru_add_drain();
667 }
668 
669 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
670 
671 /*
672  * lru_add_drain_wq is used to do lru_add_drain_all() from a WQ_MEM_RECLAIM
673  * workqueue, aiding in getting memory freed.
674  */
675 static struct workqueue_struct *lru_add_drain_wq;
676 
677 static int __init lru_init(void)
678 {
679 	lru_add_drain_wq = alloc_workqueue("lru-add-drain", WQ_MEM_RECLAIM, 0);
680 
681 	if (WARN(!lru_add_drain_wq,
682 		"Failed to create workqueue lru_add_drain_wq"))
683 		return -ENOMEM;
684 
685 	return 0;
686 }
687 early_initcall(lru_init);
688 
689 void lru_add_drain_all(void)
690 {
691 	static DEFINE_MUTEX(lock);
692 	static struct cpumask has_work;
693 	int cpu;
694 
695 	mutex_lock(&lock);
696 	get_online_cpus();
697 	cpumask_clear(&has_work);
698 
699 	for_each_online_cpu(cpu) {
700 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
701 
702 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
703 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
704 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
705 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
706 		    need_activate_page_drain(cpu)) {
707 			INIT_WORK(work, lru_add_drain_per_cpu);
708 			queue_work_on(cpu, lru_add_drain_wq, work);
709 			cpumask_set_cpu(cpu, &has_work);
710 		}
711 	}
712 
713 	for_each_cpu(cpu, &has_work)
714 		flush_work(&per_cpu(lru_add_drain_work, cpu));
715 
716 	put_online_cpus();
717 	mutex_unlock(&lock);
718 }
719 
720 /**
721  * release_pages - batched put_page()
722  * @pages: array of pages to release
723  * @nr: number of pages
724  * @cold: whether the pages are cache cold
725  *
726  * Decrement the reference count on all the pages in @pages.  If it
727  * fell to zero, remove the page from the LRU and free it.
728  */
729 void release_pages(struct page **pages, int nr, bool cold)
730 {
731 	int i;
732 	LIST_HEAD(pages_to_free);
733 	struct pglist_data *locked_pgdat = NULL;
734 	struct lruvec *lruvec;
735 	unsigned long uninitialized_var(flags);
736 	unsigned int uninitialized_var(lock_batch);
737 
738 	for (i = 0; i < nr; i++) {
739 		struct page *page = pages[i];
740 
741 		/*
742 		 * Make sure the IRQ-safe lock-holding time does not get
743 		 * excessive with a continuous string of pages from the
744 		 * same pgdat. The lock is held only if pgdat != NULL.
745 		 */
746 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
747 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
748 			locked_pgdat = NULL;
749 		}
750 
751 		if (is_huge_zero_page(page))
752 			continue;
753 
754 		page = compound_head(page);
755 		if (!put_page_testzero(page))
756 			continue;
757 
758 		if (PageCompound(page)) {
759 			if (locked_pgdat) {
760 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
761 				locked_pgdat = NULL;
762 			}
763 			__put_compound_page(page);
764 			continue;
765 		}
766 
767 		if (PageLRU(page)) {
768 			struct pglist_data *pgdat = page_pgdat(page);
769 
770 			if (pgdat != locked_pgdat) {
771 				if (locked_pgdat)
772 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
773 									flags);
774 				lock_batch = 0;
775 				locked_pgdat = pgdat;
776 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
777 			}
778 
779 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
780 			VM_BUG_ON_PAGE(!PageLRU(page), page);
781 			__ClearPageLRU(page);
782 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
783 		}
784 
785 		/* Clear Active bit in case of parallel mark_page_accessed */
786 		__ClearPageActive(page);
787 
788 		list_add(&page->lru, &pages_to_free);
789 	}
790 	if (locked_pgdat)
791 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
792 
793 	mem_cgroup_uncharge_list(&pages_to_free);
794 	free_hot_cold_page_list(&pages_to_free, cold);
795 }
796 EXPORT_SYMBOL(release_pages);
797 
798 /*
799  * The pages which we're about to release may be in the deferred lru-addition
800  * queues.  That would prevent them from really being freed right now.  That's
801  * OK from a correctness point of view but is inefficient - those pages may be
802  * cache-warm and we want to give them back to the page allocator ASAP.
803  *
804  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
805  * and __pagevec_lru_add_active() call release_pages() directly to avoid
806  * mutual recursion.
807  */
808 void __pagevec_release(struct pagevec *pvec)
809 {
810 	lru_add_drain();
811 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
812 	pagevec_reinit(pvec);
813 }
814 EXPORT_SYMBOL(__pagevec_release);
815 
816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
817 /* used by __split_huge_page_refcount() */
818 void lru_add_page_tail(struct page *page, struct page *page_tail,
819 		       struct lruvec *lruvec, struct list_head *list)
820 {
821 	const int file = 0;
822 
823 	VM_BUG_ON_PAGE(!PageHead(page), page);
824 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
825 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
826 	VM_BUG_ON(NR_CPUS != 1 &&
827 		  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
828 
829 	if (!list)
830 		SetPageLRU(page_tail);
831 
832 	if (likely(PageLRU(page)))
833 		list_add_tail(&page_tail->lru, &page->lru);
834 	else if (list) {
835 		/* page reclaim is reclaiming a huge page */
836 		get_page(page_tail);
837 		list_add_tail(&page_tail->lru, list);
838 	} else {
839 		struct list_head *list_head;
840 		/*
841 		 * Head page has not yet been counted, as an hpage,
842 		 * so we must account for each subpage individually.
843 		 *
844 		 * Use the standard add function to put page_tail on the list,
845 		 * but then correct its position so they all end up in order.
846 		 */
847 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
848 		list_head = page_tail->lru.prev;
849 		list_move_tail(&page_tail->lru, list_head);
850 	}
851 
852 	if (!PageUnevictable(page))
853 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
854 }
855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
856 
857 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
858 				 void *arg)
859 {
860 	int file = page_is_file_cache(page);
861 	int active = PageActive(page);
862 	enum lru_list lru = page_lru(page);
863 
864 	VM_BUG_ON_PAGE(PageLRU(page), page);
865 
866 	SetPageLRU(page);
867 	add_page_to_lru_list(page, lruvec, lru);
868 	update_page_reclaim_stat(lruvec, file, active);
869 	trace_mm_lru_insertion(page, lru);
870 }
871 
872 /*
873  * Add the passed pages to the LRU, then drop the caller's refcount
874  * on them.  Reinitialises the caller's pagevec.
875  */
876 void __pagevec_lru_add(struct pagevec *pvec)
877 {
878 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
879 }
880 EXPORT_SYMBOL(__pagevec_lru_add);
881 
882 /**
883  * pagevec_lookup_entries - gang pagecache lookup
884  * @pvec:	Where the resulting entries are placed
885  * @mapping:	The address_space to search
886  * @start:	The starting entry index
887  * @nr_entries:	The maximum number of entries
888  * @indices:	The cache indices corresponding to the entries in @pvec
889  *
890  * pagevec_lookup_entries() will search for and return a group of up
891  * to @nr_entries pages and shadow entries in the mapping.  All
892  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
893  * reference against actual pages in @pvec.
894  *
895  * The search returns a group of mapping-contiguous entries with
896  * ascending indexes.  There may be holes in the indices due to
897  * not-present entries.
898  *
899  * pagevec_lookup_entries() returns the number of entries which were
900  * found.
901  */
902 unsigned pagevec_lookup_entries(struct pagevec *pvec,
903 				struct address_space *mapping,
904 				pgoff_t start, unsigned nr_pages,
905 				pgoff_t *indices)
906 {
907 	pvec->nr = find_get_entries(mapping, start, nr_pages,
908 				    pvec->pages, indices);
909 	return pagevec_count(pvec);
910 }
911 
912 /**
913  * pagevec_remove_exceptionals - pagevec exceptionals pruning
914  * @pvec:	The pagevec to prune
915  *
916  * pagevec_lookup_entries() fills both pages and exceptional radix
917  * tree entries into the pagevec.  This function prunes all
918  * exceptionals from @pvec without leaving holes, so that it can be
919  * passed on to page-only pagevec operations.
920  */
921 void pagevec_remove_exceptionals(struct pagevec *pvec)
922 {
923 	int i, j;
924 
925 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
926 		struct page *page = pvec->pages[i];
927 		if (!radix_tree_exceptional_entry(page))
928 			pvec->pages[j++] = page;
929 	}
930 	pvec->nr = j;
931 }
932 
933 /**
934  * pagevec_lookup - gang pagecache lookup
935  * @pvec:	Where the resulting pages are placed
936  * @mapping:	The address_space to search
937  * @start:	The starting page index
938  * @nr_pages:	The maximum number of pages
939  *
940  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
941  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
942  * reference against the pages in @pvec.
943  *
944  * The search returns a group of mapping-contiguous pages with ascending
945  * indexes.  There may be holes in the indices due to not-present pages.
946  *
947  * pagevec_lookup() returns the number of pages which were found.
948  */
949 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
950 		pgoff_t start, unsigned nr_pages)
951 {
952 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
953 	return pagevec_count(pvec);
954 }
955 EXPORT_SYMBOL(pagevec_lookup);
956 
957 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
958 		pgoff_t *index, int tag, unsigned nr_pages)
959 {
960 	pvec->nr = find_get_pages_tag(mapping, index, tag,
961 					nr_pages, pvec->pages);
962 	return pagevec_count(pvec);
963 }
964 EXPORT_SYMBOL(pagevec_lookup_tag);
965 
966 /*
967  * Perform any setup for the swap system
968  */
969 void __init swap_setup(void)
970 {
971 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
972 #ifdef CONFIG_SWAP
973 	int i;
974 
975 	for (i = 0; i < MAX_SWAPFILES; i++)
976 		spin_lock_init(&swapper_spaces[i].tree_lock);
977 #endif
978 
979 	/* Use a smaller cluster for small-memory machines */
980 	if (megs < 16)
981 		page_cluster = 2;
982 	else
983 		page_cluster = 3;
984 	/*
985 	 * Right now other parts of the system means that we
986 	 * _really_ don't want to cluster much more
987 	 */
988 }
989