xref: /openbmc/linux/mm/swap.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51 struct lru_rotate {
52 	local_lock_t lock;
53 	struct folio_batch fbatch;
54 };
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 	.lock = INIT_LOCAL_LOCK(lock),
57 };
58 
59 /*
60  * The following folio batches are grouped together because they are protected
61  * by disabling preemption (and interrupts remain enabled).
62  */
63 struct cpu_fbatches {
64 	local_lock_t lock;
65 	struct folio_batch lru_add;
66 	struct folio_batch lru_deactivate_file;
67 	struct folio_batch lru_deactivate;
68 	struct folio_batch lru_lazyfree;
69 #ifdef CONFIG_SMP
70 	struct folio_batch activate;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 	.lock = INIT_LOCAL_LOCK(lock),
75 };
76 
77 /*
78  * This path almost never happens for VM activity - pages are normally freed
79  * via pagevecs.  But it gets used by networking - and for compound pages.
80  */
81 static void __page_cache_release(struct folio *folio)
82 {
83 	if (folio_test_lru(folio)) {
84 		struct lruvec *lruvec;
85 		unsigned long flags;
86 
87 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 		lruvec_del_folio(lruvec, folio);
89 		__folio_clear_lru_flags(folio);
90 		unlock_page_lruvec_irqrestore(lruvec, flags);
91 	}
92 	/* See comment on folio_test_mlocked in release_pages() */
93 	if (unlikely(folio_test_mlocked(folio))) {
94 		long nr_pages = folio_nr_pages(folio);
95 
96 		__folio_clear_mlocked(folio);
97 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
98 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
99 	}
100 }
101 
102 static void __folio_put_small(struct folio *folio)
103 {
104 	__page_cache_release(folio);
105 	mem_cgroup_uncharge(folio);
106 	free_unref_page(&folio->page, 0);
107 }
108 
109 static void __folio_put_large(struct folio *folio)
110 {
111 	/*
112 	 * __page_cache_release() is supposed to be called for thp, not for
113 	 * hugetlb. This is because hugetlb page does never have PageLRU set
114 	 * (it's never listed to any LRU lists) and no memcg routines should
115 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
116 	 */
117 	if (!folio_test_hugetlb(folio))
118 		__page_cache_release(folio);
119 	destroy_large_folio(folio);
120 }
121 
122 void __folio_put(struct folio *folio)
123 {
124 	if (unlikely(folio_is_zone_device(folio)))
125 		free_zone_device_page(&folio->page);
126 	else if (unlikely(folio_test_large(folio)))
127 		__folio_put_large(folio);
128 	else
129 		__folio_put_small(folio);
130 }
131 EXPORT_SYMBOL(__folio_put);
132 
133 /**
134  * put_pages_list() - release a list of pages
135  * @pages: list of pages threaded on page->lru
136  *
137  * Release a list of pages which are strung together on page.lru.
138  */
139 void put_pages_list(struct list_head *pages)
140 {
141 	struct folio *folio, *next;
142 
143 	list_for_each_entry_safe(folio, next, pages, lru) {
144 		if (!folio_put_testzero(folio)) {
145 			list_del(&folio->lru);
146 			continue;
147 		}
148 		if (folio_test_large(folio)) {
149 			list_del(&folio->lru);
150 			__folio_put_large(folio);
151 			continue;
152 		}
153 		/* LRU flag must be clear because it's passed using the lru */
154 	}
155 
156 	free_unref_page_list(pages);
157 	INIT_LIST_HEAD(pages);
158 }
159 EXPORT_SYMBOL(put_pages_list);
160 
161 /*
162  * get_kernel_pages() - pin kernel pages in memory
163  * @kiov:	An array of struct kvec structures
164  * @nr_segs:	number of segments to pin
165  * @write:	pinning for read/write, currently ignored
166  * @pages:	array that receives pointers to the pages pinned.
167  *		Should be at least nr_segs long.
168  *
169  * Returns number of pages pinned. This may be fewer than the number requested.
170  * If nr_segs is 0 or negative, returns 0.  If no pages were pinned, returns 0.
171  * Each page returned must be released with a put_page() call when it is
172  * finished with.
173  */
174 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
175 		struct page **pages)
176 {
177 	int seg;
178 
179 	for (seg = 0; seg < nr_segs; seg++) {
180 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
181 			return seg;
182 
183 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
184 		get_page(pages[seg]);
185 	}
186 
187 	return seg;
188 }
189 EXPORT_SYMBOL_GPL(get_kernel_pages);
190 
191 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
192 
193 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
194 {
195 	int was_unevictable = folio_test_clear_unevictable(folio);
196 	long nr_pages = folio_nr_pages(folio);
197 
198 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
199 
200 	/*
201 	 * Is an smp_mb__after_atomic() still required here, before
202 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
203 	 * of stranding an evictable folio on an unevictable LRU?  I think
204 	 * not, because __munlock_page() only clears the mlocked flag
205 	 * while the LRU lock is held.
206 	 *
207 	 * (That is not true of __page_cache_release(), and not necessarily
208 	 * true of release_pages(): but those only clear the mlocked flag after
209 	 * folio_put_testzero() has excluded any other users of the folio.)
210 	 */
211 	if (folio_evictable(folio)) {
212 		if (was_unevictable)
213 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
214 	} else {
215 		folio_clear_active(folio);
216 		folio_set_unevictable(folio);
217 		/*
218 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
219 		 * But that leaves __mlock_page() in doubt whether another
220 		 * actor has already counted the mlock or not.  Err on the
221 		 * safe side, underestimate, let page reclaim fix it, rather
222 		 * than leaving a page on the unevictable LRU indefinitely.
223 		 */
224 		folio->mlock_count = 0;
225 		if (!was_unevictable)
226 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
227 	}
228 
229 	lruvec_add_folio(lruvec, folio);
230 	trace_mm_lru_insertion(folio);
231 }
232 
233 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
234 {
235 	int i;
236 	struct lruvec *lruvec = NULL;
237 	unsigned long flags = 0;
238 
239 	for (i = 0; i < folio_batch_count(fbatch); i++) {
240 		struct folio *folio = fbatch->folios[i];
241 
242 		/* block memcg migration while the folio moves between lru */
243 		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
244 			continue;
245 
246 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
247 		move_fn(lruvec, folio);
248 
249 		folio_set_lru(folio);
250 	}
251 
252 	if (lruvec)
253 		unlock_page_lruvec_irqrestore(lruvec, flags);
254 	folios_put(fbatch->folios, folio_batch_count(fbatch));
255 	folio_batch_init(fbatch);
256 }
257 
258 static void folio_batch_add_and_move(struct folio_batch *fbatch,
259 		struct folio *folio, move_fn_t move_fn)
260 {
261 	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
262 	    !lru_cache_disabled())
263 		return;
264 	folio_batch_move_lru(fbatch, move_fn);
265 }
266 
267 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
268 {
269 	if (!folio_test_unevictable(folio)) {
270 		lruvec_del_folio(lruvec, folio);
271 		folio_clear_active(folio);
272 		lruvec_add_folio_tail(lruvec, folio);
273 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
274 	}
275 }
276 
277 /*
278  * Writeback is about to end against a folio which has been marked for
279  * immediate reclaim.  If it still appears to be reclaimable, move it
280  * to the tail of the inactive list.
281  *
282  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
283  */
284 void folio_rotate_reclaimable(struct folio *folio)
285 {
286 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
287 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
288 		struct folio_batch *fbatch;
289 		unsigned long flags;
290 
291 		folio_get(folio);
292 		local_lock_irqsave(&lru_rotate.lock, flags);
293 		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
294 		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
295 		local_unlock_irqrestore(&lru_rotate.lock, flags);
296 	}
297 }
298 
299 void lru_note_cost(struct lruvec *lruvec, bool file,
300 		   unsigned int nr_io, unsigned int nr_rotated)
301 {
302 	unsigned long cost;
303 
304 	/*
305 	 * Reflect the relative cost of incurring IO and spending CPU
306 	 * time on rotations. This doesn't attempt to make a precise
307 	 * comparison, it just says: if reloads are about comparable
308 	 * between the LRU lists, or rotations are overwhelmingly
309 	 * different between them, adjust scan balance for CPU work.
310 	 */
311 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
312 
313 	do {
314 		unsigned long lrusize;
315 
316 		/*
317 		 * Hold lruvec->lru_lock is safe here, since
318 		 * 1) The pinned lruvec in reclaim, or
319 		 * 2) From a pre-LRU page during refault (which also holds the
320 		 *    rcu lock, so would be safe even if the page was on the LRU
321 		 *    and could move simultaneously to a new lruvec).
322 		 */
323 		spin_lock_irq(&lruvec->lru_lock);
324 		/* Record cost event */
325 		if (file)
326 			lruvec->file_cost += cost;
327 		else
328 			lruvec->anon_cost += cost;
329 
330 		/*
331 		 * Decay previous events
332 		 *
333 		 * Because workloads change over time (and to avoid
334 		 * overflow) we keep these statistics as a floating
335 		 * average, which ends up weighing recent refaults
336 		 * more than old ones.
337 		 */
338 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
339 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
340 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
341 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
342 
343 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
344 			lruvec->file_cost /= 2;
345 			lruvec->anon_cost /= 2;
346 		}
347 		spin_unlock_irq(&lruvec->lru_lock);
348 	} while ((lruvec = parent_lruvec(lruvec)));
349 }
350 
351 void lru_note_cost_refault(struct folio *folio)
352 {
353 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
354 		      folio_nr_pages(folio), 0);
355 }
356 
357 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
358 {
359 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
360 		long nr_pages = folio_nr_pages(folio);
361 
362 		lruvec_del_folio(lruvec, folio);
363 		folio_set_active(folio);
364 		lruvec_add_folio(lruvec, folio);
365 		trace_mm_lru_activate(folio);
366 
367 		__count_vm_events(PGACTIVATE, nr_pages);
368 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
369 				     nr_pages);
370 	}
371 }
372 
373 #ifdef CONFIG_SMP
374 static void folio_activate_drain(int cpu)
375 {
376 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
377 
378 	if (folio_batch_count(fbatch))
379 		folio_batch_move_lru(fbatch, folio_activate_fn);
380 }
381 
382 void folio_activate(struct folio *folio)
383 {
384 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
385 	    !folio_test_unevictable(folio)) {
386 		struct folio_batch *fbatch;
387 
388 		folio_get(folio);
389 		local_lock(&cpu_fbatches.lock);
390 		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
391 		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
392 		local_unlock(&cpu_fbatches.lock);
393 	}
394 }
395 
396 #else
397 static inline void folio_activate_drain(int cpu)
398 {
399 }
400 
401 void folio_activate(struct folio *folio)
402 {
403 	struct lruvec *lruvec;
404 
405 	if (folio_test_clear_lru(folio)) {
406 		lruvec = folio_lruvec_lock_irq(folio);
407 		folio_activate_fn(lruvec, folio);
408 		unlock_page_lruvec_irq(lruvec);
409 		folio_set_lru(folio);
410 	}
411 }
412 #endif
413 
414 static void __lru_cache_activate_folio(struct folio *folio)
415 {
416 	struct folio_batch *fbatch;
417 	int i;
418 
419 	local_lock(&cpu_fbatches.lock);
420 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
421 
422 	/*
423 	 * Search backwards on the optimistic assumption that the folio being
424 	 * activated has just been added to this batch. Note that only
425 	 * the local batch is examined as a !LRU folio could be in the
426 	 * process of being released, reclaimed, migrated or on a remote
427 	 * batch that is currently being drained. Furthermore, marking
428 	 * a remote batch's folio active potentially hits a race where
429 	 * a folio is marked active just after it is added to the inactive
430 	 * list causing accounting errors and BUG_ON checks to trigger.
431 	 */
432 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
433 		struct folio *batch_folio = fbatch->folios[i];
434 
435 		if (batch_folio == folio) {
436 			folio_set_active(folio);
437 			break;
438 		}
439 	}
440 
441 	local_unlock(&cpu_fbatches.lock);
442 }
443 
444 #ifdef CONFIG_LRU_GEN
445 static void folio_inc_refs(struct folio *folio)
446 {
447 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
448 
449 	if (folio_test_unevictable(folio))
450 		return;
451 
452 	if (!folio_test_referenced(folio)) {
453 		folio_set_referenced(folio);
454 		return;
455 	}
456 
457 	if (!folio_test_workingset(folio)) {
458 		folio_set_workingset(folio);
459 		return;
460 	}
461 
462 	/* see the comment on MAX_NR_TIERS */
463 	do {
464 		new_flags = old_flags & LRU_REFS_MASK;
465 		if (new_flags == LRU_REFS_MASK)
466 			break;
467 
468 		new_flags += BIT(LRU_REFS_PGOFF);
469 		new_flags |= old_flags & ~LRU_REFS_MASK;
470 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
471 }
472 #else
473 static void folio_inc_refs(struct folio *folio)
474 {
475 }
476 #endif /* CONFIG_LRU_GEN */
477 
478 /*
479  * Mark a page as having seen activity.
480  *
481  * inactive,unreferenced	->	inactive,referenced
482  * inactive,referenced		->	active,unreferenced
483  * active,unreferenced		->	active,referenced
484  *
485  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
486  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
487  */
488 void folio_mark_accessed(struct folio *folio)
489 {
490 	if (lru_gen_enabled()) {
491 		folio_inc_refs(folio);
492 		return;
493 	}
494 
495 	if (!folio_test_referenced(folio)) {
496 		folio_set_referenced(folio);
497 	} else if (folio_test_unevictable(folio)) {
498 		/*
499 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
500 		 * this list is never rotated or maintained, so marking an
501 		 * unevictable page accessed has no effect.
502 		 */
503 	} else if (!folio_test_active(folio)) {
504 		/*
505 		 * If the folio is on the LRU, queue it for activation via
506 		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
507 		 * folio_batch, mark it active and it'll be moved to the active
508 		 * LRU on the next drain.
509 		 */
510 		if (folio_test_lru(folio))
511 			folio_activate(folio);
512 		else
513 			__lru_cache_activate_folio(folio);
514 		folio_clear_referenced(folio);
515 		workingset_activation(folio);
516 	}
517 	if (folio_test_idle(folio))
518 		folio_clear_idle(folio);
519 }
520 EXPORT_SYMBOL(folio_mark_accessed);
521 
522 /**
523  * folio_add_lru - Add a folio to an LRU list.
524  * @folio: The folio to be added to the LRU.
525  *
526  * Queue the folio for addition to the LRU. The decision on whether
527  * to add the page to the [in]active [file|anon] list is deferred until the
528  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
529  * have the folio added to the active list using folio_mark_accessed().
530  */
531 void folio_add_lru(struct folio *folio)
532 {
533 	struct folio_batch *fbatch;
534 
535 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
536 			folio_test_unevictable(folio), folio);
537 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
538 
539 	/* see the comment in lru_gen_add_folio() */
540 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
541 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
542 		folio_set_active(folio);
543 
544 	folio_get(folio);
545 	local_lock(&cpu_fbatches.lock);
546 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
547 	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
548 	local_unlock(&cpu_fbatches.lock);
549 }
550 EXPORT_SYMBOL(folio_add_lru);
551 
552 /**
553  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
554  * @folio: The folio to be added to the LRU.
555  * @vma: VMA in which the folio is mapped.
556  *
557  * If the VMA is mlocked, @folio is added to the unevictable list.
558  * Otherwise, it is treated the same way as folio_add_lru().
559  */
560 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
561 {
562 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
563 
564 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
565 		mlock_new_page(&folio->page);
566 	else
567 		folio_add_lru(folio);
568 }
569 
570 /*
571  * If the folio cannot be invalidated, it is moved to the
572  * inactive list to speed up its reclaim.  It is moved to the
573  * head of the list, rather than the tail, to give the flusher
574  * threads some time to write it out, as this is much more
575  * effective than the single-page writeout from reclaim.
576  *
577  * If the folio isn't mapped and dirty/writeback, the folio
578  * could be reclaimed asap using the reclaim flag.
579  *
580  * 1. active, mapped folio -> none
581  * 2. active, dirty/writeback folio -> inactive, head, reclaim
582  * 3. inactive, mapped folio -> none
583  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
584  * 5. inactive, clean -> inactive, tail
585  * 6. Others -> none
586  *
587  * In 4, it moves to the head of the inactive list so the folio is
588  * written out by flusher threads as this is much more efficient
589  * than the single-page writeout from reclaim.
590  */
591 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
592 {
593 	bool active = folio_test_active(folio);
594 	long nr_pages = folio_nr_pages(folio);
595 
596 	if (folio_test_unevictable(folio))
597 		return;
598 
599 	/* Some processes are using the folio */
600 	if (folio_mapped(folio))
601 		return;
602 
603 	lruvec_del_folio(lruvec, folio);
604 	folio_clear_active(folio);
605 	folio_clear_referenced(folio);
606 
607 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
608 		/*
609 		 * Setting the reclaim flag could race with
610 		 * folio_end_writeback() and confuse readahead.  But the
611 		 * race window is _really_ small and  it's not a critical
612 		 * problem.
613 		 */
614 		lruvec_add_folio(lruvec, folio);
615 		folio_set_reclaim(folio);
616 	} else {
617 		/*
618 		 * The folio's writeback ended while it was in the batch.
619 		 * We move that folio to the tail of the inactive list.
620 		 */
621 		lruvec_add_folio_tail(lruvec, folio);
622 		__count_vm_events(PGROTATED, nr_pages);
623 	}
624 
625 	if (active) {
626 		__count_vm_events(PGDEACTIVATE, nr_pages);
627 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
628 				     nr_pages);
629 	}
630 }
631 
632 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
633 {
634 	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
635 		long nr_pages = folio_nr_pages(folio);
636 
637 		lruvec_del_folio(lruvec, folio);
638 		folio_clear_active(folio);
639 		folio_clear_referenced(folio);
640 		lruvec_add_folio(lruvec, folio);
641 
642 		__count_vm_events(PGDEACTIVATE, nr_pages);
643 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
644 				     nr_pages);
645 	}
646 }
647 
648 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
649 {
650 	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
651 	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
652 		long nr_pages = folio_nr_pages(folio);
653 
654 		lruvec_del_folio(lruvec, folio);
655 		folio_clear_active(folio);
656 		folio_clear_referenced(folio);
657 		/*
658 		 * Lazyfree folios are clean anonymous folios.  They have
659 		 * the swapbacked flag cleared, to distinguish them from normal
660 		 * anonymous folios
661 		 */
662 		folio_clear_swapbacked(folio);
663 		lruvec_add_folio(lruvec, folio);
664 
665 		__count_vm_events(PGLAZYFREE, nr_pages);
666 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
667 				     nr_pages);
668 	}
669 }
670 
671 /*
672  * Drain pages out of the cpu's folio_batch.
673  * Either "cpu" is the current CPU, and preemption has already been
674  * disabled; or "cpu" is being hot-unplugged, and is already dead.
675  */
676 void lru_add_drain_cpu(int cpu)
677 {
678 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
679 	struct folio_batch *fbatch = &fbatches->lru_add;
680 
681 	if (folio_batch_count(fbatch))
682 		folio_batch_move_lru(fbatch, lru_add_fn);
683 
684 	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
685 	/* Disabling interrupts below acts as a compiler barrier. */
686 	if (data_race(folio_batch_count(fbatch))) {
687 		unsigned long flags;
688 
689 		/* No harm done if a racing interrupt already did this */
690 		local_lock_irqsave(&lru_rotate.lock, flags);
691 		folio_batch_move_lru(fbatch, lru_move_tail_fn);
692 		local_unlock_irqrestore(&lru_rotate.lock, flags);
693 	}
694 
695 	fbatch = &fbatches->lru_deactivate_file;
696 	if (folio_batch_count(fbatch))
697 		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
698 
699 	fbatch = &fbatches->lru_deactivate;
700 	if (folio_batch_count(fbatch))
701 		folio_batch_move_lru(fbatch, lru_deactivate_fn);
702 
703 	fbatch = &fbatches->lru_lazyfree;
704 	if (folio_batch_count(fbatch))
705 		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
706 
707 	folio_activate_drain(cpu);
708 }
709 
710 /**
711  * deactivate_file_folio() - Deactivate a file folio.
712  * @folio: Folio to deactivate.
713  *
714  * This function hints to the VM that @folio is a good reclaim candidate,
715  * for example if its invalidation fails due to the folio being dirty
716  * or under writeback.
717  *
718  * Context: Caller holds a reference on the folio.
719  */
720 void deactivate_file_folio(struct folio *folio)
721 {
722 	struct folio_batch *fbatch;
723 
724 	/* Deactivating an unevictable folio will not accelerate reclaim */
725 	if (folio_test_unevictable(folio))
726 		return;
727 
728 	folio_get(folio);
729 	local_lock(&cpu_fbatches.lock);
730 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
731 	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
732 	local_unlock(&cpu_fbatches.lock);
733 }
734 
735 /*
736  * deactivate_page - deactivate a page
737  * @page: page to deactivate
738  *
739  * deactivate_page() moves @page to the inactive list if @page was on the active
740  * list and was not an unevictable page.  This is done to accelerate the reclaim
741  * of @page.
742  */
743 void deactivate_page(struct page *page)
744 {
745 	struct folio *folio = page_folio(page);
746 
747 	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
748 	    (folio_test_active(folio) || lru_gen_enabled())) {
749 		struct folio_batch *fbatch;
750 
751 		folio_get(folio);
752 		local_lock(&cpu_fbatches.lock);
753 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
754 		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
755 		local_unlock(&cpu_fbatches.lock);
756 	}
757 }
758 
759 /**
760  * mark_page_lazyfree - make an anon page lazyfree
761  * @page: page to deactivate
762  *
763  * mark_page_lazyfree() moves @page to the inactive file list.
764  * This is done to accelerate the reclaim of @page.
765  */
766 void mark_page_lazyfree(struct page *page)
767 {
768 	struct folio *folio = page_folio(page);
769 
770 	if (folio_test_lru(folio) && folio_test_anon(folio) &&
771 	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
772 	    !folio_test_unevictable(folio)) {
773 		struct folio_batch *fbatch;
774 
775 		folio_get(folio);
776 		local_lock(&cpu_fbatches.lock);
777 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
778 		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
779 		local_unlock(&cpu_fbatches.lock);
780 	}
781 }
782 
783 void lru_add_drain(void)
784 {
785 	local_lock(&cpu_fbatches.lock);
786 	lru_add_drain_cpu(smp_processor_id());
787 	local_unlock(&cpu_fbatches.lock);
788 	mlock_page_drain_local();
789 }
790 
791 /*
792  * It's called from per-cpu workqueue context in SMP case so
793  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
794  * the same cpu. It shouldn't be a problem in !SMP case since
795  * the core is only one and the locks will disable preemption.
796  */
797 static void lru_add_and_bh_lrus_drain(void)
798 {
799 	local_lock(&cpu_fbatches.lock);
800 	lru_add_drain_cpu(smp_processor_id());
801 	local_unlock(&cpu_fbatches.lock);
802 	invalidate_bh_lrus_cpu();
803 	mlock_page_drain_local();
804 }
805 
806 void lru_add_drain_cpu_zone(struct zone *zone)
807 {
808 	local_lock(&cpu_fbatches.lock);
809 	lru_add_drain_cpu(smp_processor_id());
810 	drain_local_pages(zone);
811 	local_unlock(&cpu_fbatches.lock);
812 	mlock_page_drain_local();
813 }
814 
815 #ifdef CONFIG_SMP
816 
817 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
818 
819 static void lru_add_drain_per_cpu(struct work_struct *dummy)
820 {
821 	lru_add_and_bh_lrus_drain();
822 }
823 
824 static bool cpu_needs_drain(unsigned int cpu)
825 {
826 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
827 
828 	/* Check these in order of likelihood that they're not zero */
829 	return folio_batch_count(&fbatches->lru_add) ||
830 		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
831 		folio_batch_count(&fbatches->lru_deactivate_file) ||
832 		folio_batch_count(&fbatches->lru_deactivate) ||
833 		folio_batch_count(&fbatches->lru_lazyfree) ||
834 		folio_batch_count(&fbatches->activate) ||
835 		need_mlock_page_drain(cpu) ||
836 		has_bh_in_lru(cpu, NULL);
837 }
838 
839 /*
840  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
841  * kworkers being shut down before our page_alloc_cpu_dead callback is
842  * executed on the offlined cpu.
843  * Calling this function with cpu hotplug locks held can actually lead
844  * to obscure indirect dependencies via WQ context.
845  */
846 static inline void __lru_add_drain_all(bool force_all_cpus)
847 {
848 	/*
849 	 * lru_drain_gen - Global pages generation number
850 	 *
851 	 * (A) Definition: global lru_drain_gen = x implies that all generations
852 	 *     0 < n <= x are already *scheduled* for draining.
853 	 *
854 	 * This is an optimization for the highly-contended use case where a
855 	 * user space workload keeps constantly generating a flow of pages for
856 	 * each CPU.
857 	 */
858 	static unsigned int lru_drain_gen;
859 	static struct cpumask has_work;
860 	static DEFINE_MUTEX(lock);
861 	unsigned cpu, this_gen;
862 
863 	/*
864 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
865 	 * initialized.
866 	 */
867 	if (WARN_ON(!mm_percpu_wq))
868 		return;
869 
870 	/*
871 	 * Guarantee folio_batch counter stores visible by this CPU
872 	 * are visible to other CPUs before loading the current drain
873 	 * generation.
874 	 */
875 	smp_mb();
876 
877 	/*
878 	 * (B) Locally cache global LRU draining generation number
879 	 *
880 	 * The read barrier ensures that the counter is loaded before the mutex
881 	 * is taken. It pairs with smp_mb() inside the mutex critical section
882 	 * at (D).
883 	 */
884 	this_gen = smp_load_acquire(&lru_drain_gen);
885 
886 	mutex_lock(&lock);
887 
888 	/*
889 	 * (C) Exit the draining operation if a newer generation, from another
890 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
891 	 */
892 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
893 		goto done;
894 
895 	/*
896 	 * (D) Increment global generation number
897 	 *
898 	 * Pairs with smp_load_acquire() at (B), outside of the critical
899 	 * section. Use a full memory barrier to guarantee that the
900 	 * new global drain generation number is stored before loading
901 	 * folio_batch counters.
902 	 *
903 	 * This pairing must be done here, before the for_each_online_cpu loop
904 	 * below which drains the page vectors.
905 	 *
906 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
907 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
908 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
909 	 * along, adds some pages to its per-cpu vectors, then calls
910 	 * lru_add_drain_all().
911 	 *
912 	 * If the paired barrier is done at any later step, e.g. after the
913 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
914 	 * added pages.
915 	 */
916 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
917 	smp_mb();
918 
919 	cpumask_clear(&has_work);
920 	for_each_online_cpu(cpu) {
921 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
922 
923 		if (cpu_needs_drain(cpu)) {
924 			INIT_WORK(work, lru_add_drain_per_cpu);
925 			queue_work_on(cpu, mm_percpu_wq, work);
926 			__cpumask_set_cpu(cpu, &has_work);
927 		}
928 	}
929 
930 	for_each_cpu(cpu, &has_work)
931 		flush_work(&per_cpu(lru_add_drain_work, cpu));
932 
933 done:
934 	mutex_unlock(&lock);
935 }
936 
937 void lru_add_drain_all(void)
938 {
939 	__lru_add_drain_all(false);
940 }
941 #else
942 void lru_add_drain_all(void)
943 {
944 	lru_add_drain();
945 }
946 #endif /* CONFIG_SMP */
947 
948 atomic_t lru_disable_count = ATOMIC_INIT(0);
949 
950 /*
951  * lru_cache_disable() needs to be called before we start compiling
952  * a list of pages to be migrated using isolate_lru_page().
953  * It drains pages on LRU cache and then disable on all cpus until
954  * lru_cache_enable is called.
955  *
956  * Must be paired with a call to lru_cache_enable().
957  */
958 void lru_cache_disable(void)
959 {
960 	atomic_inc(&lru_disable_count);
961 	/*
962 	 * Readers of lru_disable_count are protected by either disabling
963 	 * preemption or rcu_read_lock:
964 	 *
965 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
966 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
967 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
968 	 *
969 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
970 	 * preempt_disable() regions of code. So any CPU which sees
971 	 * lru_disable_count = 0 will have exited the critical
972 	 * section when synchronize_rcu() returns.
973 	 */
974 	synchronize_rcu_expedited();
975 #ifdef CONFIG_SMP
976 	__lru_add_drain_all(true);
977 #else
978 	lru_add_and_bh_lrus_drain();
979 #endif
980 }
981 
982 /**
983  * release_pages - batched put_page()
984  * @arg: array of pages to release
985  * @nr: number of pages
986  *
987  * Decrement the reference count on all the pages in @arg.  If it
988  * fell to zero, remove the page from the LRU and free it.
989  *
990  * Note that the argument can be an array of pages, encoded pages,
991  * or folio pointers. We ignore any encoded bits, and turn any of
992  * them into just a folio that gets free'd.
993  */
994 void release_pages(release_pages_arg arg, int nr)
995 {
996 	int i;
997 	struct encoded_page **encoded = arg.encoded_pages;
998 	LIST_HEAD(pages_to_free);
999 	struct lruvec *lruvec = NULL;
1000 	unsigned long flags = 0;
1001 	unsigned int lock_batch;
1002 
1003 	for (i = 0; i < nr; i++) {
1004 		struct folio *folio;
1005 
1006 		/* Turn any of the argument types into a folio */
1007 		folio = page_folio(encoded_page_ptr(encoded[i]));
1008 
1009 		/*
1010 		 * Make sure the IRQ-safe lock-holding time does not get
1011 		 * excessive with a continuous string of pages from the
1012 		 * same lruvec. The lock is held only if lruvec != NULL.
1013 		 */
1014 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
1015 			unlock_page_lruvec_irqrestore(lruvec, flags);
1016 			lruvec = NULL;
1017 		}
1018 
1019 		if (is_huge_zero_page(&folio->page))
1020 			continue;
1021 
1022 		if (folio_is_zone_device(folio)) {
1023 			if (lruvec) {
1024 				unlock_page_lruvec_irqrestore(lruvec, flags);
1025 				lruvec = NULL;
1026 			}
1027 			if (put_devmap_managed_page(&folio->page))
1028 				continue;
1029 			if (folio_put_testzero(folio))
1030 				free_zone_device_page(&folio->page);
1031 			continue;
1032 		}
1033 
1034 		if (!folio_put_testzero(folio))
1035 			continue;
1036 
1037 		if (folio_test_large(folio)) {
1038 			if (lruvec) {
1039 				unlock_page_lruvec_irqrestore(lruvec, flags);
1040 				lruvec = NULL;
1041 			}
1042 			__folio_put_large(folio);
1043 			continue;
1044 		}
1045 
1046 		if (folio_test_lru(folio)) {
1047 			struct lruvec *prev_lruvec = lruvec;
1048 
1049 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1050 									&flags);
1051 			if (prev_lruvec != lruvec)
1052 				lock_batch = 0;
1053 
1054 			lruvec_del_folio(lruvec, folio);
1055 			__folio_clear_lru_flags(folio);
1056 		}
1057 
1058 		/*
1059 		 * In rare cases, when truncation or holepunching raced with
1060 		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1061 		 * found set here.  This does not indicate a problem, unless
1062 		 * "unevictable_pgs_cleared" appears worryingly large.
1063 		 */
1064 		if (unlikely(folio_test_mlocked(folio))) {
1065 			__folio_clear_mlocked(folio);
1066 			zone_stat_sub_folio(folio, NR_MLOCK);
1067 			count_vm_event(UNEVICTABLE_PGCLEARED);
1068 		}
1069 
1070 		list_add(&folio->lru, &pages_to_free);
1071 	}
1072 	if (lruvec)
1073 		unlock_page_lruvec_irqrestore(lruvec, flags);
1074 
1075 	mem_cgroup_uncharge_list(&pages_to_free);
1076 	free_unref_page_list(&pages_to_free);
1077 }
1078 EXPORT_SYMBOL(release_pages);
1079 
1080 /*
1081  * The pages which we're about to release may be in the deferred lru-addition
1082  * queues.  That would prevent them from really being freed right now.  That's
1083  * OK from a correctness point of view but is inefficient - those pages may be
1084  * cache-warm and we want to give them back to the page allocator ASAP.
1085  *
1086  * So __pagevec_release() will drain those queues here.
1087  * folio_batch_move_lru() calls folios_put() directly to avoid
1088  * mutual recursion.
1089  */
1090 void __pagevec_release(struct pagevec *pvec)
1091 {
1092 	if (!pvec->percpu_pvec_drained) {
1093 		lru_add_drain();
1094 		pvec->percpu_pvec_drained = true;
1095 	}
1096 	release_pages(pvec->pages, pagevec_count(pvec));
1097 	pagevec_reinit(pvec);
1098 }
1099 EXPORT_SYMBOL(__pagevec_release);
1100 
1101 /**
1102  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1103  * @fbatch: The batch to prune
1104  *
1105  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1106  * entries.  This function prunes all the non-folio entries from @fbatch
1107  * without leaving holes, so that it can be passed on to folio-only batch
1108  * operations.
1109  */
1110 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1111 {
1112 	unsigned int i, j;
1113 
1114 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1115 		struct folio *folio = fbatch->folios[i];
1116 		if (!xa_is_value(folio))
1117 			fbatch->folios[j++] = folio;
1118 	}
1119 	fbatch->nr = j;
1120 }
1121 
1122 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1123 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1124 		xa_mark_t tag)
1125 {
1126 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1127 					PAGEVEC_SIZE, pvec->pages);
1128 	return pagevec_count(pvec);
1129 }
1130 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1131 
1132 /*
1133  * Perform any setup for the swap system
1134  */
1135 void __init swap_setup(void)
1136 {
1137 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1138 
1139 	/* Use a smaller cluster for small-memory machines */
1140 	if (megs < 16)
1141 		page_cluster = 2;
1142 	else
1143 		page_cluster = 3;
1144 	/*
1145 	 * Right now other parts of the system means that we
1146 	 * _really_ don't want to cluster much more
1147 	 */
1148 }
1149