1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/mm_inline.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page() */ 27 #include <linux/percpu_counter.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 #include <linux/gfp.h> 34 35 #include "internal.h" 36 37 /* How many pages do we try to swap or page in/out together? */ 38 int page_cluster; 39 40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); 41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 42 43 /* 44 * This path almost never happens for VM activity - pages are normally 45 * freed via pagevecs. But it gets used by networking. 46 */ 47 static void __page_cache_release(struct page *page) 48 { 49 if (PageLRU(page)) { 50 unsigned long flags; 51 struct zone *zone = page_zone(page); 52 53 spin_lock_irqsave(&zone->lru_lock, flags); 54 VM_BUG_ON(!PageLRU(page)); 55 __ClearPageLRU(page); 56 del_page_from_lru(zone, page); 57 spin_unlock_irqrestore(&zone->lru_lock, flags); 58 } 59 free_hot_cold_page(page, 0); 60 } 61 62 static void put_compound_page(struct page *page) 63 { 64 page = compound_head(page); 65 if (put_page_testzero(page)) { 66 compound_page_dtor *dtor; 67 68 dtor = get_compound_page_dtor(page); 69 (*dtor)(page); 70 } 71 } 72 73 void put_page(struct page *page) 74 { 75 if (unlikely(PageCompound(page))) 76 put_compound_page(page); 77 else if (put_page_testzero(page)) 78 __page_cache_release(page); 79 } 80 EXPORT_SYMBOL(put_page); 81 82 /** 83 * put_pages_list() - release a list of pages 84 * @pages: list of pages threaded on page->lru 85 * 86 * Release a list of pages which are strung together on page.lru. Currently 87 * used by read_cache_pages() and related error recovery code. 88 */ 89 void put_pages_list(struct list_head *pages) 90 { 91 while (!list_empty(pages)) { 92 struct page *victim; 93 94 victim = list_entry(pages->prev, struct page, lru); 95 list_del(&victim->lru); 96 page_cache_release(victim); 97 } 98 } 99 EXPORT_SYMBOL(put_pages_list); 100 101 /* 102 * pagevec_move_tail() must be called with IRQ disabled. 103 * Otherwise this may cause nasty races. 104 */ 105 static void pagevec_move_tail(struct pagevec *pvec) 106 { 107 int i; 108 int pgmoved = 0; 109 struct zone *zone = NULL; 110 111 for (i = 0; i < pagevec_count(pvec); i++) { 112 struct page *page = pvec->pages[i]; 113 struct zone *pagezone = page_zone(page); 114 115 if (pagezone != zone) { 116 if (zone) 117 spin_unlock(&zone->lru_lock); 118 zone = pagezone; 119 spin_lock(&zone->lru_lock); 120 } 121 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 122 int lru = page_lru_base_type(page); 123 list_move_tail(&page->lru, &zone->lru[lru].list); 124 pgmoved++; 125 } 126 } 127 if (zone) 128 spin_unlock(&zone->lru_lock); 129 __count_vm_events(PGROTATED, pgmoved); 130 release_pages(pvec->pages, pvec->nr, pvec->cold); 131 pagevec_reinit(pvec); 132 } 133 134 /* 135 * Writeback is about to end against a page which has been marked for immediate 136 * reclaim. If it still appears to be reclaimable, move it to the tail of the 137 * inactive list. 138 */ 139 void rotate_reclaimable_page(struct page *page) 140 { 141 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 142 !PageUnevictable(page) && PageLRU(page)) { 143 struct pagevec *pvec; 144 unsigned long flags; 145 146 page_cache_get(page); 147 local_irq_save(flags); 148 pvec = &__get_cpu_var(lru_rotate_pvecs); 149 if (!pagevec_add(pvec, page)) 150 pagevec_move_tail(pvec); 151 local_irq_restore(flags); 152 } 153 } 154 155 static void update_page_reclaim_stat(struct zone *zone, struct page *page, 156 int file, int rotated) 157 { 158 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat; 159 struct zone_reclaim_stat *memcg_reclaim_stat; 160 161 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page); 162 163 reclaim_stat->recent_scanned[file]++; 164 if (rotated) 165 reclaim_stat->recent_rotated[file]++; 166 167 if (!memcg_reclaim_stat) 168 return; 169 170 memcg_reclaim_stat->recent_scanned[file]++; 171 if (rotated) 172 memcg_reclaim_stat->recent_rotated[file]++; 173 } 174 175 /* 176 * FIXME: speed this up? 177 */ 178 void activate_page(struct page *page) 179 { 180 struct zone *zone = page_zone(page); 181 182 spin_lock_irq(&zone->lru_lock); 183 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 184 int file = page_is_file_cache(page); 185 int lru = page_lru_base_type(page); 186 del_page_from_lru_list(zone, page, lru); 187 188 SetPageActive(page); 189 lru += LRU_ACTIVE; 190 add_page_to_lru_list(zone, page, lru); 191 __count_vm_event(PGACTIVATE); 192 193 update_page_reclaim_stat(zone, page, file, 1); 194 } 195 spin_unlock_irq(&zone->lru_lock); 196 } 197 198 /* 199 * Mark a page as having seen activity. 200 * 201 * inactive,unreferenced -> inactive,referenced 202 * inactive,referenced -> active,unreferenced 203 * active,unreferenced -> active,referenced 204 */ 205 void mark_page_accessed(struct page *page) 206 { 207 if (!PageActive(page) && !PageUnevictable(page) && 208 PageReferenced(page) && PageLRU(page)) { 209 activate_page(page); 210 ClearPageReferenced(page); 211 } else if (!PageReferenced(page)) { 212 SetPageReferenced(page); 213 } 214 } 215 216 EXPORT_SYMBOL(mark_page_accessed); 217 218 void __lru_cache_add(struct page *page, enum lru_list lru) 219 { 220 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; 221 222 page_cache_get(page); 223 if (!pagevec_add(pvec, page)) 224 ____pagevec_lru_add(pvec, lru); 225 put_cpu_var(lru_add_pvecs); 226 } 227 EXPORT_SYMBOL(__lru_cache_add); 228 229 /** 230 * lru_cache_add_lru - add a page to a page list 231 * @page: the page to be added to the LRU. 232 * @lru: the LRU list to which the page is added. 233 */ 234 void lru_cache_add_lru(struct page *page, enum lru_list lru) 235 { 236 if (PageActive(page)) { 237 VM_BUG_ON(PageUnevictable(page)); 238 ClearPageActive(page); 239 } else if (PageUnevictable(page)) { 240 VM_BUG_ON(PageActive(page)); 241 ClearPageUnevictable(page); 242 } 243 244 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); 245 __lru_cache_add(page, lru); 246 } 247 248 /** 249 * add_page_to_unevictable_list - add a page to the unevictable list 250 * @page: the page to be added to the unevictable list 251 * 252 * Add page directly to its zone's unevictable list. To avoid races with 253 * tasks that might be making the page evictable, through eg. munlock, 254 * munmap or exit, while it's not on the lru, we want to add the page 255 * while it's locked or otherwise "invisible" to other tasks. This is 256 * difficult to do when using the pagevec cache, so bypass that. 257 */ 258 void add_page_to_unevictable_list(struct page *page) 259 { 260 struct zone *zone = page_zone(page); 261 262 spin_lock_irq(&zone->lru_lock); 263 SetPageUnevictable(page); 264 SetPageLRU(page); 265 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE); 266 spin_unlock_irq(&zone->lru_lock); 267 } 268 269 /* 270 * Drain pages out of the cpu's pagevecs. 271 * Either "cpu" is the current CPU, and preemption has already been 272 * disabled; or "cpu" is being hot-unplugged, and is already dead. 273 */ 274 static void drain_cpu_pagevecs(int cpu) 275 { 276 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); 277 struct pagevec *pvec; 278 int lru; 279 280 for_each_lru(lru) { 281 pvec = &pvecs[lru - LRU_BASE]; 282 if (pagevec_count(pvec)) 283 ____pagevec_lru_add(pvec, lru); 284 } 285 286 pvec = &per_cpu(lru_rotate_pvecs, cpu); 287 if (pagevec_count(pvec)) { 288 unsigned long flags; 289 290 /* No harm done if a racing interrupt already did this */ 291 local_irq_save(flags); 292 pagevec_move_tail(pvec); 293 local_irq_restore(flags); 294 } 295 } 296 297 void lru_add_drain(void) 298 { 299 drain_cpu_pagevecs(get_cpu()); 300 put_cpu(); 301 } 302 303 static void lru_add_drain_per_cpu(struct work_struct *dummy) 304 { 305 lru_add_drain(); 306 } 307 308 /* 309 * Returns 0 for success 310 */ 311 int lru_add_drain_all(void) 312 { 313 return schedule_on_each_cpu(lru_add_drain_per_cpu); 314 } 315 316 /* 317 * Batched page_cache_release(). Decrement the reference count on all the 318 * passed pages. If it fell to zero then remove the page from the LRU and 319 * free it. 320 * 321 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 322 * for the remainder of the operation. 323 * 324 * The locking in this function is against shrink_inactive_list(): we recheck 325 * the page count inside the lock to see whether shrink_inactive_list() 326 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() 327 * will free it. 328 */ 329 void release_pages(struct page **pages, int nr, int cold) 330 { 331 int i; 332 struct pagevec pages_to_free; 333 struct zone *zone = NULL; 334 unsigned long uninitialized_var(flags); 335 336 pagevec_init(&pages_to_free, cold); 337 for (i = 0; i < nr; i++) { 338 struct page *page = pages[i]; 339 340 if (unlikely(PageCompound(page))) { 341 if (zone) { 342 spin_unlock_irqrestore(&zone->lru_lock, flags); 343 zone = NULL; 344 } 345 put_compound_page(page); 346 continue; 347 } 348 349 if (!put_page_testzero(page)) 350 continue; 351 352 if (PageLRU(page)) { 353 struct zone *pagezone = page_zone(page); 354 355 if (pagezone != zone) { 356 if (zone) 357 spin_unlock_irqrestore(&zone->lru_lock, 358 flags); 359 zone = pagezone; 360 spin_lock_irqsave(&zone->lru_lock, flags); 361 } 362 VM_BUG_ON(!PageLRU(page)); 363 __ClearPageLRU(page); 364 del_page_from_lru(zone, page); 365 } 366 367 if (!pagevec_add(&pages_to_free, page)) { 368 if (zone) { 369 spin_unlock_irqrestore(&zone->lru_lock, flags); 370 zone = NULL; 371 } 372 __pagevec_free(&pages_to_free); 373 pagevec_reinit(&pages_to_free); 374 } 375 } 376 if (zone) 377 spin_unlock_irqrestore(&zone->lru_lock, flags); 378 379 pagevec_free(&pages_to_free); 380 } 381 EXPORT_SYMBOL(release_pages); 382 383 /* 384 * The pages which we're about to release may be in the deferred lru-addition 385 * queues. That would prevent them from really being freed right now. That's 386 * OK from a correctness point of view but is inefficient - those pages may be 387 * cache-warm and we want to give them back to the page allocator ASAP. 388 * 389 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 390 * and __pagevec_lru_add_active() call release_pages() directly to avoid 391 * mutual recursion. 392 */ 393 void __pagevec_release(struct pagevec *pvec) 394 { 395 lru_add_drain(); 396 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 397 pagevec_reinit(pvec); 398 } 399 400 EXPORT_SYMBOL(__pagevec_release); 401 402 /* 403 * Add the passed pages to the LRU, then drop the caller's refcount 404 * on them. Reinitialises the caller's pagevec. 405 */ 406 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) 407 { 408 int i; 409 struct zone *zone = NULL; 410 411 VM_BUG_ON(is_unevictable_lru(lru)); 412 413 for (i = 0; i < pagevec_count(pvec); i++) { 414 struct page *page = pvec->pages[i]; 415 struct zone *pagezone = page_zone(page); 416 int file; 417 int active; 418 419 if (pagezone != zone) { 420 if (zone) 421 spin_unlock_irq(&zone->lru_lock); 422 zone = pagezone; 423 spin_lock_irq(&zone->lru_lock); 424 } 425 VM_BUG_ON(PageActive(page)); 426 VM_BUG_ON(PageUnevictable(page)); 427 VM_BUG_ON(PageLRU(page)); 428 SetPageLRU(page); 429 active = is_active_lru(lru); 430 file = is_file_lru(lru); 431 if (active) 432 SetPageActive(page); 433 update_page_reclaim_stat(zone, page, file, active); 434 add_page_to_lru_list(zone, page, lru); 435 } 436 if (zone) 437 spin_unlock_irq(&zone->lru_lock); 438 release_pages(pvec->pages, pvec->nr, pvec->cold); 439 pagevec_reinit(pvec); 440 } 441 442 EXPORT_SYMBOL(____pagevec_lru_add); 443 444 /* 445 * Try to drop buffers from the pages in a pagevec 446 */ 447 void pagevec_strip(struct pagevec *pvec) 448 { 449 int i; 450 451 for (i = 0; i < pagevec_count(pvec); i++) { 452 struct page *page = pvec->pages[i]; 453 454 if (page_has_private(page) && trylock_page(page)) { 455 if (page_has_private(page)) 456 try_to_release_page(page, 0); 457 unlock_page(page); 458 } 459 } 460 } 461 462 /** 463 * pagevec_lookup - gang pagecache lookup 464 * @pvec: Where the resulting pages are placed 465 * @mapping: The address_space to search 466 * @start: The starting page index 467 * @nr_pages: The maximum number of pages 468 * 469 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 470 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 471 * reference against the pages in @pvec. 472 * 473 * The search returns a group of mapping-contiguous pages with ascending 474 * indexes. There may be holes in the indices due to not-present pages. 475 * 476 * pagevec_lookup() returns the number of pages which were found. 477 */ 478 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 479 pgoff_t start, unsigned nr_pages) 480 { 481 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 482 return pagevec_count(pvec); 483 } 484 485 EXPORT_SYMBOL(pagevec_lookup); 486 487 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 488 pgoff_t *index, int tag, unsigned nr_pages) 489 { 490 pvec->nr = find_get_pages_tag(mapping, index, tag, 491 nr_pages, pvec->pages); 492 return pagevec_count(pvec); 493 } 494 495 EXPORT_SYMBOL(pagevec_lookup_tag); 496 497 /* 498 * Perform any setup for the swap system 499 */ 500 void __init swap_setup(void) 501 { 502 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 503 504 #ifdef CONFIG_SWAP 505 bdi_init(swapper_space.backing_dev_info); 506 #endif 507 508 /* Use a smaller cluster for small-memory machines */ 509 if (megs < 16) 510 page_cluster = 2; 511 else 512 page_cluster = 3; 513 /* 514 * Right now other parts of the system means that we 515 * _really_ don't want to cluster much more 516 */ 517 } 518