xref: /openbmc/linux/mm/swap.c (revision c4ee0af3)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35 
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
40 
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
43 
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
47 
48 /*
49  * This path almost never happens for VM activity - pages are normally
50  * freed via pagevecs.  But it gets used by networking.
51  */
52 static void __page_cache_release(struct page *page)
53 {
54 	if (PageLRU(page)) {
55 		struct zone *zone = page_zone(page);
56 		struct lruvec *lruvec;
57 		unsigned long flags;
58 
59 		spin_lock_irqsave(&zone->lru_lock, flags);
60 		lruvec = mem_cgroup_page_lruvec(page, zone);
61 		VM_BUG_ON(!PageLRU(page));
62 		__ClearPageLRU(page);
63 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
64 		spin_unlock_irqrestore(&zone->lru_lock, flags);
65 	}
66 }
67 
68 static void __put_single_page(struct page *page)
69 {
70 	__page_cache_release(page);
71 	free_hot_cold_page(page, 0);
72 }
73 
74 static void __put_compound_page(struct page *page)
75 {
76 	compound_page_dtor *dtor;
77 
78 	__page_cache_release(page);
79 	dtor = get_compound_page_dtor(page);
80 	(*dtor)(page);
81 }
82 
83 static void put_compound_page(struct page *page)
84 {
85 	if (unlikely(PageTail(page))) {
86 		/* __split_huge_page_refcount can run under us */
87 		struct page *page_head = compound_trans_head(page);
88 
89 		if (likely(page != page_head &&
90 			   get_page_unless_zero(page_head))) {
91 			unsigned long flags;
92 
93 			/*
94 			 * THP can not break up slab pages so avoid taking
95 			 * compound_lock().  Slab performs non-atomic bit ops
96 			 * on page->flags for better performance.  In particular
97 			 * slab_unlock() in slub used to be a hot path.  It is
98 			 * still hot on arches that do not support
99 			 * this_cpu_cmpxchg_double().
100 			 */
101 			if (PageSlab(page_head) || PageHeadHuge(page_head)) {
102 				if (likely(PageTail(page))) {
103 					/*
104 					 * __split_huge_page_refcount
105 					 * cannot race here.
106 					 */
107 					VM_BUG_ON(!PageHead(page_head));
108 					atomic_dec(&page->_mapcount);
109 					if (put_page_testzero(page_head))
110 						VM_BUG_ON(1);
111 					if (put_page_testzero(page_head))
112 						__put_compound_page(page_head);
113 					return;
114 				} else
115 					/*
116 					 * __split_huge_page_refcount
117 					 * run before us, "page" was a
118 					 * THP tail. The split
119 					 * page_head has been freed
120 					 * and reallocated as slab or
121 					 * hugetlbfs page of smaller
122 					 * order (only possible if
123 					 * reallocated as slab on
124 					 * x86).
125 					 */
126 					goto skip_lock;
127 			}
128 			/*
129 			 * page_head wasn't a dangling pointer but it
130 			 * may not be a head page anymore by the time
131 			 * we obtain the lock. That is ok as long as it
132 			 * can't be freed from under us.
133 			 */
134 			flags = compound_lock_irqsave(page_head);
135 			if (unlikely(!PageTail(page))) {
136 				/* __split_huge_page_refcount run before us */
137 				compound_unlock_irqrestore(page_head, flags);
138 skip_lock:
139 				if (put_page_testzero(page_head)) {
140 					/*
141 					 * The head page may have been
142 					 * freed and reallocated as a
143 					 * compound page of smaller
144 					 * order and then freed again.
145 					 * All we know is that it
146 					 * cannot have become: a THP
147 					 * page, a compound page of
148 					 * higher order, a tail page.
149 					 * That is because we still
150 					 * hold the refcount of the
151 					 * split THP tail and
152 					 * page_head was the THP head
153 					 * before the split.
154 					 */
155 					if (PageHead(page_head))
156 						__put_compound_page(page_head);
157 					else
158 						__put_single_page(page_head);
159 				}
160 out_put_single:
161 				if (put_page_testzero(page))
162 					__put_single_page(page);
163 				return;
164 			}
165 			VM_BUG_ON(page_head != page->first_page);
166 			/*
167 			 * We can release the refcount taken by
168 			 * get_page_unless_zero() now that
169 			 * __split_huge_page_refcount() is blocked on
170 			 * the compound_lock.
171 			 */
172 			if (put_page_testzero(page_head))
173 				VM_BUG_ON(1);
174 			/* __split_huge_page_refcount will wait now */
175 			VM_BUG_ON(page_mapcount(page) <= 0);
176 			atomic_dec(&page->_mapcount);
177 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
178 			VM_BUG_ON(atomic_read(&page->_count) != 0);
179 			compound_unlock_irqrestore(page_head, flags);
180 
181 			if (put_page_testzero(page_head)) {
182 				if (PageHead(page_head))
183 					__put_compound_page(page_head);
184 				else
185 					__put_single_page(page_head);
186 			}
187 		} else {
188 			/* page_head is a dangling pointer */
189 			VM_BUG_ON(PageTail(page));
190 			goto out_put_single;
191 		}
192 	} else if (put_page_testzero(page)) {
193 		if (PageHead(page))
194 			__put_compound_page(page);
195 		else
196 			__put_single_page(page);
197 	}
198 }
199 
200 void put_page(struct page *page)
201 {
202 	if (unlikely(PageCompound(page)))
203 		put_compound_page(page);
204 	else if (put_page_testzero(page))
205 		__put_single_page(page);
206 }
207 EXPORT_SYMBOL(put_page);
208 
209 /*
210  * This function is exported but must not be called by anything other
211  * than get_page(). It implements the slow path of get_page().
212  */
213 bool __get_page_tail(struct page *page)
214 {
215 	/*
216 	 * This takes care of get_page() if run on a tail page
217 	 * returned by one of the get_user_pages/follow_page variants.
218 	 * get_user_pages/follow_page itself doesn't need the compound
219 	 * lock because it runs __get_page_tail_foll() under the
220 	 * proper PT lock that already serializes against
221 	 * split_huge_page().
222 	 */
223 	unsigned long flags;
224 	bool got = false;
225 	struct page *page_head = compound_trans_head(page);
226 
227 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
228 		/* Ref to put_compound_page() comment. */
229 		if (PageSlab(page_head) || PageHeadHuge(page_head)) {
230 			if (likely(PageTail(page))) {
231 				/*
232 				 * This is a hugetlbfs page or a slab
233 				 * page. __split_huge_page_refcount
234 				 * cannot race here.
235 				 */
236 				VM_BUG_ON(!PageHead(page_head));
237 				__get_page_tail_foll(page, false);
238 				return true;
239 			} else {
240 				/*
241 				 * __split_huge_page_refcount run
242 				 * before us, "page" was a THP
243 				 * tail. The split page_head has been
244 				 * freed and reallocated as slab or
245 				 * hugetlbfs page of smaller order
246 				 * (only possible if reallocated as
247 				 * slab on x86).
248 				 */
249 				put_page(page_head);
250 				return false;
251 			}
252 		}
253 
254 		/*
255 		 * page_head wasn't a dangling pointer but it
256 		 * may not be a head page anymore by the time
257 		 * we obtain the lock. That is ok as long as it
258 		 * can't be freed from under us.
259 		 */
260 		flags = compound_lock_irqsave(page_head);
261 		/* here __split_huge_page_refcount won't run anymore */
262 		if (likely(PageTail(page))) {
263 			__get_page_tail_foll(page, false);
264 			got = true;
265 		}
266 		compound_unlock_irqrestore(page_head, flags);
267 		if (unlikely(!got))
268 			put_page(page_head);
269 	}
270 	return got;
271 }
272 EXPORT_SYMBOL(__get_page_tail);
273 
274 /**
275  * put_pages_list() - release a list of pages
276  * @pages: list of pages threaded on page->lru
277  *
278  * Release a list of pages which are strung together on page.lru.  Currently
279  * used by read_cache_pages() and related error recovery code.
280  */
281 void put_pages_list(struct list_head *pages)
282 {
283 	while (!list_empty(pages)) {
284 		struct page *victim;
285 
286 		victim = list_entry(pages->prev, struct page, lru);
287 		list_del(&victim->lru);
288 		page_cache_release(victim);
289 	}
290 }
291 EXPORT_SYMBOL(put_pages_list);
292 
293 /*
294  * get_kernel_pages() - pin kernel pages in memory
295  * @kiov:	An array of struct kvec structures
296  * @nr_segs:	number of segments to pin
297  * @write:	pinning for read/write, currently ignored
298  * @pages:	array that receives pointers to the pages pinned.
299  *		Should be at least nr_segs long.
300  *
301  * Returns number of pages pinned. This may be fewer than the number
302  * requested. If nr_pages is 0 or negative, returns 0. If no pages
303  * were pinned, returns -errno. Each page returned must be released
304  * with a put_page() call when it is finished with.
305  */
306 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
307 		struct page **pages)
308 {
309 	int seg;
310 
311 	for (seg = 0; seg < nr_segs; seg++) {
312 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
313 			return seg;
314 
315 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
316 		page_cache_get(pages[seg]);
317 	}
318 
319 	return seg;
320 }
321 EXPORT_SYMBOL_GPL(get_kernel_pages);
322 
323 /*
324  * get_kernel_page() - pin a kernel page in memory
325  * @start:	starting kernel address
326  * @write:	pinning for read/write, currently ignored
327  * @pages:	array that receives pointer to the page pinned.
328  *		Must be at least nr_segs long.
329  *
330  * Returns 1 if page is pinned. If the page was not pinned, returns
331  * -errno. The page returned must be released with a put_page() call
332  * when it is finished with.
333  */
334 int get_kernel_page(unsigned long start, int write, struct page **pages)
335 {
336 	const struct kvec kiov = {
337 		.iov_base = (void *)start,
338 		.iov_len = PAGE_SIZE
339 	};
340 
341 	return get_kernel_pages(&kiov, 1, write, pages);
342 }
343 EXPORT_SYMBOL_GPL(get_kernel_page);
344 
345 static void pagevec_lru_move_fn(struct pagevec *pvec,
346 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
347 	void *arg)
348 {
349 	int i;
350 	struct zone *zone = NULL;
351 	struct lruvec *lruvec;
352 	unsigned long flags = 0;
353 
354 	for (i = 0; i < pagevec_count(pvec); i++) {
355 		struct page *page = pvec->pages[i];
356 		struct zone *pagezone = page_zone(page);
357 
358 		if (pagezone != zone) {
359 			if (zone)
360 				spin_unlock_irqrestore(&zone->lru_lock, flags);
361 			zone = pagezone;
362 			spin_lock_irqsave(&zone->lru_lock, flags);
363 		}
364 
365 		lruvec = mem_cgroup_page_lruvec(page, zone);
366 		(*move_fn)(page, lruvec, arg);
367 	}
368 	if (zone)
369 		spin_unlock_irqrestore(&zone->lru_lock, flags);
370 	release_pages(pvec->pages, pvec->nr, pvec->cold);
371 	pagevec_reinit(pvec);
372 }
373 
374 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
375 				 void *arg)
376 {
377 	int *pgmoved = arg;
378 
379 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
380 		enum lru_list lru = page_lru_base_type(page);
381 		list_move_tail(&page->lru, &lruvec->lists[lru]);
382 		(*pgmoved)++;
383 	}
384 }
385 
386 /*
387  * pagevec_move_tail() must be called with IRQ disabled.
388  * Otherwise this may cause nasty races.
389  */
390 static void pagevec_move_tail(struct pagevec *pvec)
391 {
392 	int pgmoved = 0;
393 
394 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
395 	__count_vm_events(PGROTATED, pgmoved);
396 }
397 
398 /*
399  * Writeback is about to end against a page which has been marked for immediate
400  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
401  * inactive list.
402  */
403 void rotate_reclaimable_page(struct page *page)
404 {
405 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
406 	    !PageUnevictable(page) && PageLRU(page)) {
407 		struct pagevec *pvec;
408 		unsigned long flags;
409 
410 		page_cache_get(page);
411 		local_irq_save(flags);
412 		pvec = &__get_cpu_var(lru_rotate_pvecs);
413 		if (!pagevec_add(pvec, page))
414 			pagevec_move_tail(pvec);
415 		local_irq_restore(flags);
416 	}
417 }
418 
419 static void update_page_reclaim_stat(struct lruvec *lruvec,
420 				     int file, int rotated)
421 {
422 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
423 
424 	reclaim_stat->recent_scanned[file]++;
425 	if (rotated)
426 		reclaim_stat->recent_rotated[file]++;
427 }
428 
429 static void __activate_page(struct page *page, struct lruvec *lruvec,
430 			    void *arg)
431 {
432 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
433 		int file = page_is_file_cache(page);
434 		int lru = page_lru_base_type(page);
435 
436 		del_page_from_lru_list(page, lruvec, lru);
437 		SetPageActive(page);
438 		lru += LRU_ACTIVE;
439 		add_page_to_lru_list(page, lruvec, lru);
440 		trace_mm_lru_activate(page, page_to_pfn(page));
441 
442 		__count_vm_event(PGACTIVATE);
443 		update_page_reclaim_stat(lruvec, file, 1);
444 	}
445 }
446 
447 #ifdef CONFIG_SMP
448 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
449 
450 static void activate_page_drain(int cpu)
451 {
452 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
453 
454 	if (pagevec_count(pvec))
455 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
456 }
457 
458 static bool need_activate_page_drain(int cpu)
459 {
460 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
461 }
462 
463 void activate_page(struct page *page)
464 {
465 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
466 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
467 
468 		page_cache_get(page);
469 		if (!pagevec_add(pvec, page))
470 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
471 		put_cpu_var(activate_page_pvecs);
472 	}
473 }
474 
475 #else
476 static inline void activate_page_drain(int cpu)
477 {
478 }
479 
480 static bool need_activate_page_drain(int cpu)
481 {
482 	return false;
483 }
484 
485 void activate_page(struct page *page)
486 {
487 	struct zone *zone = page_zone(page);
488 
489 	spin_lock_irq(&zone->lru_lock);
490 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
491 	spin_unlock_irq(&zone->lru_lock);
492 }
493 #endif
494 
495 static void __lru_cache_activate_page(struct page *page)
496 {
497 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
498 	int i;
499 
500 	/*
501 	 * Search backwards on the optimistic assumption that the page being
502 	 * activated has just been added to this pagevec. Note that only
503 	 * the local pagevec is examined as a !PageLRU page could be in the
504 	 * process of being released, reclaimed, migrated or on a remote
505 	 * pagevec that is currently being drained. Furthermore, marking
506 	 * a remote pagevec's page PageActive potentially hits a race where
507 	 * a page is marked PageActive just after it is added to the inactive
508 	 * list causing accounting errors and BUG_ON checks to trigger.
509 	 */
510 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
511 		struct page *pagevec_page = pvec->pages[i];
512 
513 		if (pagevec_page == page) {
514 			SetPageActive(page);
515 			break;
516 		}
517 	}
518 
519 	put_cpu_var(lru_add_pvec);
520 }
521 
522 /*
523  * Mark a page as having seen activity.
524  *
525  * inactive,unreferenced	->	inactive,referenced
526  * inactive,referenced		->	active,unreferenced
527  * active,unreferenced		->	active,referenced
528  */
529 void mark_page_accessed(struct page *page)
530 {
531 	if (!PageActive(page) && !PageUnevictable(page) &&
532 			PageReferenced(page)) {
533 
534 		/*
535 		 * If the page is on the LRU, queue it for activation via
536 		 * activate_page_pvecs. Otherwise, assume the page is on a
537 		 * pagevec, mark it active and it'll be moved to the active
538 		 * LRU on the next drain.
539 		 */
540 		if (PageLRU(page))
541 			activate_page(page);
542 		else
543 			__lru_cache_activate_page(page);
544 		ClearPageReferenced(page);
545 	} else if (!PageReferenced(page)) {
546 		SetPageReferenced(page);
547 	}
548 }
549 EXPORT_SYMBOL(mark_page_accessed);
550 
551 /*
552  * Queue the page for addition to the LRU via pagevec. The decision on whether
553  * to add the page to the [in]active [file|anon] list is deferred until the
554  * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
555  * have the page added to the active list using mark_page_accessed().
556  */
557 void __lru_cache_add(struct page *page)
558 {
559 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
560 
561 	page_cache_get(page);
562 	if (!pagevec_space(pvec))
563 		__pagevec_lru_add(pvec);
564 	pagevec_add(pvec, page);
565 	put_cpu_var(lru_add_pvec);
566 }
567 EXPORT_SYMBOL(__lru_cache_add);
568 
569 /**
570  * lru_cache_add - add a page to a page list
571  * @page: the page to be added to the LRU.
572  */
573 void lru_cache_add(struct page *page)
574 {
575 	VM_BUG_ON(PageActive(page) && PageUnevictable(page));
576 	VM_BUG_ON(PageLRU(page));
577 	__lru_cache_add(page);
578 }
579 
580 /**
581  * add_page_to_unevictable_list - add a page to the unevictable list
582  * @page:  the page to be added to the unevictable list
583  *
584  * Add page directly to its zone's unevictable list.  To avoid races with
585  * tasks that might be making the page evictable, through eg. munlock,
586  * munmap or exit, while it's not on the lru, we want to add the page
587  * while it's locked or otherwise "invisible" to other tasks.  This is
588  * difficult to do when using the pagevec cache, so bypass that.
589  */
590 void add_page_to_unevictable_list(struct page *page)
591 {
592 	struct zone *zone = page_zone(page);
593 	struct lruvec *lruvec;
594 
595 	spin_lock_irq(&zone->lru_lock);
596 	lruvec = mem_cgroup_page_lruvec(page, zone);
597 	ClearPageActive(page);
598 	SetPageUnevictable(page);
599 	SetPageLRU(page);
600 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
601 	spin_unlock_irq(&zone->lru_lock);
602 }
603 
604 /*
605  * If the page can not be invalidated, it is moved to the
606  * inactive list to speed up its reclaim.  It is moved to the
607  * head of the list, rather than the tail, to give the flusher
608  * threads some time to write it out, as this is much more
609  * effective than the single-page writeout from reclaim.
610  *
611  * If the page isn't page_mapped and dirty/writeback, the page
612  * could reclaim asap using PG_reclaim.
613  *
614  * 1. active, mapped page -> none
615  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
616  * 3. inactive, mapped page -> none
617  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
618  * 5. inactive, clean -> inactive, tail
619  * 6. Others -> none
620  *
621  * In 4, why it moves inactive's head, the VM expects the page would
622  * be write it out by flusher threads as this is much more effective
623  * than the single-page writeout from reclaim.
624  */
625 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
626 			      void *arg)
627 {
628 	int lru, file;
629 	bool active;
630 
631 	if (!PageLRU(page))
632 		return;
633 
634 	if (PageUnevictable(page))
635 		return;
636 
637 	/* Some processes are using the page */
638 	if (page_mapped(page))
639 		return;
640 
641 	active = PageActive(page);
642 	file = page_is_file_cache(page);
643 	lru = page_lru_base_type(page);
644 
645 	del_page_from_lru_list(page, lruvec, lru + active);
646 	ClearPageActive(page);
647 	ClearPageReferenced(page);
648 	add_page_to_lru_list(page, lruvec, lru);
649 
650 	if (PageWriteback(page) || PageDirty(page)) {
651 		/*
652 		 * PG_reclaim could be raced with end_page_writeback
653 		 * It can make readahead confusing.  But race window
654 		 * is _really_ small and  it's non-critical problem.
655 		 */
656 		SetPageReclaim(page);
657 	} else {
658 		/*
659 		 * The page's writeback ends up during pagevec
660 		 * We moves tha page into tail of inactive.
661 		 */
662 		list_move_tail(&page->lru, &lruvec->lists[lru]);
663 		__count_vm_event(PGROTATED);
664 	}
665 
666 	if (active)
667 		__count_vm_event(PGDEACTIVATE);
668 	update_page_reclaim_stat(lruvec, file, 0);
669 }
670 
671 /*
672  * Drain pages out of the cpu's pagevecs.
673  * Either "cpu" is the current CPU, and preemption has already been
674  * disabled; or "cpu" is being hot-unplugged, and is already dead.
675  */
676 void lru_add_drain_cpu(int cpu)
677 {
678 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
679 
680 	if (pagevec_count(pvec))
681 		__pagevec_lru_add(pvec);
682 
683 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
684 	if (pagevec_count(pvec)) {
685 		unsigned long flags;
686 
687 		/* No harm done if a racing interrupt already did this */
688 		local_irq_save(flags);
689 		pagevec_move_tail(pvec);
690 		local_irq_restore(flags);
691 	}
692 
693 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
694 	if (pagevec_count(pvec))
695 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
696 
697 	activate_page_drain(cpu);
698 }
699 
700 /**
701  * deactivate_page - forcefully deactivate a page
702  * @page: page to deactivate
703  *
704  * This function hints the VM that @page is a good reclaim candidate,
705  * for example if its invalidation fails due to the page being dirty
706  * or under writeback.
707  */
708 void deactivate_page(struct page *page)
709 {
710 	/*
711 	 * In a workload with many unevictable page such as mprotect, unevictable
712 	 * page deactivation for accelerating reclaim is pointless.
713 	 */
714 	if (PageUnevictable(page))
715 		return;
716 
717 	if (likely(get_page_unless_zero(page))) {
718 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
719 
720 		if (!pagevec_add(pvec, page))
721 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
722 		put_cpu_var(lru_deactivate_pvecs);
723 	}
724 }
725 
726 void lru_add_drain(void)
727 {
728 	lru_add_drain_cpu(get_cpu());
729 	put_cpu();
730 }
731 
732 static void lru_add_drain_per_cpu(struct work_struct *dummy)
733 {
734 	lru_add_drain();
735 }
736 
737 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
738 
739 void lru_add_drain_all(void)
740 {
741 	static DEFINE_MUTEX(lock);
742 	static struct cpumask has_work;
743 	int cpu;
744 
745 	mutex_lock(&lock);
746 	get_online_cpus();
747 	cpumask_clear(&has_work);
748 
749 	for_each_online_cpu(cpu) {
750 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
751 
752 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
753 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
754 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
755 		    need_activate_page_drain(cpu)) {
756 			INIT_WORK(work, lru_add_drain_per_cpu);
757 			schedule_work_on(cpu, work);
758 			cpumask_set_cpu(cpu, &has_work);
759 		}
760 	}
761 
762 	for_each_cpu(cpu, &has_work)
763 		flush_work(&per_cpu(lru_add_drain_work, cpu));
764 
765 	put_online_cpus();
766 	mutex_unlock(&lock);
767 }
768 
769 /*
770  * Batched page_cache_release().  Decrement the reference count on all the
771  * passed pages.  If it fell to zero then remove the page from the LRU and
772  * free it.
773  *
774  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
775  * for the remainder of the operation.
776  *
777  * The locking in this function is against shrink_inactive_list(): we recheck
778  * the page count inside the lock to see whether shrink_inactive_list()
779  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
780  * will free it.
781  */
782 void release_pages(struct page **pages, int nr, int cold)
783 {
784 	int i;
785 	LIST_HEAD(pages_to_free);
786 	struct zone *zone = NULL;
787 	struct lruvec *lruvec;
788 	unsigned long uninitialized_var(flags);
789 
790 	for (i = 0; i < nr; i++) {
791 		struct page *page = pages[i];
792 
793 		if (unlikely(PageCompound(page))) {
794 			if (zone) {
795 				spin_unlock_irqrestore(&zone->lru_lock, flags);
796 				zone = NULL;
797 			}
798 			put_compound_page(page);
799 			continue;
800 		}
801 
802 		if (!put_page_testzero(page))
803 			continue;
804 
805 		if (PageLRU(page)) {
806 			struct zone *pagezone = page_zone(page);
807 
808 			if (pagezone != zone) {
809 				if (zone)
810 					spin_unlock_irqrestore(&zone->lru_lock,
811 									flags);
812 				zone = pagezone;
813 				spin_lock_irqsave(&zone->lru_lock, flags);
814 			}
815 
816 			lruvec = mem_cgroup_page_lruvec(page, zone);
817 			VM_BUG_ON(!PageLRU(page));
818 			__ClearPageLRU(page);
819 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
820 		}
821 
822 		/* Clear Active bit in case of parallel mark_page_accessed */
823 		ClearPageActive(page);
824 
825 		list_add(&page->lru, &pages_to_free);
826 	}
827 	if (zone)
828 		spin_unlock_irqrestore(&zone->lru_lock, flags);
829 
830 	free_hot_cold_page_list(&pages_to_free, cold);
831 }
832 EXPORT_SYMBOL(release_pages);
833 
834 /*
835  * The pages which we're about to release may be in the deferred lru-addition
836  * queues.  That would prevent them from really being freed right now.  That's
837  * OK from a correctness point of view but is inefficient - those pages may be
838  * cache-warm and we want to give them back to the page allocator ASAP.
839  *
840  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
841  * and __pagevec_lru_add_active() call release_pages() directly to avoid
842  * mutual recursion.
843  */
844 void __pagevec_release(struct pagevec *pvec)
845 {
846 	lru_add_drain();
847 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
848 	pagevec_reinit(pvec);
849 }
850 EXPORT_SYMBOL(__pagevec_release);
851 
852 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
853 /* used by __split_huge_page_refcount() */
854 void lru_add_page_tail(struct page *page, struct page *page_tail,
855 		       struct lruvec *lruvec, struct list_head *list)
856 {
857 	const int file = 0;
858 
859 	VM_BUG_ON(!PageHead(page));
860 	VM_BUG_ON(PageCompound(page_tail));
861 	VM_BUG_ON(PageLRU(page_tail));
862 	VM_BUG_ON(NR_CPUS != 1 &&
863 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
864 
865 	if (!list)
866 		SetPageLRU(page_tail);
867 
868 	if (likely(PageLRU(page)))
869 		list_add_tail(&page_tail->lru, &page->lru);
870 	else if (list) {
871 		/* page reclaim is reclaiming a huge page */
872 		get_page(page_tail);
873 		list_add_tail(&page_tail->lru, list);
874 	} else {
875 		struct list_head *list_head;
876 		/*
877 		 * Head page has not yet been counted, as an hpage,
878 		 * so we must account for each subpage individually.
879 		 *
880 		 * Use the standard add function to put page_tail on the list,
881 		 * but then correct its position so they all end up in order.
882 		 */
883 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
884 		list_head = page_tail->lru.prev;
885 		list_move_tail(&page_tail->lru, list_head);
886 	}
887 
888 	if (!PageUnevictable(page))
889 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
890 }
891 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
892 
893 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
894 				 void *arg)
895 {
896 	int file = page_is_file_cache(page);
897 	int active = PageActive(page);
898 	enum lru_list lru = page_lru(page);
899 
900 	VM_BUG_ON(PageLRU(page));
901 
902 	SetPageLRU(page);
903 	add_page_to_lru_list(page, lruvec, lru);
904 	update_page_reclaim_stat(lruvec, file, active);
905 	trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
906 }
907 
908 /*
909  * Add the passed pages to the LRU, then drop the caller's refcount
910  * on them.  Reinitialises the caller's pagevec.
911  */
912 void __pagevec_lru_add(struct pagevec *pvec)
913 {
914 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
915 }
916 EXPORT_SYMBOL(__pagevec_lru_add);
917 
918 /**
919  * pagevec_lookup - gang pagecache lookup
920  * @pvec:	Where the resulting pages are placed
921  * @mapping:	The address_space to search
922  * @start:	The starting page index
923  * @nr_pages:	The maximum number of pages
924  *
925  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
926  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
927  * reference against the pages in @pvec.
928  *
929  * The search returns a group of mapping-contiguous pages with ascending
930  * indexes.  There may be holes in the indices due to not-present pages.
931  *
932  * pagevec_lookup() returns the number of pages which were found.
933  */
934 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
935 		pgoff_t start, unsigned nr_pages)
936 {
937 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
938 	return pagevec_count(pvec);
939 }
940 EXPORT_SYMBOL(pagevec_lookup);
941 
942 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
943 		pgoff_t *index, int tag, unsigned nr_pages)
944 {
945 	pvec->nr = find_get_pages_tag(mapping, index, tag,
946 					nr_pages, pvec->pages);
947 	return pagevec_count(pvec);
948 }
949 EXPORT_SYMBOL(pagevec_lookup_tag);
950 
951 /*
952  * Perform any setup for the swap system
953  */
954 void __init swap_setup(void)
955 {
956 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
957 #ifdef CONFIG_SWAP
958 	int i;
959 
960 	if (bdi_init(swapper_spaces[0].backing_dev_info))
961 		panic("Failed to init swap bdi");
962 	for (i = 0; i < MAX_SWAPFILES; i++) {
963 		spin_lock_init(&swapper_spaces[i].tree_lock);
964 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
965 	}
966 #endif
967 
968 	/* Use a smaller cluster for small-memory machines */
969 	if (megs < 16)
970 		page_cluster = 2;
971 	else
972 		page_cluster = 3;
973 	/*
974 	 * Right now other parts of the system means that we
975 	 * _really_ don't want to cluster much more
976 	 */
977 }
978