1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 40 #include "internal.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/pagemap.h> 44 45 /* How many pages do we try to swap or page in/out together? */ 46 int page_cluster; 47 48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 49 struct lru_rotate { 50 local_lock_t lock; 51 struct pagevec pvec; 52 }; 53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 54 .lock = INIT_LOCAL_LOCK(lock), 55 }; 56 57 /* 58 * The following struct pagevec are grouped together because they are protected 59 * by disabling preemption (and interrupts remain enabled). 60 */ 61 struct lru_pvecs { 62 local_lock_t lock; 63 struct pagevec lru_add; 64 struct pagevec lru_deactivate_file; 65 struct pagevec lru_deactivate; 66 struct pagevec lru_lazyfree; 67 #ifdef CONFIG_SMP 68 struct pagevec activate_page; 69 #endif 70 }; 71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 72 .lock = INIT_LOCAL_LOCK(lock), 73 }; 74 75 /* 76 * This path almost never happens for VM activity - pages are normally 77 * freed via pagevecs. But it gets used by networking. 78 */ 79 static void __page_cache_release(struct page *page) 80 { 81 if (PageLRU(page)) { 82 struct lruvec *lruvec; 83 unsigned long flags; 84 85 lruvec = lock_page_lruvec_irqsave(page, &flags); 86 VM_BUG_ON_PAGE(!PageLRU(page), page); 87 __ClearPageLRU(page); 88 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 89 unlock_page_lruvec_irqrestore(lruvec, flags); 90 } 91 __ClearPageWaiters(page); 92 } 93 94 static void __put_single_page(struct page *page) 95 { 96 __page_cache_release(page); 97 mem_cgroup_uncharge(page); 98 free_unref_page(page); 99 } 100 101 static void __put_compound_page(struct page *page) 102 { 103 /* 104 * __page_cache_release() is supposed to be called for thp, not for 105 * hugetlb. This is because hugetlb page does never have PageLRU set 106 * (it's never listed to any LRU lists) and no memcg routines should 107 * be called for hugetlb (it has a separate hugetlb_cgroup.) 108 */ 109 if (!PageHuge(page)) 110 __page_cache_release(page); 111 destroy_compound_page(page); 112 } 113 114 void __put_page(struct page *page) 115 { 116 if (is_zone_device_page(page)) { 117 put_dev_pagemap(page->pgmap); 118 119 /* 120 * The page belongs to the device that created pgmap. Do 121 * not return it to page allocator. 122 */ 123 return; 124 } 125 126 if (unlikely(PageCompound(page))) 127 __put_compound_page(page); 128 else 129 __put_single_page(page); 130 } 131 EXPORT_SYMBOL(__put_page); 132 133 /** 134 * put_pages_list() - release a list of pages 135 * @pages: list of pages threaded on page->lru 136 * 137 * Release a list of pages which are strung together on page.lru. Currently 138 * used by read_cache_pages() and related error recovery code. 139 */ 140 void put_pages_list(struct list_head *pages) 141 { 142 while (!list_empty(pages)) { 143 struct page *victim; 144 145 victim = lru_to_page(pages); 146 list_del(&victim->lru); 147 put_page(victim); 148 } 149 } 150 EXPORT_SYMBOL(put_pages_list); 151 152 /* 153 * get_kernel_pages() - pin kernel pages in memory 154 * @kiov: An array of struct kvec structures 155 * @nr_segs: number of segments to pin 156 * @write: pinning for read/write, currently ignored 157 * @pages: array that receives pointers to the pages pinned. 158 * Should be at least nr_segs long. 159 * 160 * Returns number of pages pinned. This may be fewer than the number 161 * requested. If nr_pages is 0 or negative, returns 0. If no pages 162 * were pinned, returns -errno. Each page returned must be released 163 * with a put_page() call when it is finished with. 164 */ 165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 166 struct page **pages) 167 { 168 int seg; 169 170 for (seg = 0; seg < nr_segs; seg++) { 171 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 172 return seg; 173 174 pages[seg] = kmap_to_page(kiov[seg].iov_base); 175 get_page(pages[seg]); 176 } 177 178 return seg; 179 } 180 EXPORT_SYMBOL_GPL(get_kernel_pages); 181 182 /* 183 * get_kernel_page() - pin a kernel page in memory 184 * @start: starting kernel address 185 * @write: pinning for read/write, currently ignored 186 * @pages: array that receives pointer to the page pinned. 187 * Must be at least nr_segs long. 188 * 189 * Returns 1 if page is pinned. If the page was not pinned, returns 190 * -errno. The page returned must be released with a put_page() call 191 * when it is finished with. 192 */ 193 int get_kernel_page(unsigned long start, int write, struct page **pages) 194 { 195 const struct kvec kiov = { 196 .iov_base = (void *)start, 197 .iov_len = PAGE_SIZE 198 }; 199 200 return get_kernel_pages(&kiov, 1, write, pages); 201 } 202 EXPORT_SYMBOL_GPL(get_kernel_page); 203 204 static void pagevec_lru_move_fn(struct pagevec *pvec, 205 void (*move_fn)(struct page *page, struct lruvec *lruvec)) 206 { 207 int i; 208 struct lruvec *lruvec = NULL; 209 unsigned long flags = 0; 210 211 for (i = 0; i < pagevec_count(pvec); i++) { 212 struct page *page = pvec->pages[i]; 213 214 /* block memcg migration during page moving between lru */ 215 if (!TestClearPageLRU(page)) 216 continue; 217 218 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags); 219 (*move_fn)(page, lruvec); 220 221 SetPageLRU(page); 222 } 223 if (lruvec) 224 unlock_page_lruvec_irqrestore(lruvec, flags); 225 release_pages(pvec->pages, pvec->nr); 226 pagevec_reinit(pvec); 227 } 228 229 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) 230 { 231 if (!PageUnevictable(page)) { 232 del_page_from_lru_list(page, lruvec, page_lru(page)); 233 ClearPageActive(page); 234 add_page_to_lru_list_tail(page, lruvec, page_lru(page)); 235 __count_vm_events(PGROTATED, thp_nr_pages(page)); 236 } 237 } 238 239 /* 240 * Writeback is about to end against a page which has been marked for immediate 241 * reclaim. If it still appears to be reclaimable, move it to the tail of the 242 * inactive list. 243 * 244 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races. 245 */ 246 void rotate_reclaimable_page(struct page *page) 247 { 248 if (!PageLocked(page) && !PageDirty(page) && 249 !PageUnevictable(page) && PageLRU(page)) { 250 struct pagevec *pvec; 251 unsigned long flags; 252 253 get_page(page); 254 local_lock_irqsave(&lru_rotate.lock, flags); 255 pvec = this_cpu_ptr(&lru_rotate.pvec); 256 if (!pagevec_add(pvec, page) || PageCompound(page)) 257 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 258 local_unlock_irqrestore(&lru_rotate.lock, flags); 259 } 260 } 261 262 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 263 { 264 do { 265 unsigned long lrusize; 266 267 /* 268 * Hold lruvec->lru_lock is safe here, since 269 * 1) The pinned lruvec in reclaim, or 270 * 2) From a pre-LRU page during refault (which also holds the 271 * rcu lock, so would be safe even if the page was on the LRU 272 * and could move simultaneously to a new lruvec). 273 */ 274 spin_lock_irq(&lruvec->lru_lock); 275 /* Record cost event */ 276 if (file) 277 lruvec->file_cost += nr_pages; 278 else 279 lruvec->anon_cost += nr_pages; 280 281 /* 282 * Decay previous events 283 * 284 * Because workloads change over time (and to avoid 285 * overflow) we keep these statistics as a floating 286 * average, which ends up weighing recent refaults 287 * more than old ones. 288 */ 289 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 290 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 291 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 292 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 293 294 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 295 lruvec->file_cost /= 2; 296 lruvec->anon_cost /= 2; 297 } 298 spin_unlock_irq(&lruvec->lru_lock); 299 } while ((lruvec = parent_lruvec(lruvec))); 300 } 301 302 void lru_note_cost_page(struct page *page) 303 { 304 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)), 305 page_is_file_lru(page), thp_nr_pages(page)); 306 } 307 308 static void __activate_page(struct page *page, struct lruvec *lruvec) 309 { 310 if (!PageActive(page) && !PageUnevictable(page)) { 311 int lru = page_lru_base_type(page); 312 int nr_pages = thp_nr_pages(page); 313 314 del_page_from_lru_list(page, lruvec, lru); 315 SetPageActive(page); 316 lru += LRU_ACTIVE; 317 add_page_to_lru_list(page, lruvec, lru); 318 trace_mm_lru_activate(page); 319 320 __count_vm_events(PGACTIVATE, nr_pages); 321 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 322 nr_pages); 323 } 324 } 325 326 #ifdef CONFIG_SMP 327 static void activate_page_drain(int cpu) 328 { 329 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 330 331 if (pagevec_count(pvec)) 332 pagevec_lru_move_fn(pvec, __activate_page); 333 } 334 335 static bool need_activate_page_drain(int cpu) 336 { 337 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 338 } 339 340 static void activate_page(struct page *page) 341 { 342 page = compound_head(page); 343 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 344 struct pagevec *pvec; 345 346 local_lock(&lru_pvecs.lock); 347 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 348 get_page(page); 349 if (!pagevec_add(pvec, page) || PageCompound(page)) 350 pagevec_lru_move_fn(pvec, __activate_page); 351 local_unlock(&lru_pvecs.lock); 352 } 353 } 354 355 #else 356 static inline void activate_page_drain(int cpu) 357 { 358 } 359 360 static void activate_page(struct page *page) 361 { 362 struct lruvec *lruvec; 363 364 page = compound_head(page); 365 if (TestClearPageLRU(page)) { 366 lruvec = lock_page_lruvec_irq(page); 367 __activate_page(page, lruvec); 368 unlock_page_lruvec_irq(lruvec); 369 SetPageLRU(page); 370 } 371 } 372 #endif 373 374 static void __lru_cache_activate_page(struct page *page) 375 { 376 struct pagevec *pvec; 377 int i; 378 379 local_lock(&lru_pvecs.lock); 380 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 381 382 /* 383 * Search backwards on the optimistic assumption that the page being 384 * activated has just been added to this pagevec. Note that only 385 * the local pagevec is examined as a !PageLRU page could be in the 386 * process of being released, reclaimed, migrated or on a remote 387 * pagevec that is currently being drained. Furthermore, marking 388 * a remote pagevec's page PageActive potentially hits a race where 389 * a page is marked PageActive just after it is added to the inactive 390 * list causing accounting errors and BUG_ON checks to trigger. 391 */ 392 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 393 struct page *pagevec_page = pvec->pages[i]; 394 395 if (pagevec_page == page) { 396 SetPageActive(page); 397 break; 398 } 399 } 400 401 local_unlock(&lru_pvecs.lock); 402 } 403 404 /* 405 * Mark a page as having seen activity. 406 * 407 * inactive,unreferenced -> inactive,referenced 408 * inactive,referenced -> active,unreferenced 409 * active,unreferenced -> active,referenced 410 * 411 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 412 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 413 */ 414 void mark_page_accessed(struct page *page) 415 { 416 page = compound_head(page); 417 418 if (!PageReferenced(page)) { 419 SetPageReferenced(page); 420 } else if (PageUnevictable(page)) { 421 /* 422 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 423 * this list is never rotated or maintained, so marking an 424 * evictable page accessed has no effect. 425 */ 426 } else if (!PageActive(page)) { 427 /* 428 * If the page is on the LRU, queue it for activation via 429 * lru_pvecs.activate_page. Otherwise, assume the page is on a 430 * pagevec, mark it active and it'll be moved to the active 431 * LRU on the next drain. 432 */ 433 if (PageLRU(page)) 434 activate_page(page); 435 else 436 __lru_cache_activate_page(page); 437 ClearPageReferenced(page); 438 workingset_activation(page); 439 } 440 if (page_is_idle(page)) 441 clear_page_idle(page); 442 } 443 EXPORT_SYMBOL(mark_page_accessed); 444 445 /** 446 * lru_cache_add - add a page to a page list 447 * @page: the page to be added to the LRU. 448 * 449 * Queue the page for addition to the LRU via pagevec. The decision on whether 450 * to add the page to the [in]active [file|anon] list is deferred until the 451 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 452 * have the page added to the active list using mark_page_accessed(). 453 */ 454 void lru_cache_add(struct page *page) 455 { 456 struct pagevec *pvec; 457 458 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 459 VM_BUG_ON_PAGE(PageLRU(page), page); 460 461 get_page(page); 462 local_lock(&lru_pvecs.lock); 463 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 464 if (!pagevec_add(pvec, page) || PageCompound(page)) 465 __pagevec_lru_add(pvec); 466 local_unlock(&lru_pvecs.lock); 467 } 468 EXPORT_SYMBOL(lru_cache_add); 469 470 /** 471 * lru_cache_add_inactive_or_unevictable 472 * @page: the page to be added to LRU 473 * @vma: vma in which page is mapped for determining reclaimability 474 * 475 * Place @page on the inactive or unevictable LRU list, depending on its 476 * evictability. 477 */ 478 void lru_cache_add_inactive_or_unevictable(struct page *page, 479 struct vm_area_struct *vma) 480 { 481 bool unevictable; 482 483 VM_BUG_ON_PAGE(PageLRU(page), page); 484 485 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED; 486 if (unlikely(unevictable) && !TestSetPageMlocked(page)) { 487 int nr_pages = thp_nr_pages(page); 488 /* 489 * We use the irq-unsafe __mod_zone_page_stat because this 490 * counter is not modified from interrupt context, and the pte 491 * lock is held(spinlock), which implies preemption disabled. 492 */ 493 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 494 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 495 } 496 lru_cache_add(page); 497 } 498 499 /* 500 * If the page can not be invalidated, it is moved to the 501 * inactive list to speed up its reclaim. It is moved to the 502 * head of the list, rather than the tail, to give the flusher 503 * threads some time to write it out, as this is much more 504 * effective than the single-page writeout from reclaim. 505 * 506 * If the page isn't page_mapped and dirty/writeback, the page 507 * could reclaim asap using PG_reclaim. 508 * 509 * 1. active, mapped page -> none 510 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 511 * 3. inactive, mapped page -> none 512 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 513 * 5. inactive, clean -> inactive, tail 514 * 6. Others -> none 515 * 516 * In 4, why it moves inactive's head, the VM expects the page would 517 * be write it out by flusher threads as this is much more effective 518 * than the single-page writeout from reclaim. 519 */ 520 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) 521 { 522 int lru; 523 bool active; 524 int nr_pages = thp_nr_pages(page); 525 526 if (PageUnevictable(page)) 527 return; 528 529 /* Some processes are using the page */ 530 if (page_mapped(page)) 531 return; 532 533 active = PageActive(page); 534 lru = page_lru_base_type(page); 535 536 del_page_from_lru_list(page, lruvec, lru + active); 537 ClearPageActive(page); 538 ClearPageReferenced(page); 539 540 if (PageWriteback(page) || PageDirty(page)) { 541 /* 542 * PG_reclaim could be raced with end_page_writeback 543 * It can make readahead confusing. But race window 544 * is _really_ small and it's non-critical problem. 545 */ 546 add_page_to_lru_list(page, lruvec, lru); 547 SetPageReclaim(page); 548 } else { 549 /* 550 * The page's writeback ends up during pagevec 551 * We moves tha page into tail of inactive. 552 */ 553 add_page_to_lru_list_tail(page, lruvec, lru); 554 __count_vm_events(PGROTATED, nr_pages); 555 } 556 557 if (active) { 558 __count_vm_events(PGDEACTIVATE, nr_pages); 559 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 560 nr_pages); 561 } 562 } 563 564 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) 565 { 566 if (PageActive(page) && !PageUnevictable(page)) { 567 int lru = page_lru_base_type(page); 568 int nr_pages = thp_nr_pages(page); 569 570 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); 571 ClearPageActive(page); 572 ClearPageReferenced(page); 573 add_page_to_lru_list(page, lruvec, lru); 574 575 __count_vm_events(PGDEACTIVATE, nr_pages); 576 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 577 nr_pages); 578 } 579 } 580 581 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) 582 { 583 if (PageAnon(page) && PageSwapBacked(page) && 584 !PageSwapCache(page) && !PageUnevictable(page)) { 585 bool active = PageActive(page); 586 int nr_pages = thp_nr_pages(page); 587 588 del_page_from_lru_list(page, lruvec, 589 LRU_INACTIVE_ANON + active); 590 ClearPageActive(page); 591 ClearPageReferenced(page); 592 /* 593 * Lazyfree pages are clean anonymous pages. They have 594 * PG_swapbacked flag cleared, to distinguish them from normal 595 * anonymous pages 596 */ 597 ClearPageSwapBacked(page); 598 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE); 599 600 __count_vm_events(PGLAZYFREE, nr_pages); 601 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 602 nr_pages); 603 } 604 } 605 606 /* 607 * Drain pages out of the cpu's pagevecs. 608 * Either "cpu" is the current CPU, and preemption has already been 609 * disabled; or "cpu" is being hot-unplugged, and is already dead. 610 */ 611 void lru_add_drain_cpu(int cpu) 612 { 613 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 614 615 if (pagevec_count(pvec)) 616 __pagevec_lru_add(pvec); 617 618 pvec = &per_cpu(lru_rotate.pvec, cpu); 619 /* Disabling interrupts below acts as a compiler barrier. */ 620 if (data_race(pagevec_count(pvec))) { 621 unsigned long flags; 622 623 /* No harm done if a racing interrupt already did this */ 624 local_lock_irqsave(&lru_rotate.lock, flags); 625 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 626 local_unlock_irqrestore(&lru_rotate.lock, flags); 627 } 628 629 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 630 if (pagevec_count(pvec)) 631 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 632 633 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 634 if (pagevec_count(pvec)) 635 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 636 637 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 638 if (pagevec_count(pvec)) 639 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 640 641 activate_page_drain(cpu); 642 } 643 644 /** 645 * deactivate_file_page - forcefully deactivate a file page 646 * @page: page to deactivate 647 * 648 * This function hints the VM that @page is a good reclaim candidate, 649 * for example if its invalidation fails due to the page being dirty 650 * or under writeback. 651 */ 652 void deactivate_file_page(struct page *page) 653 { 654 /* 655 * In a workload with many unevictable page such as mprotect, 656 * unevictable page deactivation for accelerating reclaim is pointless. 657 */ 658 if (PageUnevictable(page)) 659 return; 660 661 if (likely(get_page_unless_zero(page))) { 662 struct pagevec *pvec; 663 664 local_lock(&lru_pvecs.lock); 665 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 666 667 if (!pagevec_add(pvec, page) || PageCompound(page)) 668 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 669 local_unlock(&lru_pvecs.lock); 670 } 671 } 672 673 /* 674 * deactivate_page - deactivate a page 675 * @page: page to deactivate 676 * 677 * deactivate_page() moves @page to the inactive list if @page was on the active 678 * list and was not an unevictable page. This is done to accelerate the reclaim 679 * of @page. 680 */ 681 void deactivate_page(struct page *page) 682 { 683 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 684 struct pagevec *pvec; 685 686 local_lock(&lru_pvecs.lock); 687 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 688 get_page(page); 689 if (!pagevec_add(pvec, page) || PageCompound(page)) 690 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 691 local_unlock(&lru_pvecs.lock); 692 } 693 } 694 695 /** 696 * mark_page_lazyfree - make an anon page lazyfree 697 * @page: page to deactivate 698 * 699 * mark_page_lazyfree() moves @page to the inactive file list. 700 * This is done to accelerate the reclaim of @page. 701 */ 702 void mark_page_lazyfree(struct page *page) 703 { 704 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 705 !PageSwapCache(page) && !PageUnevictable(page)) { 706 struct pagevec *pvec; 707 708 local_lock(&lru_pvecs.lock); 709 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 710 get_page(page); 711 if (!pagevec_add(pvec, page) || PageCompound(page)) 712 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 713 local_unlock(&lru_pvecs.lock); 714 } 715 } 716 717 void lru_add_drain(void) 718 { 719 local_lock(&lru_pvecs.lock); 720 lru_add_drain_cpu(smp_processor_id()); 721 local_unlock(&lru_pvecs.lock); 722 } 723 724 void lru_add_drain_cpu_zone(struct zone *zone) 725 { 726 local_lock(&lru_pvecs.lock); 727 lru_add_drain_cpu(smp_processor_id()); 728 drain_local_pages(zone); 729 local_unlock(&lru_pvecs.lock); 730 } 731 732 #ifdef CONFIG_SMP 733 734 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 735 736 static void lru_add_drain_per_cpu(struct work_struct *dummy) 737 { 738 lru_add_drain(); 739 } 740 741 /* 742 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 743 * kworkers being shut down before our page_alloc_cpu_dead callback is 744 * executed on the offlined cpu. 745 * Calling this function with cpu hotplug locks held can actually lead 746 * to obscure indirect dependencies via WQ context. 747 */ 748 void lru_add_drain_all(void) 749 { 750 /* 751 * lru_drain_gen - Global pages generation number 752 * 753 * (A) Definition: global lru_drain_gen = x implies that all generations 754 * 0 < n <= x are already *scheduled* for draining. 755 * 756 * This is an optimization for the highly-contended use case where a 757 * user space workload keeps constantly generating a flow of pages for 758 * each CPU. 759 */ 760 static unsigned int lru_drain_gen; 761 static struct cpumask has_work; 762 static DEFINE_MUTEX(lock); 763 unsigned cpu, this_gen; 764 765 /* 766 * Make sure nobody triggers this path before mm_percpu_wq is fully 767 * initialized. 768 */ 769 if (WARN_ON(!mm_percpu_wq)) 770 return; 771 772 /* 773 * Guarantee pagevec counter stores visible by this CPU are visible to 774 * other CPUs before loading the current drain generation. 775 */ 776 smp_mb(); 777 778 /* 779 * (B) Locally cache global LRU draining generation number 780 * 781 * The read barrier ensures that the counter is loaded before the mutex 782 * is taken. It pairs with smp_mb() inside the mutex critical section 783 * at (D). 784 */ 785 this_gen = smp_load_acquire(&lru_drain_gen); 786 787 mutex_lock(&lock); 788 789 /* 790 * (C) Exit the draining operation if a newer generation, from another 791 * lru_add_drain_all(), was already scheduled for draining. Check (A). 792 */ 793 if (unlikely(this_gen != lru_drain_gen)) 794 goto done; 795 796 /* 797 * (D) Increment global generation number 798 * 799 * Pairs with smp_load_acquire() at (B), outside of the critical 800 * section. Use a full memory barrier to guarantee that the new global 801 * drain generation number is stored before loading pagevec counters. 802 * 803 * This pairing must be done here, before the for_each_online_cpu loop 804 * below which drains the page vectors. 805 * 806 * Let x, y, and z represent some system CPU numbers, where x < y < z. 807 * Assume CPU #z is is in the middle of the for_each_online_cpu loop 808 * below and has already reached CPU #y's per-cpu data. CPU #x comes 809 * along, adds some pages to its per-cpu vectors, then calls 810 * lru_add_drain_all(). 811 * 812 * If the paired barrier is done at any later step, e.g. after the 813 * loop, CPU #x will just exit at (C) and miss flushing out all of its 814 * added pages. 815 */ 816 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 817 smp_mb(); 818 819 cpumask_clear(&has_work); 820 for_each_online_cpu(cpu) { 821 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 822 823 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 824 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 825 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 826 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 827 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 828 need_activate_page_drain(cpu)) { 829 INIT_WORK(work, lru_add_drain_per_cpu); 830 queue_work_on(cpu, mm_percpu_wq, work); 831 __cpumask_set_cpu(cpu, &has_work); 832 } 833 } 834 835 for_each_cpu(cpu, &has_work) 836 flush_work(&per_cpu(lru_add_drain_work, cpu)); 837 838 done: 839 mutex_unlock(&lock); 840 } 841 #else 842 void lru_add_drain_all(void) 843 { 844 lru_add_drain(); 845 } 846 #endif /* CONFIG_SMP */ 847 848 /** 849 * release_pages - batched put_page() 850 * @pages: array of pages to release 851 * @nr: number of pages 852 * 853 * Decrement the reference count on all the pages in @pages. If it 854 * fell to zero, remove the page from the LRU and free it. 855 */ 856 void release_pages(struct page **pages, int nr) 857 { 858 int i; 859 LIST_HEAD(pages_to_free); 860 struct lruvec *lruvec = NULL; 861 unsigned long flags; 862 unsigned int lock_batch; 863 864 for (i = 0; i < nr; i++) { 865 struct page *page = pages[i]; 866 867 /* 868 * Make sure the IRQ-safe lock-holding time does not get 869 * excessive with a continuous string of pages from the 870 * same lruvec. The lock is held only if lruvec != NULL. 871 */ 872 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 873 unlock_page_lruvec_irqrestore(lruvec, flags); 874 lruvec = NULL; 875 } 876 877 page = compound_head(page); 878 if (is_huge_zero_page(page)) 879 continue; 880 881 if (is_zone_device_page(page)) { 882 if (lruvec) { 883 unlock_page_lruvec_irqrestore(lruvec, flags); 884 lruvec = NULL; 885 } 886 /* 887 * ZONE_DEVICE pages that return 'false' from 888 * page_is_devmap_managed() do not require special 889 * processing, and instead, expect a call to 890 * put_page_testzero(). 891 */ 892 if (page_is_devmap_managed(page)) { 893 put_devmap_managed_page(page); 894 continue; 895 } 896 if (put_page_testzero(page)) 897 put_dev_pagemap(page->pgmap); 898 continue; 899 } 900 901 if (!put_page_testzero(page)) 902 continue; 903 904 if (PageCompound(page)) { 905 if (lruvec) { 906 unlock_page_lruvec_irqrestore(lruvec, flags); 907 lruvec = NULL; 908 } 909 __put_compound_page(page); 910 continue; 911 } 912 913 if (PageLRU(page)) { 914 struct lruvec *prev_lruvec = lruvec; 915 916 lruvec = relock_page_lruvec_irqsave(page, lruvec, 917 &flags); 918 if (prev_lruvec != lruvec) 919 lock_batch = 0; 920 921 VM_BUG_ON_PAGE(!PageLRU(page), page); 922 __ClearPageLRU(page); 923 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 924 } 925 926 __ClearPageWaiters(page); 927 928 list_add(&page->lru, &pages_to_free); 929 } 930 if (lruvec) 931 unlock_page_lruvec_irqrestore(lruvec, flags); 932 933 mem_cgroup_uncharge_list(&pages_to_free); 934 free_unref_page_list(&pages_to_free); 935 } 936 EXPORT_SYMBOL(release_pages); 937 938 /* 939 * The pages which we're about to release may be in the deferred lru-addition 940 * queues. That would prevent them from really being freed right now. That's 941 * OK from a correctness point of view but is inefficient - those pages may be 942 * cache-warm and we want to give them back to the page allocator ASAP. 943 * 944 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 945 * and __pagevec_lru_add_active() call release_pages() directly to avoid 946 * mutual recursion. 947 */ 948 void __pagevec_release(struct pagevec *pvec) 949 { 950 if (!pvec->percpu_pvec_drained) { 951 lru_add_drain(); 952 pvec->percpu_pvec_drained = true; 953 } 954 release_pages(pvec->pages, pagevec_count(pvec)); 955 pagevec_reinit(pvec); 956 } 957 EXPORT_SYMBOL(__pagevec_release); 958 959 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec) 960 { 961 enum lru_list lru; 962 int was_unevictable = TestClearPageUnevictable(page); 963 int nr_pages = thp_nr_pages(page); 964 965 VM_BUG_ON_PAGE(PageLRU(page), page); 966 967 /* 968 * Page becomes evictable in two ways: 969 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 970 * 2) Before acquiring LRU lock to put the page to correct LRU and then 971 * a) do PageLRU check with lock [check_move_unevictable_pages] 972 * b) do PageLRU check before lock [clear_page_mlock] 973 * 974 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 975 * following strict ordering: 976 * 977 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 978 * 979 * SetPageLRU() TestClearPageMlocked() 980 * smp_mb() // explicit ordering // above provides strict 981 * // ordering 982 * PageMlocked() PageLRU() 983 * 984 * 985 * if '#1' does not observe setting of PG_lru by '#0' and fails 986 * isolation, the explicit barrier will make sure that page_evictable 987 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 988 * can be reordered after PageMlocked check and can make '#1' to fail 989 * the isolation of the page whose Mlocked bit is cleared (#0 is also 990 * looking at the same page) and the evictable page will be stranded 991 * in an unevictable LRU. 992 */ 993 SetPageLRU(page); 994 smp_mb__after_atomic(); 995 996 if (page_evictable(page)) { 997 lru = page_lru(page); 998 if (was_unevictable) 999 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 1000 } else { 1001 lru = LRU_UNEVICTABLE; 1002 ClearPageActive(page); 1003 SetPageUnevictable(page); 1004 if (!was_unevictable) 1005 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 1006 } 1007 1008 add_page_to_lru_list(page, lruvec, lru); 1009 trace_mm_lru_insertion(page, lru); 1010 } 1011 1012 /* 1013 * Add the passed pages to the LRU, then drop the caller's refcount 1014 * on them. Reinitialises the caller's pagevec. 1015 */ 1016 void __pagevec_lru_add(struct pagevec *pvec) 1017 { 1018 int i; 1019 struct lruvec *lruvec = NULL; 1020 unsigned long flags = 0; 1021 1022 for (i = 0; i < pagevec_count(pvec); i++) { 1023 struct page *page = pvec->pages[i]; 1024 1025 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags); 1026 __pagevec_lru_add_fn(page, lruvec); 1027 } 1028 if (lruvec) 1029 unlock_page_lruvec_irqrestore(lruvec, flags); 1030 release_pages(pvec->pages, pvec->nr); 1031 pagevec_reinit(pvec); 1032 } 1033 1034 /** 1035 * pagevec_lookup_entries - gang pagecache lookup 1036 * @pvec: Where the resulting entries are placed 1037 * @mapping: The address_space to search 1038 * @start: The starting entry index 1039 * @nr_entries: The maximum number of pages 1040 * @indices: The cache indices corresponding to the entries in @pvec 1041 * 1042 * pagevec_lookup_entries() will search for and return a group of up 1043 * to @nr_pages pages and shadow entries in the mapping. All 1044 * entries are placed in @pvec. pagevec_lookup_entries() takes a 1045 * reference against actual pages in @pvec. 1046 * 1047 * The search returns a group of mapping-contiguous entries with 1048 * ascending indexes. There may be holes in the indices due to 1049 * not-present entries. 1050 * 1051 * Only one subpage of a Transparent Huge Page is returned in one call: 1052 * allowing truncate_inode_pages_range() to evict the whole THP without 1053 * cycling through a pagevec of extra references. 1054 * 1055 * pagevec_lookup_entries() returns the number of entries which were 1056 * found. 1057 */ 1058 unsigned pagevec_lookup_entries(struct pagevec *pvec, 1059 struct address_space *mapping, 1060 pgoff_t start, unsigned nr_entries, 1061 pgoff_t *indices) 1062 { 1063 pvec->nr = find_get_entries(mapping, start, nr_entries, 1064 pvec->pages, indices); 1065 return pagevec_count(pvec); 1066 } 1067 1068 /** 1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1070 * @pvec: The pagevec to prune 1071 * 1072 * pagevec_lookup_entries() fills both pages and exceptional radix 1073 * tree entries into the pagevec. This function prunes all 1074 * exceptionals from @pvec without leaving holes, so that it can be 1075 * passed on to page-only pagevec operations. 1076 */ 1077 void pagevec_remove_exceptionals(struct pagevec *pvec) 1078 { 1079 int i, j; 1080 1081 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1082 struct page *page = pvec->pages[i]; 1083 if (!xa_is_value(page)) 1084 pvec->pages[j++] = page; 1085 } 1086 pvec->nr = j; 1087 } 1088 1089 /** 1090 * pagevec_lookup_range - gang pagecache lookup 1091 * @pvec: Where the resulting pages are placed 1092 * @mapping: The address_space to search 1093 * @start: The starting page index 1094 * @end: The final page index 1095 * 1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1097 * pages in the mapping starting from index @start and upto index @end 1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1099 * reference against the pages in @pvec. 1100 * 1101 * The search returns a group of mapping-contiguous pages with ascending 1102 * indexes. There may be holes in the indices due to not-present pages. We 1103 * also update @start to index the next page for the traversal. 1104 * 1105 * pagevec_lookup_range() returns the number of pages which were found. If this 1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1107 * reached. 1108 */ 1109 unsigned pagevec_lookup_range(struct pagevec *pvec, 1110 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1111 { 1112 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1113 pvec->pages); 1114 return pagevec_count(pvec); 1115 } 1116 EXPORT_SYMBOL(pagevec_lookup_range); 1117 1118 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1119 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1120 xa_mark_t tag) 1121 { 1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1123 PAGEVEC_SIZE, pvec->pages); 1124 return pagevec_count(pvec); 1125 } 1126 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1127 1128 /* 1129 * Perform any setup for the swap system 1130 */ 1131 void __init swap_setup(void) 1132 { 1133 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1134 1135 /* Use a smaller cluster for small-memory machines */ 1136 if (megs < 16) 1137 page_cluster = 2; 1138 else 1139 page_cluster = 3; 1140 /* 1141 * Right now other parts of the system means that we 1142 * _really_ don't want to cluster much more 1143 */ 1144 } 1145 1146 #ifdef CONFIG_DEV_PAGEMAP_OPS 1147 void put_devmap_managed_page(struct page *page) 1148 { 1149 int count; 1150 1151 if (WARN_ON_ONCE(!page_is_devmap_managed(page))) 1152 return; 1153 1154 count = page_ref_dec_return(page); 1155 1156 /* 1157 * devmap page refcounts are 1-based, rather than 0-based: if 1158 * refcount is 1, then the page is free and the refcount is 1159 * stable because nobody holds a reference on the page. 1160 */ 1161 if (count == 1) 1162 free_devmap_managed_page(page); 1163 else if (!count) 1164 __put_page(page); 1165 } 1166 EXPORT_SYMBOL(put_devmap_managed_page); 1167 #endif 1168