xref: /openbmc/linux/mm/swap.c (revision ca79522c)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 
35 #include "internal.h"
36 
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39 
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43 
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
48 static void __page_cache_release(struct page *page)
49 {
50 	if (PageLRU(page)) {
51 		struct zone *zone = page_zone(page);
52 		struct lruvec *lruvec;
53 		unsigned long flags;
54 
55 		spin_lock_irqsave(&zone->lru_lock, flags);
56 		lruvec = mem_cgroup_page_lruvec(page, zone);
57 		VM_BUG_ON(!PageLRU(page));
58 		__ClearPageLRU(page);
59 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
60 		spin_unlock_irqrestore(&zone->lru_lock, flags);
61 	}
62 }
63 
64 static void __put_single_page(struct page *page)
65 {
66 	__page_cache_release(page);
67 	free_hot_cold_page(page, 0);
68 }
69 
70 static void __put_compound_page(struct page *page)
71 {
72 	compound_page_dtor *dtor;
73 
74 	__page_cache_release(page);
75 	dtor = get_compound_page_dtor(page);
76 	(*dtor)(page);
77 }
78 
79 static void put_compound_page(struct page *page)
80 {
81 	if (unlikely(PageTail(page))) {
82 		/* __split_huge_page_refcount can run under us */
83 		struct page *page_head = compound_trans_head(page);
84 
85 		if (likely(page != page_head &&
86 			   get_page_unless_zero(page_head))) {
87 			unsigned long flags;
88 
89 			/*
90 			 * THP can not break up slab pages so avoid taking
91 			 * compound_lock().  Slab performs non-atomic bit ops
92 			 * on page->flags for better performance.  In particular
93 			 * slab_unlock() in slub used to be a hot path.  It is
94 			 * still hot on arches that do not support
95 			 * this_cpu_cmpxchg_double().
96 			 */
97 			if (PageSlab(page_head)) {
98 				if (PageTail(page)) {
99 					if (put_page_testzero(page_head))
100 						VM_BUG_ON(1);
101 
102 					atomic_dec(&page->_mapcount);
103 					goto skip_lock_tail;
104 				} else
105 					goto skip_lock;
106 			}
107 			/*
108 			 * page_head wasn't a dangling pointer but it
109 			 * may not be a head page anymore by the time
110 			 * we obtain the lock. That is ok as long as it
111 			 * can't be freed from under us.
112 			 */
113 			flags = compound_lock_irqsave(page_head);
114 			if (unlikely(!PageTail(page))) {
115 				/* __split_huge_page_refcount run before us */
116 				compound_unlock_irqrestore(page_head, flags);
117 skip_lock:
118 				if (put_page_testzero(page_head))
119 					__put_single_page(page_head);
120 out_put_single:
121 				if (put_page_testzero(page))
122 					__put_single_page(page);
123 				return;
124 			}
125 			VM_BUG_ON(page_head != page->first_page);
126 			/*
127 			 * We can release the refcount taken by
128 			 * get_page_unless_zero() now that
129 			 * __split_huge_page_refcount() is blocked on
130 			 * the compound_lock.
131 			 */
132 			if (put_page_testzero(page_head))
133 				VM_BUG_ON(1);
134 			/* __split_huge_page_refcount will wait now */
135 			VM_BUG_ON(page_mapcount(page) <= 0);
136 			atomic_dec(&page->_mapcount);
137 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
138 			VM_BUG_ON(atomic_read(&page->_count) != 0);
139 			compound_unlock_irqrestore(page_head, flags);
140 
141 skip_lock_tail:
142 			if (put_page_testzero(page_head)) {
143 				if (PageHead(page_head))
144 					__put_compound_page(page_head);
145 				else
146 					__put_single_page(page_head);
147 			}
148 		} else {
149 			/* page_head is a dangling pointer */
150 			VM_BUG_ON(PageTail(page));
151 			goto out_put_single;
152 		}
153 	} else if (put_page_testzero(page)) {
154 		if (PageHead(page))
155 			__put_compound_page(page);
156 		else
157 			__put_single_page(page);
158 	}
159 }
160 
161 void put_page(struct page *page)
162 {
163 	if (unlikely(PageCompound(page)))
164 		put_compound_page(page);
165 	else if (put_page_testzero(page))
166 		__put_single_page(page);
167 }
168 EXPORT_SYMBOL(put_page);
169 
170 /*
171  * This function is exported but must not be called by anything other
172  * than get_page(). It implements the slow path of get_page().
173  */
174 bool __get_page_tail(struct page *page)
175 {
176 	/*
177 	 * This takes care of get_page() if run on a tail page
178 	 * returned by one of the get_user_pages/follow_page variants.
179 	 * get_user_pages/follow_page itself doesn't need the compound
180 	 * lock because it runs __get_page_tail_foll() under the
181 	 * proper PT lock that already serializes against
182 	 * split_huge_page().
183 	 */
184 	unsigned long flags;
185 	bool got = false;
186 	struct page *page_head = compound_trans_head(page);
187 
188 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
189 
190 		/* Ref to put_compound_page() comment. */
191 		if (PageSlab(page_head)) {
192 			if (likely(PageTail(page))) {
193 				__get_page_tail_foll(page, false);
194 				return true;
195 			} else {
196 				put_page(page_head);
197 				return false;
198 			}
199 		}
200 
201 		/*
202 		 * page_head wasn't a dangling pointer but it
203 		 * may not be a head page anymore by the time
204 		 * we obtain the lock. That is ok as long as it
205 		 * can't be freed from under us.
206 		 */
207 		flags = compound_lock_irqsave(page_head);
208 		/* here __split_huge_page_refcount won't run anymore */
209 		if (likely(PageTail(page))) {
210 			__get_page_tail_foll(page, false);
211 			got = true;
212 		}
213 		compound_unlock_irqrestore(page_head, flags);
214 		if (unlikely(!got))
215 			put_page(page_head);
216 	}
217 	return got;
218 }
219 EXPORT_SYMBOL(__get_page_tail);
220 
221 /**
222  * put_pages_list() - release a list of pages
223  * @pages: list of pages threaded on page->lru
224  *
225  * Release a list of pages which are strung together on page.lru.  Currently
226  * used by read_cache_pages() and related error recovery code.
227  */
228 void put_pages_list(struct list_head *pages)
229 {
230 	while (!list_empty(pages)) {
231 		struct page *victim;
232 
233 		victim = list_entry(pages->prev, struct page, lru);
234 		list_del(&victim->lru);
235 		page_cache_release(victim);
236 	}
237 }
238 EXPORT_SYMBOL(put_pages_list);
239 
240 /*
241  * get_kernel_pages() - pin kernel pages in memory
242  * @kiov:	An array of struct kvec structures
243  * @nr_segs:	number of segments to pin
244  * @write:	pinning for read/write, currently ignored
245  * @pages:	array that receives pointers to the pages pinned.
246  *		Should be at least nr_segs long.
247  *
248  * Returns number of pages pinned. This may be fewer than the number
249  * requested. If nr_pages is 0 or negative, returns 0. If no pages
250  * were pinned, returns -errno. Each page returned must be released
251  * with a put_page() call when it is finished with.
252  */
253 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
254 		struct page **pages)
255 {
256 	int seg;
257 
258 	for (seg = 0; seg < nr_segs; seg++) {
259 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
260 			return seg;
261 
262 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
263 		page_cache_get(pages[seg]);
264 	}
265 
266 	return seg;
267 }
268 EXPORT_SYMBOL_GPL(get_kernel_pages);
269 
270 /*
271  * get_kernel_page() - pin a kernel page in memory
272  * @start:	starting kernel address
273  * @write:	pinning for read/write, currently ignored
274  * @pages:	array that receives pointer to the page pinned.
275  *		Must be at least nr_segs long.
276  *
277  * Returns 1 if page is pinned. If the page was not pinned, returns
278  * -errno. The page returned must be released with a put_page() call
279  * when it is finished with.
280  */
281 int get_kernel_page(unsigned long start, int write, struct page **pages)
282 {
283 	const struct kvec kiov = {
284 		.iov_base = (void *)start,
285 		.iov_len = PAGE_SIZE
286 	};
287 
288 	return get_kernel_pages(&kiov, 1, write, pages);
289 }
290 EXPORT_SYMBOL_GPL(get_kernel_page);
291 
292 static void pagevec_lru_move_fn(struct pagevec *pvec,
293 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
294 	void *arg)
295 {
296 	int i;
297 	struct zone *zone = NULL;
298 	struct lruvec *lruvec;
299 	unsigned long flags = 0;
300 
301 	for (i = 0; i < pagevec_count(pvec); i++) {
302 		struct page *page = pvec->pages[i];
303 		struct zone *pagezone = page_zone(page);
304 
305 		if (pagezone != zone) {
306 			if (zone)
307 				spin_unlock_irqrestore(&zone->lru_lock, flags);
308 			zone = pagezone;
309 			spin_lock_irqsave(&zone->lru_lock, flags);
310 		}
311 
312 		lruvec = mem_cgroup_page_lruvec(page, zone);
313 		(*move_fn)(page, lruvec, arg);
314 	}
315 	if (zone)
316 		spin_unlock_irqrestore(&zone->lru_lock, flags);
317 	release_pages(pvec->pages, pvec->nr, pvec->cold);
318 	pagevec_reinit(pvec);
319 }
320 
321 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
322 				 void *arg)
323 {
324 	int *pgmoved = arg;
325 
326 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
327 		enum lru_list lru = page_lru_base_type(page);
328 		list_move_tail(&page->lru, &lruvec->lists[lru]);
329 		(*pgmoved)++;
330 	}
331 }
332 
333 /*
334  * pagevec_move_tail() must be called with IRQ disabled.
335  * Otherwise this may cause nasty races.
336  */
337 static void pagevec_move_tail(struct pagevec *pvec)
338 {
339 	int pgmoved = 0;
340 
341 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
342 	__count_vm_events(PGROTATED, pgmoved);
343 }
344 
345 /*
346  * Writeback is about to end against a page which has been marked for immediate
347  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
348  * inactive list.
349  */
350 void rotate_reclaimable_page(struct page *page)
351 {
352 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
353 	    !PageUnevictable(page) && PageLRU(page)) {
354 		struct pagevec *pvec;
355 		unsigned long flags;
356 
357 		page_cache_get(page);
358 		local_irq_save(flags);
359 		pvec = &__get_cpu_var(lru_rotate_pvecs);
360 		if (!pagevec_add(pvec, page))
361 			pagevec_move_tail(pvec);
362 		local_irq_restore(flags);
363 	}
364 }
365 
366 static void update_page_reclaim_stat(struct lruvec *lruvec,
367 				     int file, int rotated)
368 {
369 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
370 
371 	reclaim_stat->recent_scanned[file]++;
372 	if (rotated)
373 		reclaim_stat->recent_rotated[file]++;
374 }
375 
376 static void __activate_page(struct page *page, struct lruvec *lruvec,
377 			    void *arg)
378 {
379 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
380 		int file = page_is_file_cache(page);
381 		int lru = page_lru_base_type(page);
382 
383 		del_page_from_lru_list(page, lruvec, lru);
384 		SetPageActive(page);
385 		lru += LRU_ACTIVE;
386 		add_page_to_lru_list(page, lruvec, lru);
387 
388 		__count_vm_event(PGACTIVATE);
389 		update_page_reclaim_stat(lruvec, file, 1);
390 	}
391 }
392 
393 #ifdef CONFIG_SMP
394 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
395 
396 static void activate_page_drain(int cpu)
397 {
398 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
399 
400 	if (pagevec_count(pvec))
401 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
402 }
403 
404 void activate_page(struct page *page)
405 {
406 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
407 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
408 
409 		page_cache_get(page);
410 		if (!pagevec_add(pvec, page))
411 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
412 		put_cpu_var(activate_page_pvecs);
413 	}
414 }
415 
416 #else
417 static inline void activate_page_drain(int cpu)
418 {
419 }
420 
421 void activate_page(struct page *page)
422 {
423 	struct zone *zone = page_zone(page);
424 
425 	spin_lock_irq(&zone->lru_lock);
426 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
427 	spin_unlock_irq(&zone->lru_lock);
428 }
429 #endif
430 
431 /*
432  * Mark a page as having seen activity.
433  *
434  * inactive,unreferenced	->	inactive,referenced
435  * inactive,referenced		->	active,unreferenced
436  * active,unreferenced		->	active,referenced
437  */
438 void mark_page_accessed(struct page *page)
439 {
440 	if (!PageActive(page) && !PageUnevictable(page) &&
441 			PageReferenced(page) && PageLRU(page)) {
442 		activate_page(page);
443 		ClearPageReferenced(page);
444 	} else if (!PageReferenced(page)) {
445 		SetPageReferenced(page);
446 	}
447 }
448 EXPORT_SYMBOL(mark_page_accessed);
449 
450 /*
451  * Order of operations is important: flush the pagevec when it's already
452  * full, not when adding the last page, to make sure that last page is
453  * not added to the LRU directly when passed to this function. Because
454  * mark_page_accessed() (called after this when writing) only activates
455  * pages that are on the LRU, linear writes in subpage chunks would see
456  * every PAGEVEC_SIZE page activated, which is unexpected.
457  */
458 void __lru_cache_add(struct page *page, enum lru_list lru)
459 {
460 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
461 
462 	page_cache_get(page);
463 	if (!pagevec_space(pvec))
464 		__pagevec_lru_add(pvec, lru);
465 	pagevec_add(pvec, page);
466 	put_cpu_var(lru_add_pvecs);
467 }
468 EXPORT_SYMBOL(__lru_cache_add);
469 
470 /**
471  * lru_cache_add_lru - add a page to a page list
472  * @page: the page to be added to the LRU.
473  * @lru: the LRU list to which the page is added.
474  */
475 void lru_cache_add_lru(struct page *page, enum lru_list lru)
476 {
477 	if (PageActive(page)) {
478 		VM_BUG_ON(PageUnevictable(page));
479 		ClearPageActive(page);
480 	} else if (PageUnevictable(page)) {
481 		VM_BUG_ON(PageActive(page));
482 		ClearPageUnevictable(page);
483 	}
484 
485 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
486 	__lru_cache_add(page, lru);
487 }
488 
489 /**
490  * add_page_to_unevictable_list - add a page to the unevictable list
491  * @page:  the page to be added to the unevictable list
492  *
493  * Add page directly to its zone's unevictable list.  To avoid races with
494  * tasks that might be making the page evictable, through eg. munlock,
495  * munmap or exit, while it's not on the lru, we want to add the page
496  * while it's locked or otherwise "invisible" to other tasks.  This is
497  * difficult to do when using the pagevec cache, so bypass that.
498  */
499 void add_page_to_unevictable_list(struct page *page)
500 {
501 	struct zone *zone = page_zone(page);
502 	struct lruvec *lruvec;
503 
504 	spin_lock_irq(&zone->lru_lock);
505 	lruvec = mem_cgroup_page_lruvec(page, zone);
506 	SetPageUnevictable(page);
507 	SetPageLRU(page);
508 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
509 	spin_unlock_irq(&zone->lru_lock);
510 }
511 
512 /*
513  * If the page can not be invalidated, it is moved to the
514  * inactive list to speed up its reclaim.  It is moved to the
515  * head of the list, rather than the tail, to give the flusher
516  * threads some time to write it out, as this is much more
517  * effective than the single-page writeout from reclaim.
518  *
519  * If the page isn't page_mapped and dirty/writeback, the page
520  * could reclaim asap using PG_reclaim.
521  *
522  * 1. active, mapped page -> none
523  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
524  * 3. inactive, mapped page -> none
525  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
526  * 5. inactive, clean -> inactive, tail
527  * 6. Others -> none
528  *
529  * In 4, why it moves inactive's head, the VM expects the page would
530  * be write it out by flusher threads as this is much more effective
531  * than the single-page writeout from reclaim.
532  */
533 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
534 			      void *arg)
535 {
536 	int lru, file;
537 	bool active;
538 
539 	if (!PageLRU(page))
540 		return;
541 
542 	if (PageUnevictable(page))
543 		return;
544 
545 	/* Some processes are using the page */
546 	if (page_mapped(page))
547 		return;
548 
549 	active = PageActive(page);
550 	file = page_is_file_cache(page);
551 	lru = page_lru_base_type(page);
552 
553 	del_page_from_lru_list(page, lruvec, lru + active);
554 	ClearPageActive(page);
555 	ClearPageReferenced(page);
556 	add_page_to_lru_list(page, lruvec, lru);
557 
558 	if (PageWriteback(page) || PageDirty(page)) {
559 		/*
560 		 * PG_reclaim could be raced with end_page_writeback
561 		 * It can make readahead confusing.  But race window
562 		 * is _really_ small and  it's non-critical problem.
563 		 */
564 		SetPageReclaim(page);
565 	} else {
566 		/*
567 		 * The page's writeback ends up during pagevec
568 		 * We moves tha page into tail of inactive.
569 		 */
570 		list_move_tail(&page->lru, &lruvec->lists[lru]);
571 		__count_vm_event(PGROTATED);
572 	}
573 
574 	if (active)
575 		__count_vm_event(PGDEACTIVATE);
576 	update_page_reclaim_stat(lruvec, file, 0);
577 }
578 
579 /*
580  * Drain pages out of the cpu's pagevecs.
581  * Either "cpu" is the current CPU, and preemption has already been
582  * disabled; or "cpu" is being hot-unplugged, and is already dead.
583  */
584 void lru_add_drain_cpu(int cpu)
585 {
586 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
587 	struct pagevec *pvec;
588 	int lru;
589 
590 	for_each_lru(lru) {
591 		pvec = &pvecs[lru - LRU_BASE];
592 		if (pagevec_count(pvec))
593 			__pagevec_lru_add(pvec, lru);
594 	}
595 
596 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
597 	if (pagevec_count(pvec)) {
598 		unsigned long flags;
599 
600 		/* No harm done if a racing interrupt already did this */
601 		local_irq_save(flags);
602 		pagevec_move_tail(pvec);
603 		local_irq_restore(flags);
604 	}
605 
606 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
607 	if (pagevec_count(pvec))
608 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
609 
610 	activate_page_drain(cpu);
611 }
612 
613 /**
614  * deactivate_page - forcefully deactivate a page
615  * @page: page to deactivate
616  *
617  * This function hints the VM that @page is a good reclaim candidate,
618  * for example if its invalidation fails due to the page being dirty
619  * or under writeback.
620  */
621 void deactivate_page(struct page *page)
622 {
623 	/*
624 	 * In a workload with many unevictable page such as mprotect, unevictable
625 	 * page deactivation for accelerating reclaim is pointless.
626 	 */
627 	if (PageUnevictable(page))
628 		return;
629 
630 	if (likely(get_page_unless_zero(page))) {
631 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
632 
633 		if (!pagevec_add(pvec, page))
634 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
635 		put_cpu_var(lru_deactivate_pvecs);
636 	}
637 }
638 
639 void lru_add_drain(void)
640 {
641 	lru_add_drain_cpu(get_cpu());
642 	put_cpu();
643 }
644 
645 static void lru_add_drain_per_cpu(struct work_struct *dummy)
646 {
647 	lru_add_drain();
648 }
649 
650 /*
651  * Returns 0 for success
652  */
653 int lru_add_drain_all(void)
654 {
655 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
656 }
657 
658 /*
659  * Batched page_cache_release().  Decrement the reference count on all the
660  * passed pages.  If it fell to zero then remove the page from the LRU and
661  * free it.
662  *
663  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
664  * for the remainder of the operation.
665  *
666  * The locking in this function is against shrink_inactive_list(): we recheck
667  * the page count inside the lock to see whether shrink_inactive_list()
668  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
669  * will free it.
670  */
671 void release_pages(struct page **pages, int nr, int cold)
672 {
673 	int i;
674 	LIST_HEAD(pages_to_free);
675 	struct zone *zone = NULL;
676 	struct lruvec *lruvec;
677 	unsigned long uninitialized_var(flags);
678 
679 	for (i = 0; i < nr; i++) {
680 		struct page *page = pages[i];
681 
682 		if (unlikely(PageCompound(page))) {
683 			if (zone) {
684 				spin_unlock_irqrestore(&zone->lru_lock, flags);
685 				zone = NULL;
686 			}
687 			put_compound_page(page);
688 			continue;
689 		}
690 
691 		if (!put_page_testzero(page))
692 			continue;
693 
694 		if (PageLRU(page)) {
695 			struct zone *pagezone = page_zone(page);
696 
697 			if (pagezone != zone) {
698 				if (zone)
699 					spin_unlock_irqrestore(&zone->lru_lock,
700 									flags);
701 				zone = pagezone;
702 				spin_lock_irqsave(&zone->lru_lock, flags);
703 			}
704 
705 			lruvec = mem_cgroup_page_lruvec(page, zone);
706 			VM_BUG_ON(!PageLRU(page));
707 			__ClearPageLRU(page);
708 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
709 		}
710 
711 		list_add(&page->lru, &pages_to_free);
712 	}
713 	if (zone)
714 		spin_unlock_irqrestore(&zone->lru_lock, flags);
715 
716 	free_hot_cold_page_list(&pages_to_free, cold);
717 }
718 EXPORT_SYMBOL(release_pages);
719 
720 /*
721  * The pages which we're about to release may be in the deferred lru-addition
722  * queues.  That would prevent them from really being freed right now.  That's
723  * OK from a correctness point of view but is inefficient - those pages may be
724  * cache-warm and we want to give them back to the page allocator ASAP.
725  *
726  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
727  * and __pagevec_lru_add_active() call release_pages() directly to avoid
728  * mutual recursion.
729  */
730 void __pagevec_release(struct pagevec *pvec)
731 {
732 	lru_add_drain();
733 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
734 	pagevec_reinit(pvec);
735 }
736 EXPORT_SYMBOL(__pagevec_release);
737 
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 /* used by __split_huge_page_refcount() */
740 void lru_add_page_tail(struct page *page, struct page *page_tail,
741 		       struct lruvec *lruvec, struct list_head *list)
742 {
743 	int uninitialized_var(active);
744 	enum lru_list lru;
745 	const int file = 0;
746 
747 	VM_BUG_ON(!PageHead(page));
748 	VM_BUG_ON(PageCompound(page_tail));
749 	VM_BUG_ON(PageLRU(page_tail));
750 	VM_BUG_ON(NR_CPUS != 1 &&
751 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
752 
753 	if (!list)
754 		SetPageLRU(page_tail);
755 
756 	if (page_evictable(page_tail)) {
757 		if (PageActive(page)) {
758 			SetPageActive(page_tail);
759 			active = 1;
760 			lru = LRU_ACTIVE_ANON;
761 		} else {
762 			active = 0;
763 			lru = LRU_INACTIVE_ANON;
764 		}
765 	} else {
766 		SetPageUnevictable(page_tail);
767 		lru = LRU_UNEVICTABLE;
768 	}
769 
770 	if (likely(PageLRU(page)))
771 		list_add_tail(&page_tail->lru, &page->lru);
772 	else if (list) {
773 		/* page reclaim is reclaiming a huge page */
774 		get_page(page_tail);
775 		list_add_tail(&page_tail->lru, list);
776 	} else {
777 		struct list_head *list_head;
778 		/*
779 		 * Head page has not yet been counted, as an hpage,
780 		 * so we must account for each subpage individually.
781 		 *
782 		 * Use the standard add function to put page_tail on the list,
783 		 * but then correct its position so they all end up in order.
784 		 */
785 		add_page_to_lru_list(page_tail, lruvec, lru);
786 		list_head = page_tail->lru.prev;
787 		list_move_tail(&page_tail->lru, list_head);
788 	}
789 
790 	if (!PageUnevictable(page))
791 		update_page_reclaim_stat(lruvec, file, active);
792 }
793 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
794 
795 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
796 				 void *arg)
797 {
798 	enum lru_list lru = (enum lru_list)arg;
799 	int file = is_file_lru(lru);
800 	int active = is_active_lru(lru);
801 
802 	VM_BUG_ON(PageActive(page));
803 	VM_BUG_ON(PageUnevictable(page));
804 	VM_BUG_ON(PageLRU(page));
805 
806 	SetPageLRU(page);
807 	if (active)
808 		SetPageActive(page);
809 	add_page_to_lru_list(page, lruvec, lru);
810 	update_page_reclaim_stat(lruvec, file, active);
811 }
812 
813 /*
814  * Add the passed pages to the LRU, then drop the caller's refcount
815  * on them.  Reinitialises the caller's pagevec.
816  */
817 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
818 {
819 	VM_BUG_ON(is_unevictable_lru(lru));
820 
821 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
822 }
823 EXPORT_SYMBOL(__pagevec_lru_add);
824 
825 /**
826  * pagevec_lookup - gang pagecache lookup
827  * @pvec:	Where the resulting pages are placed
828  * @mapping:	The address_space to search
829  * @start:	The starting page index
830  * @nr_pages:	The maximum number of pages
831  *
832  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
833  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
834  * reference against the pages in @pvec.
835  *
836  * The search returns a group of mapping-contiguous pages with ascending
837  * indexes.  There may be holes in the indices due to not-present pages.
838  *
839  * pagevec_lookup() returns the number of pages which were found.
840  */
841 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
842 		pgoff_t start, unsigned nr_pages)
843 {
844 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
845 	return pagevec_count(pvec);
846 }
847 EXPORT_SYMBOL(pagevec_lookup);
848 
849 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
850 		pgoff_t *index, int tag, unsigned nr_pages)
851 {
852 	pvec->nr = find_get_pages_tag(mapping, index, tag,
853 					nr_pages, pvec->pages);
854 	return pagevec_count(pvec);
855 }
856 EXPORT_SYMBOL(pagevec_lookup_tag);
857 
858 /*
859  * Perform any setup for the swap system
860  */
861 void __init swap_setup(void)
862 {
863 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
864 #ifdef CONFIG_SWAP
865 	int i;
866 
867 	bdi_init(swapper_spaces[0].backing_dev_info);
868 	for (i = 0; i < MAX_SWAPFILES; i++) {
869 		spin_lock_init(&swapper_spaces[i].tree_lock);
870 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
871 	}
872 #endif
873 
874 	/* Use a smaller cluster for small-memory machines */
875 	if (megs < 16)
876 		page_cluster = 2;
877 	else
878 		page_cluster = 3;
879 	/*
880 	 * Right now other parts of the system means that we
881 	 * _really_ don't want to cluster much more
882 	 */
883 }
884