1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/memremap.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 #include <linux/gfp.h> 34 #include <linux/uio.h> 35 #include <linux/hugetlb.h> 36 #include <linux/page_idle.h> 37 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/pagemap.h> 42 43 /* How many pages do we try to swap or page in/out together? */ 44 int page_cluster; 45 46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); 47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); 49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 50 #ifdef CONFIG_SMP 51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 52 #endif 53 54 /* 55 * This path almost never happens for VM activity - pages are normally 56 * freed via pagevecs. But it gets used by networking. 57 */ 58 static void __page_cache_release(struct page *page) 59 { 60 if (PageLRU(page)) { 61 struct zone *zone = page_zone(page); 62 struct lruvec *lruvec; 63 unsigned long flags; 64 65 spin_lock_irqsave(zone_lru_lock(zone), flags); 66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 67 VM_BUG_ON_PAGE(!PageLRU(page), page); 68 __ClearPageLRU(page); 69 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 70 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 71 } 72 mem_cgroup_uncharge(page); 73 } 74 75 static void __put_single_page(struct page *page) 76 { 77 __page_cache_release(page); 78 free_hot_cold_page(page, false); 79 } 80 81 static void __put_compound_page(struct page *page) 82 { 83 compound_page_dtor *dtor; 84 85 /* 86 * __page_cache_release() is supposed to be called for thp, not for 87 * hugetlb. This is because hugetlb page does never have PageLRU set 88 * (it's never listed to any LRU lists) and no memcg routines should 89 * be called for hugetlb (it has a separate hugetlb_cgroup.) 90 */ 91 if (!PageHuge(page)) 92 __page_cache_release(page); 93 dtor = get_compound_page_dtor(page); 94 (*dtor)(page); 95 } 96 97 void __put_page(struct page *page) 98 { 99 if (unlikely(PageCompound(page))) 100 __put_compound_page(page); 101 else 102 __put_single_page(page); 103 } 104 EXPORT_SYMBOL(__put_page); 105 106 /** 107 * put_pages_list() - release a list of pages 108 * @pages: list of pages threaded on page->lru 109 * 110 * Release a list of pages which are strung together on page.lru. Currently 111 * used by read_cache_pages() and related error recovery code. 112 */ 113 void put_pages_list(struct list_head *pages) 114 { 115 while (!list_empty(pages)) { 116 struct page *victim; 117 118 victim = list_entry(pages->prev, struct page, lru); 119 list_del(&victim->lru); 120 put_page(victim); 121 } 122 } 123 EXPORT_SYMBOL(put_pages_list); 124 125 /* 126 * get_kernel_pages() - pin kernel pages in memory 127 * @kiov: An array of struct kvec structures 128 * @nr_segs: number of segments to pin 129 * @write: pinning for read/write, currently ignored 130 * @pages: array that receives pointers to the pages pinned. 131 * Should be at least nr_segs long. 132 * 133 * Returns number of pages pinned. This may be fewer than the number 134 * requested. If nr_pages is 0 or negative, returns 0. If no pages 135 * were pinned, returns -errno. Each page returned must be released 136 * with a put_page() call when it is finished with. 137 */ 138 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 139 struct page **pages) 140 { 141 int seg; 142 143 for (seg = 0; seg < nr_segs; seg++) { 144 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 145 return seg; 146 147 pages[seg] = kmap_to_page(kiov[seg].iov_base); 148 get_page(pages[seg]); 149 } 150 151 return seg; 152 } 153 EXPORT_SYMBOL_GPL(get_kernel_pages); 154 155 /* 156 * get_kernel_page() - pin a kernel page in memory 157 * @start: starting kernel address 158 * @write: pinning for read/write, currently ignored 159 * @pages: array that receives pointer to the page pinned. 160 * Must be at least nr_segs long. 161 * 162 * Returns 1 if page is pinned. If the page was not pinned, returns 163 * -errno. The page returned must be released with a put_page() call 164 * when it is finished with. 165 */ 166 int get_kernel_page(unsigned long start, int write, struct page **pages) 167 { 168 const struct kvec kiov = { 169 .iov_base = (void *)start, 170 .iov_len = PAGE_SIZE 171 }; 172 173 return get_kernel_pages(&kiov, 1, write, pages); 174 } 175 EXPORT_SYMBOL_GPL(get_kernel_page); 176 177 static void pagevec_lru_move_fn(struct pagevec *pvec, 178 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 179 void *arg) 180 { 181 int i; 182 struct pglist_data *pgdat = NULL; 183 struct lruvec *lruvec; 184 unsigned long flags = 0; 185 186 for (i = 0; i < pagevec_count(pvec); i++) { 187 struct page *page = pvec->pages[i]; 188 struct pglist_data *pagepgdat = page_pgdat(page); 189 190 if (pagepgdat != pgdat) { 191 if (pgdat) 192 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 193 pgdat = pagepgdat; 194 spin_lock_irqsave(&pgdat->lru_lock, flags); 195 } 196 197 lruvec = mem_cgroup_page_lruvec(page, pgdat); 198 (*move_fn)(page, lruvec, arg); 199 } 200 if (pgdat) 201 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 202 release_pages(pvec->pages, pvec->nr, pvec->cold); 203 pagevec_reinit(pvec); 204 } 205 206 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 207 void *arg) 208 { 209 int *pgmoved = arg; 210 211 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 212 enum lru_list lru = page_lru_base_type(page); 213 list_move_tail(&page->lru, &lruvec->lists[lru]); 214 (*pgmoved)++; 215 } 216 } 217 218 /* 219 * pagevec_move_tail() must be called with IRQ disabled. 220 * Otherwise this may cause nasty races. 221 */ 222 static void pagevec_move_tail(struct pagevec *pvec) 223 { 224 int pgmoved = 0; 225 226 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 227 __count_vm_events(PGROTATED, pgmoved); 228 } 229 230 /* 231 * Writeback is about to end against a page which has been marked for immediate 232 * reclaim. If it still appears to be reclaimable, move it to the tail of the 233 * inactive list. 234 */ 235 void rotate_reclaimable_page(struct page *page) 236 { 237 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 238 !PageUnevictable(page) && PageLRU(page)) { 239 struct pagevec *pvec; 240 unsigned long flags; 241 242 get_page(page); 243 local_irq_save(flags); 244 pvec = this_cpu_ptr(&lru_rotate_pvecs); 245 if (!pagevec_add(pvec, page) || PageCompound(page)) 246 pagevec_move_tail(pvec); 247 local_irq_restore(flags); 248 } 249 } 250 251 static void update_page_reclaim_stat(struct lruvec *lruvec, 252 int file, int rotated) 253 { 254 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 255 256 reclaim_stat->recent_scanned[file]++; 257 if (rotated) 258 reclaim_stat->recent_rotated[file]++; 259 } 260 261 static void __activate_page(struct page *page, struct lruvec *lruvec, 262 void *arg) 263 { 264 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 265 int file = page_is_file_cache(page); 266 int lru = page_lru_base_type(page); 267 268 del_page_from_lru_list(page, lruvec, lru); 269 SetPageActive(page); 270 lru += LRU_ACTIVE; 271 add_page_to_lru_list(page, lruvec, lru); 272 trace_mm_lru_activate(page); 273 274 __count_vm_event(PGACTIVATE); 275 update_page_reclaim_stat(lruvec, file, 1); 276 } 277 } 278 279 #ifdef CONFIG_SMP 280 static void activate_page_drain(int cpu) 281 { 282 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 283 284 if (pagevec_count(pvec)) 285 pagevec_lru_move_fn(pvec, __activate_page, NULL); 286 } 287 288 static bool need_activate_page_drain(int cpu) 289 { 290 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; 291 } 292 293 void activate_page(struct page *page) 294 { 295 page = compound_head(page); 296 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 297 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 298 299 get_page(page); 300 if (!pagevec_add(pvec, page) || PageCompound(page)) 301 pagevec_lru_move_fn(pvec, __activate_page, NULL); 302 put_cpu_var(activate_page_pvecs); 303 } 304 } 305 306 #else 307 static inline void activate_page_drain(int cpu) 308 { 309 } 310 311 static bool need_activate_page_drain(int cpu) 312 { 313 return false; 314 } 315 316 void activate_page(struct page *page) 317 { 318 struct zone *zone = page_zone(page); 319 320 page = compound_head(page); 321 spin_lock_irq(zone_lru_lock(zone)); 322 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL); 323 spin_unlock_irq(zone_lru_lock(zone)); 324 } 325 #endif 326 327 static void __lru_cache_activate_page(struct page *page) 328 { 329 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 330 int i; 331 332 /* 333 * Search backwards on the optimistic assumption that the page being 334 * activated has just been added to this pagevec. Note that only 335 * the local pagevec is examined as a !PageLRU page could be in the 336 * process of being released, reclaimed, migrated or on a remote 337 * pagevec that is currently being drained. Furthermore, marking 338 * a remote pagevec's page PageActive potentially hits a race where 339 * a page is marked PageActive just after it is added to the inactive 340 * list causing accounting errors and BUG_ON checks to trigger. 341 */ 342 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 343 struct page *pagevec_page = pvec->pages[i]; 344 345 if (pagevec_page == page) { 346 SetPageActive(page); 347 break; 348 } 349 } 350 351 put_cpu_var(lru_add_pvec); 352 } 353 354 /* 355 * Mark a page as having seen activity. 356 * 357 * inactive,unreferenced -> inactive,referenced 358 * inactive,referenced -> active,unreferenced 359 * active,unreferenced -> active,referenced 360 * 361 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 362 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 363 */ 364 void mark_page_accessed(struct page *page) 365 { 366 page = compound_head(page); 367 if (!PageActive(page) && !PageUnevictable(page) && 368 PageReferenced(page)) { 369 370 /* 371 * If the page is on the LRU, queue it for activation via 372 * activate_page_pvecs. Otherwise, assume the page is on a 373 * pagevec, mark it active and it'll be moved to the active 374 * LRU on the next drain. 375 */ 376 if (PageLRU(page)) 377 activate_page(page); 378 else 379 __lru_cache_activate_page(page); 380 ClearPageReferenced(page); 381 if (page_is_file_cache(page)) 382 workingset_activation(page); 383 } else if (!PageReferenced(page)) { 384 SetPageReferenced(page); 385 } 386 if (page_is_idle(page)) 387 clear_page_idle(page); 388 } 389 EXPORT_SYMBOL(mark_page_accessed); 390 391 static void __lru_cache_add(struct page *page) 392 { 393 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 394 395 get_page(page); 396 if (!pagevec_add(pvec, page) || PageCompound(page)) 397 __pagevec_lru_add(pvec); 398 put_cpu_var(lru_add_pvec); 399 } 400 401 /** 402 * lru_cache_add: add a page to the page lists 403 * @page: the page to add 404 */ 405 void lru_cache_add_anon(struct page *page) 406 { 407 if (PageActive(page)) 408 ClearPageActive(page); 409 __lru_cache_add(page); 410 } 411 412 void lru_cache_add_file(struct page *page) 413 { 414 if (PageActive(page)) 415 ClearPageActive(page); 416 __lru_cache_add(page); 417 } 418 EXPORT_SYMBOL(lru_cache_add_file); 419 420 /** 421 * lru_cache_add - add a page to a page list 422 * @page: the page to be added to the LRU. 423 * 424 * Queue the page for addition to the LRU via pagevec. The decision on whether 425 * to add the page to the [in]active [file|anon] list is deferred until the 426 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 427 * have the page added to the active list using mark_page_accessed(). 428 */ 429 void lru_cache_add(struct page *page) 430 { 431 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 432 VM_BUG_ON_PAGE(PageLRU(page), page); 433 __lru_cache_add(page); 434 } 435 436 /** 437 * add_page_to_unevictable_list - add a page to the unevictable list 438 * @page: the page to be added to the unevictable list 439 * 440 * Add page directly to its zone's unevictable list. To avoid races with 441 * tasks that might be making the page evictable, through eg. munlock, 442 * munmap or exit, while it's not on the lru, we want to add the page 443 * while it's locked or otherwise "invisible" to other tasks. This is 444 * difficult to do when using the pagevec cache, so bypass that. 445 */ 446 void add_page_to_unevictable_list(struct page *page) 447 { 448 struct pglist_data *pgdat = page_pgdat(page); 449 struct lruvec *lruvec; 450 451 spin_lock_irq(&pgdat->lru_lock); 452 lruvec = mem_cgroup_page_lruvec(page, pgdat); 453 ClearPageActive(page); 454 SetPageUnevictable(page); 455 SetPageLRU(page); 456 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); 457 spin_unlock_irq(&pgdat->lru_lock); 458 } 459 460 /** 461 * lru_cache_add_active_or_unevictable 462 * @page: the page to be added to LRU 463 * @vma: vma in which page is mapped for determining reclaimability 464 * 465 * Place @page on the active or unevictable LRU list, depending on its 466 * evictability. Note that if the page is not evictable, it goes 467 * directly back onto it's zone's unevictable list, it does NOT use a 468 * per cpu pagevec. 469 */ 470 void lru_cache_add_active_or_unevictable(struct page *page, 471 struct vm_area_struct *vma) 472 { 473 VM_BUG_ON_PAGE(PageLRU(page), page); 474 475 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { 476 SetPageActive(page); 477 lru_cache_add(page); 478 return; 479 } 480 481 if (!TestSetPageMlocked(page)) { 482 /* 483 * We use the irq-unsafe __mod_zone_page_stat because this 484 * counter is not modified from interrupt context, and the pte 485 * lock is held(spinlock), which implies preemption disabled. 486 */ 487 __mod_zone_page_state(page_zone(page), NR_MLOCK, 488 hpage_nr_pages(page)); 489 count_vm_event(UNEVICTABLE_PGMLOCKED); 490 } 491 add_page_to_unevictable_list(page); 492 } 493 494 /* 495 * If the page can not be invalidated, it is moved to the 496 * inactive list to speed up its reclaim. It is moved to the 497 * head of the list, rather than the tail, to give the flusher 498 * threads some time to write it out, as this is much more 499 * effective than the single-page writeout from reclaim. 500 * 501 * If the page isn't page_mapped and dirty/writeback, the page 502 * could reclaim asap using PG_reclaim. 503 * 504 * 1. active, mapped page -> none 505 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 506 * 3. inactive, mapped page -> none 507 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 508 * 5. inactive, clean -> inactive, tail 509 * 6. Others -> none 510 * 511 * In 4, why it moves inactive's head, the VM expects the page would 512 * be write it out by flusher threads as this is much more effective 513 * than the single-page writeout from reclaim. 514 */ 515 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 516 void *arg) 517 { 518 int lru, file; 519 bool active; 520 521 if (!PageLRU(page)) 522 return; 523 524 if (PageUnevictable(page)) 525 return; 526 527 /* Some processes are using the page */ 528 if (page_mapped(page)) 529 return; 530 531 active = PageActive(page); 532 file = page_is_file_cache(page); 533 lru = page_lru_base_type(page); 534 535 del_page_from_lru_list(page, lruvec, lru + active); 536 ClearPageActive(page); 537 ClearPageReferenced(page); 538 add_page_to_lru_list(page, lruvec, lru); 539 540 if (PageWriteback(page) || PageDirty(page)) { 541 /* 542 * PG_reclaim could be raced with end_page_writeback 543 * It can make readahead confusing. But race window 544 * is _really_ small and it's non-critical problem. 545 */ 546 SetPageReclaim(page); 547 } else { 548 /* 549 * The page's writeback ends up during pagevec 550 * We moves tha page into tail of inactive. 551 */ 552 list_move_tail(&page->lru, &lruvec->lists[lru]); 553 __count_vm_event(PGROTATED); 554 } 555 556 if (active) 557 __count_vm_event(PGDEACTIVATE); 558 update_page_reclaim_stat(lruvec, file, 0); 559 } 560 561 562 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 563 void *arg) 564 { 565 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 566 int file = page_is_file_cache(page); 567 int lru = page_lru_base_type(page); 568 569 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); 570 ClearPageActive(page); 571 ClearPageReferenced(page); 572 add_page_to_lru_list(page, lruvec, lru); 573 574 __count_vm_event(PGDEACTIVATE); 575 update_page_reclaim_stat(lruvec, file, 0); 576 } 577 } 578 579 /* 580 * Drain pages out of the cpu's pagevecs. 581 * Either "cpu" is the current CPU, and preemption has already been 582 * disabled; or "cpu" is being hot-unplugged, and is already dead. 583 */ 584 void lru_add_drain_cpu(int cpu) 585 { 586 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); 587 588 if (pagevec_count(pvec)) 589 __pagevec_lru_add(pvec); 590 591 pvec = &per_cpu(lru_rotate_pvecs, cpu); 592 if (pagevec_count(pvec)) { 593 unsigned long flags; 594 595 /* No harm done if a racing interrupt already did this */ 596 local_irq_save(flags); 597 pagevec_move_tail(pvec); 598 local_irq_restore(flags); 599 } 600 601 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); 602 if (pagevec_count(pvec)) 603 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 604 605 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 606 if (pagevec_count(pvec)) 607 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 608 609 activate_page_drain(cpu); 610 } 611 612 /** 613 * deactivate_file_page - forcefully deactivate a file page 614 * @page: page to deactivate 615 * 616 * This function hints the VM that @page is a good reclaim candidate, 617 * for example if its invalidation fails due to the page being dirty 618 * or under writeback. 619 */ 620 void deactivate_file_page(struct page *page) 621 { 622 /* 623 * In a workload with many unevictable page such as mprotect, 624 * unevictable page deactivation for accelerating reclaim is pointless. 625 */ 626 if (PageUnevictable(page)) 627 return; 628 629 if (likely(get_page_unless_zero(page))) { 630 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); 631 632 if (!pagevec_add(pvec, page) || PageCompound(page)) 633 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 634 put_cpu_var(lru_deactivate_file_pvecs); 635 } 636 } 637 638 /** 639 * deactivate_page - deactivate a page 640 * @page: page to deactivate 641 * 642 * deactivate_page() moves @page to the inactive list if @page was on the active 643 * list and was not an unevictable page. This is done to accelerate the reclaim 644 * of @page. 645 */ 646 void deactivate_page(struct page *page) 647 { 648 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 649 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 650 651 get_page(page); 652 if (!pagevec_add(pvec, page) || PageCompound(page)) 653 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 654 put_cpu_var(lru_deactivate_pvecs); 655 } 656 } 657 658 void lru_add_drain(void) 659 { 660 lru_add_drain_cpu(get_cpu()); 661 put_cpu(); 662 } 663 664 static void lru_add_drain_per_cpu(struct work_struct *dummy) 665 { 666 lru_add_drain(); 667 } 668 669 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 670 671 /* 672 * lru_add_drain_wq is used to do lru_add_drain_all() from a WQ_MEM_RECLAIM 673 * workqueue, aiding in getting memory freed. 674 */ 675 static struct workqueue_struct *lru_add_drain_wq; 676 677 static int __init lru_init(void) 678 { 679 lru_add_drain_wq = alloc_workqueue("lru-add-drain", WQ_MEM_RECLAIM, 0); 680 681 if (WARN(!lru_add_drain_wq, 682 "Failed to create workqueue lru_add_drain_wq")) 683 return -ENOMEM; 684 685 return 0; 686 } 687 early_initcall(lru_init); 688 689 void lru_add_drain_all(void) 690 { 691 static DEFINE_MUTEX(lock); 692 static struct cpumask has_work; 693 int cpu; 694 695 mutex_lock(&lock); 696 get_online_cpus(); 697 cpumask_clear(&has_work); 698 699 for_each_online_cpu(cpu) { 700 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 701 702 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || 703 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || 704 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || 705 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) || 706 need_activate_page_drain(cpu)) { 707 INIT_WORK(work, lru_add_drain_per_cpu); 708 queue_work_on(cpu, lru_add_drain_wq, work); 709 cpumask_set_cpu(cpu, &has_work); 710 } 711 } 712 713 for_each_cpu(cpu, &has_work) 714 flush_work(&per_cpu(lru_add_drain_work, cpu)); 715 716 put_online_cpus(); 717 mutex_unlock(&lock); 718 } 719 720 /** 721 * release_pages - batched put_page() 722 * @pages: array of pages to release 723 * @nr: number of pages 724 * @cold: whether the pages are cache cold 725 * 726 * Decrement the reference count on all the pages in @pages. If it 727 * fell to zero, remove the page from the LRU and free it. 728 */ 729 void release_pages(struct page **pages, int nr, bool cold) 730 { 731 int i; 732 LIST_HEAD(pages_to_free); 733 struct pglist_data *locked_pgdat = NULL; 734 struct lruvec *lruvec; 735 unsigned long uninitialized_var(flags); 736 unsigned int uninitialized_var(lock_batch); 737 738 for (i = 0; i < nr; i++) { 739 struct page *page = pages[i]; 740 741 /* 742 * Make sure the IRQ-safe lock-holding time does not get 743 * excessive with a continuous string of pages from the 744 * same pgdat. The lock is held only if pgdat != NULL. 745 */ 746 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) { 747 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 748 locked_pgdat = NULL; 749 } 750 751 if (is_huge_zero_page(page)) { 752 put_huge_zero_page(); 753 continue; 754 } 755 756 page = compound_head(page); 757 if (!put_page_testzero(page)) 758 continue; 759 760 if (PageCompound(page)) { 761 if (locked_pgdat) { 762 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 763 locked_pgdat = NULL; 764 } 765 __put_compound_page(page); 766 continue; 767 } 768 769 if (PageLRU(page)) { 770 struct pglist_data *pgdat = page_pgdat(page); 771 772 if (pgdat != locked_pgdat) { 773 if (locked_pgdat) 774 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 775 flags); 776 lock_batch = 0; 777 locked_pgdat = pgdat; 778 spin_lock_irqsave(&locked_pgdat->lru_lock, flags); 779 } 780 781 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat); 782 VM_BUG_ON_PAGE(!PageLRU(page), page); 783 __ClearPageLRU(page); 784 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 785 } 786 787 /* Clear Active bit in case of parallel mark_page_accessed */ 788 __ClearPageActive(page); 789 790 list_add(&page->lru, &pages_to_free); 791 } 792 if (locked_pgdat) 793 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 794 795 mem_cgroup_uncharge_list(&pages_to_free); 796 free_hot_cold_page_list(&pages_to_free, cold); 797 } 798 EXPORT_SYMBOL(release_pages); 799 800 /* 801 * The pages which we're about to release may be in the deferred lru-addition 802 * queues. That would prevent them from really being freed right now. That's 803 * OK from a correctness point of view but is inefficient - those pages may be 804 * cache-warm and we want to give them back to the page allocator ASAP. 805 * 806 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 807 * and __pagevec_lru_add_active() call release_pages() directly to avoid 808 * mutual recursion. 809 */ 810 void __pagevec_release(struct pagevec *pvec) 811 { 812 lru_add_drain(); 813 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 814 pagevec_reinit(pvec); 815 } 816 EXPORT_SYMBOL(__pagevec_release); 817 818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 819 /* used by __split_huge_page_refcount() */ 820 void lru_add_page_tail(struct page *page, struct page *page_tail, 821 struct lruvec *lruvec, struct list_head *list) 822 { 823 const int file = 0; 824 825 VM_BUG_ON_PAGE(!PageHead(page), page); 826 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 827 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 828 VM_BUG_ON(NR_CPUS != 1 && 829 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock)); 830 831 if (!list) 832 SetPageLRU(page_tail); 833 834 if (likely(PageLRU(page))) 835 list_add_tail(&page_tail->lru, &page->lru); 836 else if (list) { 837 /* page reclaim is reclaiming a huge page */ 838 get_page(page_tail); 839 list_add_tail(&page_tail->lru, list); 840 } else { 841 struct list_head *list_head; 842 /* 843 * Head page has not yet been counted, as an hpage, 844 * so we must account for each subpage individually. 845 * 846 * Use the standard add function to put page_tail on the list, 847 * but then correct its position so they all end up in order. 848 */ 849 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); 850 list_head = page_tail->lru.prev; 851 list_move_tail(&page_tail->lru, list_head); 852 } 853 854 if (!PageUnevictable(page)) 855 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 856 } 857 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 858 859 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 860 void *arg) 861 { 862 int file = page_is_file_cache(page); 863 int active = PageActive(page); 864 enum lru_list lru = page_lru(page); 865 866 VM_BUG_ON_PAGE(PageLRU(page), page); 867 868 SetPageLRU(page); 869 add_page_to_lru_list(page, lruvec, lru); 870 update_page_reclaim_stat(lruvec, file, active); 871 trace_mm_lru_insertion(page, lru); 872 } 873 874 /* 875 * Add the passed pages to the LRU, then drop the caller's refcount 876 * on them. Reinitialises the caller's pagevec. 877 */ 878 void __pagevec_lru_add(struct pagevec *pvec) 879 { 880 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 881 } 882 EXPORT_SYMBOL(__pagevec_lru_add); 883 884 /** 885 * pagevec_lookup_entries - gang pagecache lookup 886 * @pvec: Where the resulting entries are placed 887 * @mapping: The address_space to search 888 * @start: The starting entry index 889 * @nr_entries: The maximum number of entries 890 * @indices: The cache indices corresponding to the entries in @pvec 891 * 892 * pagevec_lookup_entries() will search for and return a group of up 893 * to @nr_entries pages and shadow entries in the mapping. All 894 * entries are placed in @pvec. pagevec_lookup_entries() takes a 895 * reference against actual pages in @pvec. 896 * 897 * The search returns a group of mapping-contiguous entries with 898 * ascending indexes. There may be holes in the indices due to 899 * not-present entries. 900 * 901 * pagevec_lookup_entries() returns the number of entries which were 902 * found. 903 */ 904 unsigned pagevec_lookup_entries(struct pagevec *pvec, 905 struct address_space *mapping, 906 pgoff_t start, unsigned nr_pages, 907 pgoff_t *indices) 908 { 909 pvec->nr = find_get_entries(mapping, start, nr_pages, 910 pvec->pages, indices); 911 return pagevec_count(pvec); 912 } 913 914 /** 915 * pagevec_remove_exceptionals - pagevec exceptionals pruning 916 * @pvec: The pagevec to prune 917 * 918 * pagevec_lookup_entries() fills both pages and exceptional radix 919 * tree entries into the pagevec. This function prunes all 920 * exceptionals from @pvec without leaving holes, so that it can be 921 * passed on to page-only pagevec operations. 922 */ 923 void pagevec_remove_exceptionals(struct pagevec *pvec) 924 { 925 int i, j; 926 927 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 928 struct page *page = pvec->pages[i]; 929 if (!radix_tree_exceptional_entry(page)) 930 pvec->pages[j++] = page; 931 } 932 pvec->nr = j; 933 } 934 935 /** 936 * pagevec_lookup - gang pagecache lookup 937 * @pvec: Where the resulting pages are placed 938 * @mapping: The address_space to search 939 * @start: The starting page index 940 * @nr_pages: The maximum number of pages 941 * 942 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 943 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 944 * reference against the pages in @pvec. 945 * 946 * The search returns a group of mapping-contiguous pages with ascending 947 * indexes. There may be holes in the indices due to not-present pages. 948 * 949 * pagevec_lookup() returns the number of pages which were found. 950 */ 951 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 952 pgoff_t start, unsigned nr_pages) 953 { 954 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 955 return pagevec_count(pvec); 956 } 957 EXPORT_SYMBOL(pagevec_lookup); 958 959 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 960 pgoff_t *index, int tag, unsigned nr_pages) 961 { 962 pvec->nr = find_get_pages_tag(mapping, index, tag, 963 nr_pages, pvec->pages); 964 return pagevec_count(pvec); 965 } 966 EXPORT_SYMBOL(pagevec_lookup_tag); 967 968 /* 969 * Perform any setup for the swap system 970 */ 971 void __init swap_setup(void) 972 { 973 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 974 #ifdef CONFIG_SWAP 975 int i; 976 977 for (i = 0; i < MAX_SWAPFILES; i++) 978 spin_lock_init(&swapper_spaces[i].tree_lock); 979 #endif 980 981 /* Use a smaller cluster for small-memory machines */ 982 if (megs < 16) 983 page_cluster = 2; 984 else 985 page_cluster = 3; 986 /* 987 * Right now other parts of the system means that we 988 * _really_ don't want to cluster much more 989 */ 990 } 991