xref: /openbmc/linux/mm/swap.c (revision e5c86679)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37 
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42 
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45 
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53 
54 /*
55  * This path almost never happens for VM activity - pages are normally
56  * freed via pagevecs.  But it gets used by networking.
57  */
58 static void __page_cache_release(struct page *page)
59 {
60 	if (PageLRU(page)) {
61 		struct zone *zone = page_zone(page);
62 		struct lruvec *lruvec;
63 		unsigned long flags;
64 
65 		spin_lock_irqsave(zone_lru_lock(zone), flags);
66 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 		VM_BUG_ON_PAGE(!PageLRU(page), page);
68 		__ClearPageLRU(page);
69 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 	}
72 	__ClearPageWaiters(page);
73 	mem_cgroup_uncharge(page);
74 }
75 
76 static void __put_single_page(struct page *page)
77 {
78 	__page_cache_release(page);
79 	free_hot_cold_page(page, false);
80 }
81 
82 static void __put_compound_page(struct page *page)
83 {
84 	compound_page_dtor *dtor;
85 
86 	/*
87 	 * __page_cache_release() is supposed to be called for thp, not for
88 	 * hugetlb. This is because hugetlb page does never have PageLRU set
89 	 * (it's never listed to any LRU lists) and no memcg routines should
90 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 	 */
92 	if (!PageHuge(page))
93 		__page_cache_release(page);
94 	dtor = get_compound_page_dtor(page);
95 	(*dtor)(page);
96 }
97 
98 void __put_page(struct page *page)
99 {
100 	if (unlikely(PageCompound(page)))
101 		__put_compound_page(page);
102 	else
103 		__put_single_page(page);
104 }
105 EXPORT_SYMBOL(__put_page);
106 
107 /**
108  * put_pages_list() - release a list of pages
109  * @pages: list of pages threaded on page->lru
110  *
111  * Release a list of pages which are strung together on page.lru.  Currently
112  * used by read_cache_pages() and related error recovery code.
113  */
114 void put_pages_list(struct list_head *pages)
115 {
116 	while (!list_empty(pages)) {
117 		struct page *victim;
118 
119 		victim = list_entry(pages->prev, struct page, lru);
120 		list_del(&victim->lru);
121 		put_page(victim);
122 	}
123 }
124 EXPORT_SYMBOL(put_pages_list);
125 
126 /*
127  * get_kernel_pages() - pin kernel pages in memory
128  * @kiov:	An array of struct kvec structures
129  * @nr_segs:	number of segments to pin
130  * @write:	pinning for read/write, currently ignored
131  * @pages:	array that receives pointers to the pages pinned.
132  *		Should be at least nr_segs long.
133  *
134  * Returns number of pages pinned. This may be fewer than the number
135  * requested. If nr_pages is 0 or negative, returns 0. If no pages
136  * were pinned, returns -errno. Each page returned must be released
137  * with a put_page() call when it is finished with.
138  */
139 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
140 		struct page **pages)
141 {
142 	int seg;
143 
144 	for (seg = 0; seg < nr_segs; seg++) {
145 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
146 			return seg;
147 
148 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
149 		get_page(pages[seg]);
150 	}
151 
152 	return seg;
153 }
154 EXPORT_SYMBOL_GPL(get_kernel_pages);
155 
156 /*
157  * get_kernel_page() - pin a kernel page in memory
158  * @start:	starting kernel address
159  * @write:	pinning for read/write, currently ignored
160  * @pages:	array that receives pointer to the page pinned.
161  *		Must be at least nr_segs long.
162  *
163  * Returns 1 if page is pinned. If the page was not pinned, returns
164  * -errno. The page returned must be released with a put_page() call
165  * when it is finished with.
166  */
167 int get_kernel_page(unsigned long start, int write, struct page **pages)
168 {
169 	const struct kvec kiov = {
170 		.iov_base = (void *)start,
171 		.iov_len = PAGE_SIZE
172 	};
173 
174 	return get_kernel_pages(&kiov, 1, write, pages);
175 }
176 EXPORT_SYMBOL_GPL(get_kernel_page);
177 
178 static void pagevec_lru_move_fn(struct pagevec *pvec,
179 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
180 	void *arg)
181 {
182 	int i;
183 	struct pglist_data *pgdat = NULL;
184 	struct lruvec *lruvec;
185 	unsigned long flags = 0;
186 
187 	for (i = 0; i < pagevec_count(pvec); i++) {
188 		struct page *page = pvec->pages[i];
189 		struct pglist_data *pagepgdat = page_pgdat(page);
190 
191 		if (pagepgdat != pgdat) {
192 			if (pgdat)
193 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
194 			pgdat = pagepgdat;
195 			spin_lock_irqsave(&pgdat->lru_lock, flags);
196 		}
197 
198 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
199 		(*move_fn)(page, lruvec, arg);
200 	}
201 	if (pgdat)
202 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
203 	release_pages(pvec->pages, pvec->nr, pvec->cold);
204 	pagevec_reinit(pvec);
205 }
206 
207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
208 				 void *arg)
209 {
210 	int *pgmoved = arg;
211 
212 	if (PageLRU(page) && !PageUnevictable(page)) {
213 		del_page_from_lru_list(page, lruvec, page_lru(page));
214 		ClearPageActive(page);
215 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
216 		(*pgmoved)++;
217 	}
218 }
219 
220 /*
221  * pagevec_move_tail() must be called with IRQ disabled.
222  * Otherwise this may cause nasty races.
223  */
224 static void pagevec_move_tail(struct pagevec *pvec)
225 {
226 	int pgmoved = 0;
227 
228 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
229 	__count_vm_events(PGROTATED, pgmoved);
230 }
231 
232 /*
233  * Writeback is about to end against a page which has been marked for immediate
234  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
235  * inactive list.
236  */
237 void rotate_reclaimable_page(struct page *page)
238 {
239 	if (!PageLocked(page) && !PageDirty(page) &&
240 	    !PageUnevictable(page) && PageLRU(page)) {
241 		struct pagevec *pvec;
242 		unsigned long flags;
243 
244 		get_page(page);
245 		local_irq_save(flags);
246 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
247 		if (!pagevec_add(pvec, page) || PageCompound(page))
248 			pagevec_move_tail(pvec);
249 		local_irq_restore(flags);
250 	}
251 }
252 
253 static void update_page_reclaim_stat(struct lruvec *lruvec,
254 				     int file, int rotated)
255 {
256 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
257 
258 	reclaim_stat->recent_scanned[file]++;
259 	if (rotated)
260 		reclaim_stat->recent_rotated[file]++;
261 }
262 
263 static void __activate_page(struct page *page, struct lruvec *lruvec,
264 			    void *arg)
265 {
266 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
267 		int file = page_is_file_cache(page);
268 		int lru = page_lru_base_type(page);
269 
270 		del_page_from_lru_list(page, lruvec, lru);
271 		SetPageActive(page);
272 		lru += LRU_ACTIVE;
273 		add_page_to_lru_list(page, lruvec, lru);
274 		trace_mm_lru_activate(page);
275 
276 		__count_vm_event(PGACTIVATE);
277 		update_page_reclaim_stat(lruvec, file, 1);
278 	}
279 }
280 
281 #ifdef CONFIG_SMP
282 static void activate_page_drain(int cpu)
283 {
284 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
285 
286 	if (pagevec_count(pvec))
287 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
288 }
289 
290 static bool need_activate_page_drain(int cpu)
291 {
292 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
293 }
294 
295 void activate_page(struct page *page)
296 {
297 	page = compound_head(page);
298 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
299 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
300 
301 		get_page(page);
302 		if (!pagevec_add(pvec, page) || PageCompound(page))
303 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
304 		put_cpu_var(activate_page_pvecs);
305 	}
306 }
307 
308 #else
309 static inline void activate_page_drain(int cpu)
310 {
311 }
312 
313 static bool need_activate_page_drain(int cpu)
314 {
315 	return false;
316 }
317 
318 void activate_page(struct page *page)
319 {
320 	struct zone *zone = page_zone(page);
321 
322 	page = compound_head(page);
323 	spin_lock_irq(zone_lru_lock(zone));
324 	__activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
325 	spin_unlock_irq(zone_lru_lock(zone));
326 }
327 #endif
328 
329 static void __lru_cache_activate_page(struct page *page)
330 {
331 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
332 	int i;
333 
334 	/*
335 	 * Search backwards on the optimistic assumption that the page being
336 	 * activated has just been added to this pagevec. Note that only
337 	 * the local pagevec is examined as a !PageLRU page could be in the
338 	 * process of being released, reclaimed, migrated or on a remote
339 	 * pagevec that is currently being drained. Furthermore, marking
340 	 * a remote pagevec's page PageActive potentially hits a race where
341 	 * a page is marked PageActive just after it is added to the inactive
342 	 * list causing accounting errors and BUG_ON checks to trigger.
343 	 */
344 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
345 		struct page *pagevec_page = pvec->pages[i];
346 
347 		if (pagevec_page == page) {
348 			SetPageActive(page);
349 			break;
350 		}
351 	}
352 
353 	put_cpu_var(lru_add_pvec);
354 }
355 
356 /*
357  * Mark a page as having seen activity.
358  *
359  * inactive,unreferenced	->	inactive,referenced
360  * inactive,referenced		->	active,unreferenced
361  * active,unreferenced		->	active,referenced
362  *
363  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
364  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
365  */
366 void mark_page_accessed(struct page *page)
367 {
368 	page = compound_head(page);
369 	if (!PageActive(page) && !PageUnevictable(page) &&
370 			PageReferenced(page)) {
371 
372 		/*
373 		 * If the page is on the LRU, queue it for activation via
374 		 * activate_page_pvecs. Otherwise, assume the page is on a
375 		 * pagevec, mark it active and it'll be moved to the active
376 		 * LRU on the next drain.
377 		 */
378 		if (PageLRU(page))
379 			activate_page(page);
380 		else
381 			__lru_cache_activate_page(page);
382 		ClearPageReferenced(page);
383 		if (page_is_file_cache(page))
384 			workingset_activation(page);
385 	} else if (!PageReferenced(page)) {
386 		SetPageReferenced(page);
387 	}
388 	if (page_is_idle(page))
389 		clear_page_idle(page);
390 }
391 EXPORT_SYMBOL(mark_page_accessed);
392 
393 static void __lru_cache_add(struct page *page)
394 {
395 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
396 
397 	get_page(page);
398 	if (!pagevec_add(pvec, page) || PageCompound(page))
399 		__pagevec_lru_add(pvec);
400 	put_cpu_var(lru_add_pvec);
401 }
402 
403 /**
404  * lru_cache_add: add a page to the page lists
405  * @page: the page to add
406  */
407 void lru_cache_add_anon(struct page *page)
408 {
409 	if (PageActive(page))
410 		ClearPageActive(page);
411 	__lru_cache_add(page);
412 }
413 
414 void lru_cache_add_file(struct page *page)
415 {
416 	if (PageActive(page))
417 		ClearPageActive(page);
418 	__lru_cache_add(page);
419 }
420 EXPORT_SYMBOL(lru_cache_add_file);
421 
422 /**
423  * lru_cache_add - add a page to a page list
424  * @page: the page to be added to the LRU.
425  *
426  * Queue the page for addition to the LRU via pagevec. The decision on whether
427  * to add the page to the [in]active [file|anon] list is deferred until the
428  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
429  * have the page added to the active list using mark_page_accessed().
430  */
431 void lru_cache_add(struct page *page)
432 {
433 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
434 	VM_BUG_ON_PAGE(PageLRU(page), page);
435 	__lru_cache_add(page);
436 }
437 
438 /**
439  * add_page_to_unevictable_list - add a page to the unevictable list
440  * @page:  the page to be added to the unevictable list
441  *
442  * Add page directly to its zone's unevictable list.  To avoid races with
443  * tasks that might be making the page evictable, through eg. munlock,
444  * munmap or exit, while it's not on the lru, we want to add the page
445  * while it's locked or otherwise "invisible" to other tasks.  This is
446  * difficult to do when using the pagevec cache, so bypass that.
447  */
448 void add_page_to_unevictable_list(struct page *page)
449 {
450 	struct pglist_data *pgdat = page_pgdat(page);
451 	struct lruvec *lruvec;
452 
453 	spin_lock_irq(&pgdat->lru_lock);
454 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
455 	ClearPageActive(page);
456 	SetPageUnevictable(page);
457 	SetPageLRU(page);
458 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
459 	spin_unlock_irq(&pgdat->lru_lock);
460 }
461 
462 /**
463  * lru_cache_add_active_or_unevictable
464  * @page:  the page to be added to LRU
465  * @vma:   vma in which page is mapped for determining reclaimability
466  *
467  * Place @page on the active or unevictable LRU list, depending on its
468  * evictability.  Note that if the page is not evictable, it goes
469  * directly back onto it's zone's unevictable list, it does NOT use a
470  * per cpu pagevec.
471  */
472 void lru_cache_add_active_or_unevictable(struct page *page,
473 					 struct vm_area_struct *vma)
474 {
475 	VM_BUG_ON_PAGE(PageLRU(page), page);
476 
477 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
478 		SetPageActive(page);
479 		lru_cache_add(page);
480 		return;
481 	}
482 
483 	if (!TestSetPageMlocked(page)) {
484 		/*
485 		 * We use the irq-unsafe __mod_zone_page_stat because this
486 		 * counter is not modified from interrupt context, and the pte
487 		 * lock is held(spinlock), which implies preemption disabled.
488 		 */
489 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
490 				    hpage_nr_pages(page));
491 		count_vm_event(UNEVICTABLE_PGMLOCKED);
492 	}
493 	add_page_to_unevictable_list(page);
494 }
495 
496 /*
497  * If the page can not be invalidated, it is moved to the
498  * inactive list to speed up its reclaim.  It is moved to the
499  * head of the list, rather than the tail, to give the flusher
500  * threads some time to write it out, as this is much more
501  * effective than the single-page writeout from reclaim.
502  *
503  * If the page isn't page_mapped and dirty/writeback, the page
504  * could reclaim asap using PG_reclaim.
505  *
506  * 1. active, mapped page -> none
507  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
508  * 3. inactive, mapped page -> none
509  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
510  * 5. inactive, clean -> inactive, tail
511  * 6. Others -> none
512  *
513  * In 4, why it moves inactive's head, the VM expects the page would
514  * be write it out by flusher threads as this is much more effective
515  * than the single-page writeout from reclaim.
516  */
517 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
518 			      void *arg)
519 {
520 	int lru, file;
521 	bool active;
522 
523 	if (!PageLRU(page))
524 		return;
525 
526 	if (PageUnevictable(page))
527 		return;
528 
529 	/* Some processes are using the page */
530 	if (page_mapped(page))
531 		return;
532 
533 	active = PageActive(page);
534 	file = page_is_file_cache(page);
535 	lru = page_lru_base_type(page);
536 
537 	del_page_from_lru_list(page, lruvec, lru + active);
538 	ClearPageActive(page);
539 	ClearPageReferenced(page);
540 	add_page_to_lru_list(page, lruvec, lru);
541 
542 	if (PageWriteback(page) || PageDirty(page)) {
543 		/*
544 		 * PG_reclaim could be raced with end_page_writeback
545 		 * It can make readahead confusing.  But race window
546 		 * is _really_ small and  it's non-critical problem.
547 		 */
548 		SetPageReclaim(page);
549 	} else {
550 		/*
551 		 * The page's writeback ends up during pagevec
552 		 * We moves tha page into tail of inactive.
553 		 */
554 		list_move_tail(&page->lru, &lruvec->lists[lru]);
555 		__count_vm_event(PGROTATED);
556 	}
557 
558 	if (active)
559 		__count_vm_event(PGDEACTIVATE);
560 	update_page_reclaim_stat(lruvec, file, 0);
561 }
562 
563 
564 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
565 			    void *arg)
566 {
567 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
568 		int file = page_is_file_cache(page);
569 		int lru = page_lru_base_type(page);
570 
571 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
572 		ClearPageActive(page);
573 		ClearPageReferenced(page);
574 		add_page_to_lru_list(page, lruvec, lru);
575 
576 		__count_vm_event(PGDEACTIVATE);
577 		update_page_reclaim_stat(lruvec, file, 0);
578 	}
579 }
580 
581 /*
582  * Drain pages out of the cpu's pagevecs.
583  * Either "cpu" is the current CPU, and preemption has already been
584  * disabled; or "cpu" is being hot-unplugged, and is already dead.
585  */
586 void lru_add_drain_cpu(int cpu)
587 {
588 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
589 
590 	if (pagevec_count(pvec))
591 		__pagevec_lru_add(pvec);
592 
593 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
594 	if (pagevec_count(pvec)) {
595 		unsigned long flags;
596 
597 		/* No harm done if a racing interrupt already did this */
598 		local_irq_save(flags);
599 		pagevec_move_tail(pvec);
600 		local_irq_restore(flags);
601 	}
602 
603 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
604 	if (pagevec_count(pvec))
605 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
606 
607 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
608 	if (pagevec_count(pvec))
609 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
610 
611 	activate_page_drain(cpu);
612 }
613 
614 /**
615  * deactivate_file_page - forcefully deactivate a file page
616  * @page: page to deactivate
617  *
618  * This function hints the VM that @page is a good reclaim candidate,
619  * for example if its invalidation fails due to the page being dirty
620  * or under writeback.
621  */
622 void deactivate_file_page(struct page *page)
623 {
624 	/*
625 	 * In a workload with many unevictable page such as mprotect,
626 	 * unevictable page deactivation for accelerating reclaim is pointless.
627 	 */
628 	if (PageUnevictable(page))
629 		return;
630 
631 	if (likely(get_page_unless_zero(page))) {
632 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
633 
634 		if (!pagevec_add(pvec, page) || PageCompound(page))
635 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
636 		put_cpu_var(lru_deactivate_file_pvecs);
637 	}
638 }
639 
640 /**
641  * deactivate_page - deactivate a page
642  * @page: page to deactivate
643  *
644  * deactivate_page() moves @page to the inactive list if @page was on the active
645  * list and was not an unevictable page.  This is done to accelerate the reclaim
646  * of @page.
647  */
648 void deactivate_page(struct page *page)
649 {
650 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
651 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
652 
653 		get_page(page);
654 		if (!pagevec_add(pvec, page) || PageCompound(page))
655 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
656 		put_cpu_var(lru_deactivate_pvecs);
657 	}
658 }
659 
660 void lru_add_drain(void)
661 {
662 	lru_add_drain_cpu(get_cpu());
663 	put_cpu();
664 }
665 
666 static void lru_add_drain_per_cpu(struct work_struct *dummy)
667 {
668 	lru_add_drain();
669 }
670 
671 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
672 
673 void lru_add_drain_all(void)
674 {
675 	static DEFINE_MUTEX(lock);
676 	static struct cpumask has_work;
677 	int cpu;
678 
679 	/*
680 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
681 	 * initialized.
682 	 */
683 	if (WARN_ON(!mm_percpu_wq))
684 		return;
685 
686 	mutex_lock(&lock);
687 	get_online_cpus();
688 	cpumask_clear(&has_work);
689 
690 	for_each_online_cpu(cpu) {
691 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
692 
693 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
694 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
695 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
696 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
697 		    need_activate_page_drain(cpu)) {
698 			INIT_WORK(work, lru_add_drain_per_cpu);
699 			queue_work_on(cpu, mm_percpu_wq, work);
700 			cpumask_set_cpu(cpu, &has_work);
701 		}
702 	}
703 
704 	for_each_cpu(cpu, &has_work)
705 		flush_work(&per_cpu(lru_add_drain_work, cpu));
706 
707 	put_online_cpus();
708 	mutex_unlock(&lock);
709 }
710 
711 /**
712  * release_pages - batched put_page()
713  * @pages: array of pages to release
714  * @nr: number of pages
715  * @cold: whether the pages are cache cold
716  *
717  * Decrement the reference count on all the pages in @pages.  If it
718  * fell to zero, remove the page from the LRU and free it.
719  */
720 void release_pages(struct page **pages, int nr, bool cold)
721 {
722 	int i;
723 	LIST_HEAD(pages_to_free);
724 	struct pglist_data *locked_pgdat = NULL;
725 	struct lruvec *lruvec;
726 	unsigned long uninitialized_var(flags);
727 	unsigned int uninitialized_var(lock_batch);
728 
729 	for (i = 0; i < nr; i++) {
730 		struct page *page = pages[i];
731 
732 		/*
733 		 * Make sure the IRQ-safe lock-holding time does not get
734 		 * excessive with a continuous string of pages from the
735 		 * same pgdat. The lock is held only if pgdat != NULL.
736 		 */
737 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
738 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
739 			locked_pgdat = NULL;
740 		}
741 
742 		if (is_huge_zero_page(page))
743 			continue;
744 
745 		page = compound_head(page);
746 		if (!put_page_testzero(page))
747 			continue;
748 
749 		if (PageCompound(page)) {
750 			if (locked_pgdat) {
751 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
752 				locked_pgdat = NULL;
753 			}
754 			__put_compound_page(page);
755 			continue;
756 		}
757 
758 		if (PageLRU(page)) {
759 			struct pglist_data *pgdat = page_pgdat(page);
760 
761 			if (pgdat != locked_pgdat) {
762 				if (locked_pgdat)
763 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
764 									flags);
765 				lock_batch = 0;
766 				locked_pgdat = pgdat;
767 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
768 			}
769 
770 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
771 			VM_BUG_ON_PAGE(!PageLRU(page), page);
772 			__ClearPageLRU(page);
773 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
774 		}
775 
776 		/* Clear Active bit in case of parallel mark_page_accessed */
777 		__ClearPageActive(page);
778 		__ClearPageWaiters(page);
779 
780 		list_add(&page->lru, &pages_to_free);
781 	}
782 	if (locked_pgdat)
783 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
784 
785 	mem_cgroup_uncharge_list(&pages_to_free);
786 	free_hot_cold_page_list(&pages_to_free, cold);
787 }
788 EXPORT_SYMBOL(release_pages);
789 
790 /*
791  * The pages which we're about to release may be in the deferred lru-addition
792  * queues.  That would prevent them from really being freed right now.  That's
793  * OK from a correctness point of view but is inefficient - those pages may be
794  * cache-warm and we want to give them back to the page allocator ASAP.
795  *
796  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
797  * and __pagevec_lru_add_active() call release_pages() directly to avoid
798  * mutual recursion.
799  */
800 void __pagevec_release(struct pagevec *pvec)
801 {
802 	lru_add_drain();
803 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
804 	pagevec_reinit(pvec);
805 }
806 EXPORT_SYMBOL(__pagevec_release);
807 
808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
809 /* used by __split_huge_page_refcount() */
810 void lru_add_page_tail(struct page *page, struct page *page_tail,
811 		       struct lruvec *lruvec, struct list_head *list)
812 {
813 	const int file = 0;
814 
815 	VM_BUG_ON_PAGE(!PageHead(page), page);
816 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
817 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
818 	VM_BUG_ON(NR_CPUS != 1 &&
819 		  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
820 
821 	if (!list)
822 		SetPageLRU(page_tail);
823 
824 	if (likely(PageLRU(page)))
825 		list_add_tail(&page_tail->lru, &page->lru);
826 	else if (list) {
827 		/* page reclaim is reclaiming a huge page */
828 		get_page(page_tail);
829 		list_add_tail(&page_tail->lru, list);
830 	} else {
831 		struct list_head *list_head;
832 		/*
833 		 * Head page has not yet been counted, as an hpage,
834 		 * so we must account for each subpage individually.
835 		 *
836 		 * Use the standard add function to put page_tail on the list,
837 		 * but then correct its position so they all end up in order.
838 		 */
839 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
840 		list_head = page_tail->lru.prev;
841 		list_move_tail(&page_tail->lru, list_head);
842 	}
843 
844 	if (!PageUnevictable(page))
845 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
846 }
847 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
848 
849 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
850 				 void *arg)
851 {
852 	int file = page_is_file_cache(page);
853 	int active = PageActive(page);
854 	enum lru_list lru = page_lru(page);
855 
856 	VM_BUG_ON_PAGE(PageLRU(page), page);
857 
858 	SetPageLRU(page);
859 	add_page_to_lru_list(page, lruvec, lru);
860 	update_page_reclaim_stat(lruvec, file, active);
861 	trace_mm_lru_insertion(page, lru);
862 }
863 
864 /*
865  * Add the passed pages to the LRU, then drop the caller's refcount
866  * on them.  Reinitialises the caller's pagevec.
867  */
868 void __pagevec_lru_add(struct pagevec *pvec)
869 {
870 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
871 }
872 EXPORT_SYMBOL(__pagevec_lru_add);
873 
874 /**
875  * pagevec_lookup_entries - gang pagecache lookup
876  * @pvec:	Where the resulting entries are placed
877  * @mapping:	The address_space to search
878  * @start:	The starting entry index
879  * @nr_entries:	The maximum number of entries
880  * @indices:	The cache indices corresponding to the entries in @pvec
881  *
882  * pagevec_lookup_entries() will search for and return a group of up
883  * to @nr_entries pages and shadow entries in the mapping.  All
884  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
885  * reference against actual pages in @pvec.
886  *
887  * The search returns a group of mapping-contiguous entries with
888  * ascending indexes.  There may be holes in the indices due to
889  * not-present entries.
890  *
891  * pagevec_lookup_entries() returns the number of entries which were
892  * found.
893  */
894 unsigned pagevec_lookup_entries(struct pagevec *pvec,
895 				struct address_space *mapping,
896 				pgoff_t start, unsigned nr_pages,
897 				pgoff_t *indices)
898 {
899 	pvec->nr = find_get_entries(mapping, start, nr_pages,
900 				    pvec->pages, indices);
901 	return pagevec_count(pvec);
902 }
903 
904 /**
905  * pagevec_remove_exceptionals - pagevec exceptionals pruning
906  * @pvec:	The pagevec to prune
907  *
908  * pagevec_lookup_entries() fills both pages and exceptional radix
909  * tree entries into the pagevec.  This function prunes all
910  * exceptionals from @pvec without leaving holes, so that it can be
911  * passed on to page-only pagevec operations.
912  */
913 void pagevec_remove_exceptionals(struct pagevec *pvec)
914 {
915 	int i, j;
916 
917 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
918 		struct page *page = pvec->pages[i];
919 		if (!radix_tree_exceptional_entry(page))
920 			pvec->pages[j++] = page;
921 	}
922 	pvec->nr = j;
923 }
924 
925 /**
926  * pagevec_lookup - gang pagecache lookup
927  * @pvec:	Where the resulting pages are placed
928  * @mapping:	The address_space to search
929  * @start:	The starting page index
930  * @nr_pages:	The maximum number of pages
931  *
932  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
933  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
934  * reference against the pages in @pvec.
935  *
936  * The search returns a group of mapping-contiguous pages with ascending
937  * indexes.  There may be holes in the indices due to not-present pages.
938  *
939  * pagevec_lookup() returns the number of pages which were found.
940  */
941 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
942 		pgoff_t start, unsigned nr_pages)
943 {
944 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
945 	return pagevec_count(pvec);
946 }
947 EXPORT_SYMBOL(pagevec_lookup);
948 
949 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
950 		pgoff_t *index, int tag, unsigned nr_pages)
951 {
952 	pvec->nr = find_get_pages_tag(mapping, index, tag,
953 					nr_pages, pvec->pages);
954 	return pagevec_count(pvec);
955 }
956 EXPORT_SYMBOL(pagevec_lookup_tag);
957 
958 /*
959  * Perform any setup for the swap system
960  */
961 void __init swap_setup(void)
962 {
963 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
964 
965 	/* Use a smaller cluster for small-memory machines */
966 	if (megs < 16)
967 		page_cluster = 2;
968 	else
969 		page_cluster = 3;
970 	/*
971 	 * Right now other parts of the system means that we
972 	 * _really_ don't want to cluster much more
973 	 */
974 }
975