1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/memremap.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memremap.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/pagemap.h> 43 44 /* How many pages do we try to swap or page in/out together? */ 45 int page_cluster; 46 47 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); 48 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); 50 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs); 51 #ifdef CONFIG_SMP 52 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 53 #endif 54 55 /* 56 * This path almost never happens for VM activity - pages are normally 57 * freed via pagevecs. But it gets used by networking. 58 */ 59 static void __page_cache_release(struct page *page) 60 { 61 if (PageLRU(page)) { 62 struct zone *zone = page_zone(page); 63 struct lruvec *lruvec; 64 unsigned long flags; 65 66 spin_lock_irqsave(zone_lru_lock(zone), flags); 67 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 68 VM_BUG_ON_PAGE(!PageLRU(page), page); 69 __ClearPageLRU(page); 70 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 71 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 72 } 73 __ClearPageWaiters(page); 74 mem_cgroup_uncharge(page); 75 } 76 77 static void __put_single_page(struct page *page) 78 { 79 __page_cache_release(page); 80 free_unref_page(page); 81 } 82 83 static void __put_compound_page(struct page *page) 84 { 85 compound_page_dtor *dtor; 86 87 /* 88 * __page_cache_release() is supposed to be called for thp, not for 89 * hugetlb. This is because hugetlb page does never have PageLRU set 90 * (it's never listed to any LRU lists) and no memcg routines should 91 * be called for hugetlb (it has a separate hugetlb_cgroup.) 92 */ 93 if (!PageHuge(page)) 94 __page_cache_release(page); 95 dtor = get_compound_page_dtor(page); 96 (*dtor)(page); 97 } 98 99 void __put_page(struct page *page) 100 { 101 if (is_zone_device_page(page)) { 102 put_dev_pagemap(page->pgmap); 103 104 /* 105 * The page belongs to the device that created pgmap. Do 106 * not return it to page allocator. 107 */ 108 return; 109 } 110 111 if (unlikely(PageCompound(page))) 112 __put_compound_page(page); 113 else 114 __put_single_page(page); 115 } 116 EXPORT_SYMBOL(__put_page); 117 118 /** 119 * put_pages_list() - release a list of pages 120 * @pages: list of pages threaded on page->lru 121 * 122 * Release a list of pages which are strung together on page.lru. Currently 123 * used by read_cache_pages() and related error recovery code. 124 */ 125 void put_pages_list(struct list_head *pages) 126 { 127 while (!list_empty(pages)) { 128 struct page *victim; 129 130 victim = list_entry(pages->prev, struct page, lru); 131 list_del(&victim->lru); 132 put_page(victim); 133 } 134 } 135 EXPORT_SYMBOL(put_pages_list); 136 137 /* 138 * get_kernel_pages() - pin kernel pages in memory 139 * @kiov: An array of struct kvec structures 140 * @nr_segs: number of segments to pin 141 * @write: pinning for read/write, currently ignored 142 * @pages: array that receives pointers to the pages pinned. 143 * Should be at least nr_segs long. 144 * 145 * Returns number of pages pinned. This may be fewer than the number 146 * requested. If nr_pages is 0 or negative, returns 0. If no pages 147 * were pinned, returns -errno. Each page returned must be released 148 * with a put_page() call when it is finished with. 149 */ 150 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 151 struct page **pages) 152 { 153 int seg; 154 155 for (seg = 0; seg < nr_segs; seg++) { 156 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 157 return seg; 158 159 pages[seg] = kmap_to_page(kiov[seg].iov_base); 160 get_page(pages[seg]); 161 } 162 163 return seg; 164 } 165 EXPORT_SYMBOL_GPL(get_kernel_pages); 166 167 /* 168 * get_kernel_page() - pin a kernel page in memory 169 * @start: starting kernel address 170 * @write: pinning for read/write, currently ignored 171 * @pages: array that receives pointer to the page pinned. 172 * Must be at least nr_segs long. 173 * 174 * Returns 1 if page is pinned. If the page was not pinned, returns 175 * -errno. The page returned must be released with a put_page() call 176 * when it is finished with. 177 */ 178 int get_kernel_page(unsigned long start, int write, struct page **pages) 179 { 180 const struct kvec kiov = { 181 .iov_base = (void *)start, 182 .iov_len = PAGE_SIZE 183 }; 184 185 return get_kernel_pages(&kiov, 1, write, pages); 186 } 187 EXPORT_SYMBOL_GPL(get_kernel_page); 188 189 static void pagevec_lru_move_fn(struct pagevec *pvec, 190 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 191 void *arg) 192 { 193 int i; 194 struct pglist_data *pgdat = NULL; 195 struct lruvec *lruvec; 196 unsigned long flags = 0; 197 198 for (i = 0; i < pagevec_count(pvec); i++) { 199 struct page *page = pvec->pages[i]; 200 struct pglist_data *pagepgdat = page_pgdat(page); 201 202 if (pagepgdat != pgdat) { 203 if (pgdat) 204 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 205 pgdat = pagepgdat; 206 spin_lock_irqsave(&pgdat->lru_lock, flags); 207 } 208 209 lruvec = mem_cgroup_page_lruvec(page, pgdat); 210 (*move_fn)(page, lruvec, arg); 211 } 212 if (pgdat) 213 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 214 release_pages(pvec->pages, pvec->nr); 215 pagevec_reinit(pvec); 216 } 217 218 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 219 void *arg) 220 { 221 int *pgmoved = arg; 222 223 if (PageLRU(page) && !PageUnevictable(page)) { 224 del_page_from_lru_list(page, lruvec, page_lru(page)); 225 ClearPageActive(page); 226 add_page_to_lru_list_tail(page, lruvec, page_lru(page)); 227 (*pgmoved)++; 228 } 229 } 230 231 /* 232 * pagevec_move_tail() must be called with IRQ disabled. 233 * Otherwise this may cause nasty races. 234 */ 235 static void pagevec_move_tail(struct pagevec *pvec) 236 { 237 int pgmoved = 0; 238 239 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 240 __count_vm_events(PGROTATED, pgmoved); 241 } 242 243 /* 244 * Writeback is about to end against a page which has been marked for immediate 245 * reclaim. If it still appears to be reclaimable, move it to the tail of the 246 * inactive list. 247 */ 248 void rotate_reclaimable_page(struct page *page) 249 { 250 if (!PageLocked(page) && !PageDirty(page) && 251 !PageUnevictable(page) && PageLRU(page)) { 252 struct pagevec *pvec; 253 unsigned long flags; 254 255 get_page(page); 256 local_irq_save(flags); 257 pvec = this_cpu_ptr(&lru_rotate_pvecs); 258 if (!pagevec_add(pvec, page) || PageCompound(page)) 259 pagevec_move_tail(pvec); 260 local_irq_restore(flags); 261 } 262 } 263 264 static void update_page_reclaim_stat(struct lruvec *lruvec, 265 int file, int rotated) 266 { 267 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 268 269 reclaim_stat->recent_scanned[file]++; 270 if (rotated) 271 reclaim_stat->recent_rotated[file]++; 272 } 273 274 static void __activate_page(struct page *page, struct lruvec *lruvec, 275 void *arg) 276 { 277 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 278 int file = page_is_file_cache(page); 279 int lru = page_lru_base_type(page); 280 281 del_page_from_lru_list(page, lruvec, lru); 282 SetPageActive(page); 283 lru += LRU_ACTIVE; 284 add_page_to_lru_list(page, lruvec, lru); 285 trace_mm_lru_activate(page); 286 287 __count_vm_event(PGACTIVATE); 288 update_page_reclaim_stat(lruvec, file, 1); 289 } 290 } 291 292 #ifdef CONFIG_SMP 293 static void activate_page_drain(int cpu) 294 { 295 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 296 297 if (pagevec_count(pvec)) 298 pagevec_lru_move_fn(pvec, __activate_page, NULL); 299 } 300 301 static bool need_activate_page_drain(int cpu) 302 { 303 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; 304 } 305 306 void activate_page(struct page *page) 307 { 308 page = compound_head(page); 309 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 310 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 311 312 get_page(page); 313 if (!pagevec_add(pvec, page) || PageCompound(page)) 314 pagevec_lru_move_fn(pvec, __activate_page, NULL); 315 put_cpu_var(activate_page_pvecs); 316 } 317 } 318 319 #else 320 static inline void activate_page_drain(int cpu) 321 { 322 } 323 324 static bool need_activate_page_drain(int cpu) 325 { 326 return false; 327 } 328 329 void activate_page(struct page *page) 330 { 331 struct zone *zone = page_zone(page); 332 333 page = compound_head(page); 334 spin_lock_irq(zone_lru_lock(zone)); 335 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL); 336 spin_unlock_irq(zone_lru_lock(zone)); 337 } 338 #endif 339 340 static void __lru_cache_activate_page(struct page *page) 341 { 342 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 343 int i; 344 345 /* 346 * Search backwards on the optimistic assumption that the page being 347 * activated has just been added to this pagevec. Note that only 348 * the local pagevec is examined as a !PageLRU page could be in the 349 * process of being released, reclaimed, migrated or on a remote 350 * pagevec that is currently being drained. Furthermore, marking 351 * a remote pagevec's page PageActive potentially hits a race where 352 * a page is marked PageActive just after it is added to the inactive 353 * list causing accounting errors and BUG_ON checks to trigger. 354 */ 355 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 356 struct page *pagevec_page = pvec->pages[i]; 357 358 if (pagevec_page == page) { 359 SetPageActive(page); 360 break; 361 } 362 } 363 364 put_cpu_var(lru_add_pvec); 365 } 366 367 /* 368 * Mark a page as having seen activity. 369 * 370 * inactive,unreferenced -> inactive,referenced 371 * inactive,referenced -> active,unreferenced 372 * active,unreferenced -> active,referenced 373 * 374 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 375 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 376 */ 377 void mark_page_accessed(struct page *page) 378 { 379 page = compound_head(page); 380 if (!PageActive(page) && !PageUnevictable(page) && 381 PageReferenced(page)) { 382 383 /* 384 * If the page is on the LRU, queue it for activation via 385 * activate_page_pvecs. Otherwise, assume the page is on a 386 * pagevec, mark it active and it'll be moved to the active 387 * LRU on the next drain. 388 */ 389 if (PageLRU(page)) 390 activate_page(page); 391 else 392 __lru_cache_activate_page(page); 393 ClearPageReferenced(page); 394 if (page_is_file_cache(page)) 395 workingset_activation(page); 396 } else if (!PageReferenced(page)) { 397 SetPageReferenced(page); 398 } 399 if (page_is_idle(page)) 400 clear_page_idle(page); 401 } 402 EXPORT_SYMBOL(mark_page_accessed); 403 404 static void __lru_cache_add(struct page *page) 405 { 406 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 407 408 get_page(page); 409 if (!pagevec_add(pvec, page) || PageCompound(page)) 410 __pagevec_lru_add(pvec); 411 put_cpu_var(lru_add_pvec); 412 } 413 414 /** 415 * lru_cache_add_anon - add a page to the page lists 416 * @page: the page to add 417 */ 418 void lru_cache_add_anon(struct page *page) 419 { 420 if (PageActive(page)) 421 ClearPageActive(page); 422 __lru_cache_add(page); 423 } 424 425 void lru_cache_add_file(struct page *page) 426 { 427 if (PageActive(page)) 428 ClearPageActive(page); 429 __lru_cache_add(page); 430 } 431 EXPORT_SYMBOL(lru_cache_add_file); 432 433 /** 434 * lru_cache_add - add a page to a page list 435 * @page: the page to be added to the LRU. 436 * 437 * Queue the page for addition to the LRU via pagevec. The decision on whether 438 * to add the page to the [in]active [file|anon] list is deferred until the 439 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 440 * have the page added to the active list using mark_page_accessed(). 441 */ 442 void lru_cache_add(struct page *page) 443 { 444 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 445 VM_BUG_ON_PAGE(PageLRU(page), page); 446 __lru_cache_add(page); 447 } 448 449 /** 450 * lru_cache_add_active_or_unevictable 451 * @page: the page to be added to LRU 452 * @vma: vma in which page is mapped for determining reclaimability 453 * 454 * Place @page on the active or unevictable LRU list, depending on its 455 * evictability. Note that if the page is not evictable, it goes 456 * directly back onto it's zone's unevictable list, it does NOT use a 457 * per cpu pagevec. 458 */ 459 void lru_cache_add_active_or_unevictable(struct page *page, 460 struct vm_area_struct *vma) 461 { 462 VM_BUG_ON_PAGE(PageLRU(page), page); 463 464 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) 465 SetPageActive(page); 466 else if (!TestSetPageMlocked(page)) { 467 /* 468 * We use the irq-unsafe __mod_zone_page_stat because this 469 * counter is not modified from interrupt context, and the pte 470 * lock is held(spinlock), which implies preemption disabled. 471 */ 472 __mod_zone_page_state(page_zone(page), NR_MLOCK, 473 hpage_nr_pages(page)); 474 count_vm_event(UNEVICTABLE_PGMLOCKED); 475 } 476 lru_cache_add(page); 477 } 478 479 /* 480 * If the page can not be invalidated, it is moved to the 481 * inactive list to speed up its reclaim. It is moved to the 482 * head of the list, rather than the tail, to give the flusher 483 * threads some time to write it out, as this is much more 484 * effective than the single-page writeout from reclaim. 485 * 486 * If the page isn't page_mapped and dirty/writeback, the page 487 * could reclaim asap using PG_reclaim. 488 * 489 * 1. active, mapped page -> none 490 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 491 * 3. inactive, mapped page -> none 492 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 493 * 5. inactive, clean -> inactive, tail 494 * 6. Others -> none 495 * 496 * In 4, why it moves inactive's head, the VM expects the page would 497 * be write it out by flusher threads as this is much more effective 498 * than the single-page writeout from reclaim. 499 */ 500 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 501 void *arg) 502 { 503 int lru, file; 504 bool active; 505 506 if (!PageLRU(page)) 507 return; 508 509 if (PageUnevictable(page)) 510 return; 511 512 /* Some processes are using the page */ 513 if (page_mapped(page)) 514 return; 515 516 active = PageActive(page); 517 file = page_is_file_cache(page); 518 lru = page_lru_base_type(page); 519 520 del_page_from_lru_list(page, lruvec, lru + active); 521 ClearPageActive(page); 522 ClearPageReferenced(page); 523 add_page_to_lru_list(page, lruvec, lru); 524 525 if (PageWriteback(page) || PageDirty(page)) { 526 /* 527 * PG_reclaim could be raced with end_page_writeback 528 * It can make readahead confusing. But race window 529 * is _really_ small and it's non-critical problem. 530 */ 531 SetPageReclaim(page); 532 } else { 533 /* 534 * The page's writeback ends up during pagevec 535 * We moves tha page into tail of inactive. 536 */ 537 list_move_tail(&page->lru, &lruvec->lists[lru]); 538 __count_vm_event(PGROTATED); 539 } 540 541 if (active) 542 __count_vm_event(PGDEACTIVATE); 543 update_page_reclaim_stat(lruvec, file, 0); 544 } 545 546 547 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec, 548 void *arg) 549 { 550 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 551 !PageSwapCache(page) && !PageUnevictable(page)) { 552 bool active = PageActive(page); 553 554 del_page_from_lru_list(page, lruvec, 555 LRU_INACTIVE_ANON + active); 556 ClearPageActive(page); 557 ClearPageReferenced(page); 558 /* 559 * lazyfree pages are clean anonymous pages. They have 560 * SwapBacked flag cleared to distinguish normal anonymous 561 * pages 562 */ 563 ClearPageSwapBacked(page); 564 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE); 565 566 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page)); 567 count_memcg_page_event(page, PGLAZYFREE); 568 update_page_reclaim_stat(lruvec, 1, 0); 569 } 570 } 571 572 /* 573 * Drain pages out of the cpu's pagevecs. 574 * Either "cpu" is the current CPU, and preemption has already been 575 * disabled; or "cpu" is being hot-unplugged, and is already dead. 576 */ 577 void lru_add_drain_cpu(int cpu) 578 { 579 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); 580 581 if (pagevec_count(pvec)) 582 __pagevec_lru_add(pvec); 583 584 pvec = &per_cpu(lru_rotate_pvecs, cpu); 585 if (pagevec_count(pvec)) { 586 unsigned long flags; 587 588 /* No harm done if a racing interrupt already did this */ 589 local_irq_save(flags); 590 pagevec_move_tail(pvec); 591 local_irq_restore(flags); 592 } 593 594 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); 595 if (pagevec_count(pvec)) 596 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 597 598 pvec = &per_cpu(lru_lazyfree_pvecs, cpu); 599 if (pagevec_count(pvec)) 600 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 601 602 activate_page_drain(cpu); 603 } 604 605 /** 606 * deactivate_file_page - forcefully deactivate a file page 607 * @page: page to deactivate 608 * 609 * This function hints the VM that @page is a good reclaim candidate, 610 * for example if its invalidation fails due to the page being dirty 611 * or under writeback. 612 */ 613 void deactivate_file_page(struct page *page) 614 { 615 /* 616 * In a workload with many unevictable page such as mprotect, 617 * unevictable page deactivation for accelerating reclaim is pointless. 618 */ 619 if (PageUnevictable(page)) 620 return; 621 622 if (likely(get_page_unless_zero(page))) { 623 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); 624 625 if (!pagevec_add(pvec, page) || PageCompound(page)) 626 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 627 put_cpu_var(lru_deactivate_file_pvecs); 628 } 629 } 630 631 /** 632 * mark_page_lazyfree - make an anon page lazyfree 633 * @page: page to deactivate 634 * 635 * mark_page_lazyfree() moves @page to the inactive file list. 636 * This is done to accelerate the reclaim of @page. 637 */ 638 void mark_page_lazyfree(struct page *page) 639 { 640 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 641 !PageSwapCache(page) && !PageUnevictable(page)) { 642 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs); 643 644 get_page(page); 645 if (!pagevec_add(pvec, page) || PageCompound(page)) 646 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 647 put_cpu_var(lru_lazyfree_pvecs); 648 } 649 } 650 651 void lru_add_drain(void) 652 { 653 lru_add_drain_cpu(get_cpu()); 654 put_cpu(); 655 } 656 657 static void lru_add_drain_per_cpu(struct work_struct *dummy) 658 { 659 lru_add_drain(); 660 } 661 662 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 663 664 /* 665 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 666 * kworkers being shut down before our page_alloc_cpu_dead callback is 667 * executed on the offlined cpu. 668 * Calling this function with cpu hotplug locks held can actually lead 669 * to obscure indirect dependencies via WQ context. 670 */ 671 void lru_add_drain_all(void) 672 { 673 static DEFINE_MUTEX(lock); 674 static struct cpumask has_work; 675 int cpu; 676 677 /* 678 * Make sure nobody triggers this path before mm_percpu_wq is fully 679 * initialized. 680 */ 681 if (WARN_ON(!mm_percpu_wq)) 682 return; 683 684 mutex_lock(&lock); 685 cpumask_clear(&has_work); 686 687 for_each_online_cpu(cpu) { 688 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 689 690 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || 691 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || 692 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || 693 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) || 694 need_activate_page_drain(cpu)) { 695 INIT_WORK(work, lru_add_drain_per_cpu); 696 queue_work_on(cpu, mm_percpu_wq, work); 697 cpumask_set_cpu(cpu, &has_work); 698 } 699 } 700 701 for_each_cpu(cpu, &has_work) 702 flush_work(&per_cpu(lru_add_drain_work, cpu)); 703 704 mutex_unlock(&lock); 705 } 706 707 /** 708 * release_pages - batched put_page() 709 * @pages: array of pages to release 710 * @nr: number of pages 711 * 712 * Decrement the reference count on all the pages in @pages. If it 713 * fell to zero, remove the page from the LRU and free it. 714 */ 715 void release_pages(struct page **pages, int nr) 716 { 717 int i; 718 LIST_HEAD(pages_to_free); 719 struct pglist_data *locked_pgdat = NULL; 720 struct lruvec *lruvec; 721 unsigned long uninitialized_var(flags); 722 unsigned int uninitialized_var(lock_batch); 723 724 for (i = 0; i < nr; i++) { 725 struct page *page = pages[i]; 726 727 /* 728 * Make sure the IRQ-safe lock-holding time does not get 729 * excessive with a continuous string of pages from the 730 * same pgdat. The lock is held only if pgdat != NULL. 731 */ 732 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) { 733 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 734 locked_pgdat = NULL; 735 } 736 737 if (is_huge_zero_page(page)) 738 continue; 739 740 /* Device public page can not be huge page */ 741 if (is_device_public_page(page)) { 742 if (locked_pgdat) { 743 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 744 flags); 745 locked_pgdat = NULL; 746 } 747 put_devmap_managed_page(page); 748 continue; 749 } 750 751 page = compound_head(page); 752 if (!put_page_testzero(page)) 753 continue; 754 755 if (PageCompound(page)) { 756 if (locked_pgdat) { 757 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 758 locked_pgdat = NULL; 759 } 760 __put_compound_page(page); 761 continue; 762 } 763 764 if (PageLRU(page)) { 765 struct pglist_data *pgdat = page_pgdat(page); 766 767 if (pgdat != locked_pgdat) { 768 if (locked_pgdat) 769 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 770 flags); 771 lock_batch = 0; 772 locked_pgdat = pgdat; 773 spin_lock_irqsave(&locked_pgdat->lru_lock, flags); 774 } 775 776 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat); 777 VM_BUG_ON_PAGE(!PageLRU(page), page); 778 __ClearPageLRU(page); 779 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 780 } 781 782 /* Clear Active bit in case of parallel mark_page_accessed */ 783 __ClearPageActive(page); 784 __ClearPageWaiters(page); 785 786 list_add(&page->lru, &pages_to_free); 787 } 788 if (locked_pgdat) 789 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 790 791 mem_cgroup_uncharge_list(&pages_to_free); 792 free_unref_page_list(&pages_to_free); 793 } 794 EXPORT_SYMBOL(release_pages); 795 796 /* 797 * The pages which we're about to release may be in the deferred lru-addition 798 * queues. That would prevent them from really being freed right now. That's 799 * OK from a correctness point of view but is inefficient - those pages may be 800 * cache-warm and we want to give them back to the page allocator ASAP. 801 * 802 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 803 * and __pagevec_lru_add_active() call release_pages() directly to avoid 804 * mutual recursion. 805 */ 806 void __pagevec_release(struct pagevec *pvec) 807 { 808 if (!pvec->percpu_pvec_drained) { 809 lru_add_drain(); 810 pvec->percpu_pvec_drained = true; 811 } 812 release_pages(pvec->pages, pagevec_count(pvec)); 813 pagevec_reinit(pvec); 814 } 815 EXPORT_SYMBOL(__pagevec_release); 816 817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 818 /* used by __split_huge_page_refcount() */ 819 void lru_add_page_tail(struct page *page, struct page *page_tail, 820 struct lruvec *lruvec, struct list_head *list) 821 { 822 const int file = 0; 823 824 VM_BUG_ON_PAGE(!PageHead(page), page); 825 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 826 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 827 VM_BUG_ON(NR_CPUS != 1 && 828 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock)); 829 830 if (!list) 831 SetPageLRU(page_tail); 832 833 if (likely(PageLRU(page))) 834 list_add_tail(&page_tail->lru, &page->lru); 835 else if (list) { 836 /* page reclaim is reclaiming a huge page */ 837 get_page(page_tail); 838 list_add_tail(&page_tail->lru, list); 839 } else { 840 struct list_head *list_head; 841 /* 842 * Head page has not yet been counted, as an hpage, 843 * so we must account for each subpage individually. 844 * 845 * Use the standard add function to put page_tail on the list, 846 * but then correct its position so they all end up in order. 847 */ 848 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); 849 list_head = page_tail->lru.prev; 850 list_move_tail(&page_tail->lru, list_head); 851 } 852 853 if (!PageUnevictable(page)) 854 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 855 } 856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 857 858 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 859 void *arg) 860 { 861 enum lru_list lru; 862 int was_unevictable = TestClearPageUnevictable(page); 863 864 VM_BUG_ON_PAGE(PageLRU(page), page); 865 866 SetPageLRU(page); 867 /* 868 * Page becomes evictable in two ways: 869 * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()]. 870 * 2) Before acquiring LRU lock to put the page to correct LRU and then 871 * a) do PageLRU check with lock [check_move_unevictable_pages] 872 * b) do PageLRU check before lock [clear_page_mlock] 873 * 874 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 875 * following strict ordering: 876 * 877 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 878 * 879 * SetPageLRU() TestClearPageMlocked() 880 * smp_mb() // explicit ordering // above provides strict 881 * // ordering 882 * PageMlocked() PageLRU() 883 * 884 * 885 * if '#1' does not observe setting of PG_lru by '#0' and fails 886 * isolation, the explicit barrier will make sure that page_evictable 887 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 888 * can be reordered after PageMlocked check and can make '#1' to fail 889 * the isolation of the page whose Mlocked bit is cleared (#0 is also 890 * looking at the same page) and the evictable page will be stranded 891 * in an unevictable LRU. 892 */ 893 smp_mb(); 894 895 if (page_evictable(page)) { 896 lru = page_lru(page); 897 update_page_reclaim_stat(lruvec, page_is_file_cache(page), 898 PageActive(page)); 899 if (was_unevictable) 900 count_vm_event(UNEVICTABLE_PGRESCUED); 901 } else { 902 lru = LRU_UNEVICTABLE; 903 ClearPageActive(page); 904 SetPageUnevictable(page); 905 if (!was_unevictable) 906 count_vm_event(UNEVICTABLE_PGCULLED); 907 } 908 909 add_page_to_lru_list(page, lruvec, lru); 910 trace_mm_lru_insertion(page, lru); 911 } 912 913 /* 914 * Add the passed pages to the LRU, then drop the caller's refcount 915 * on them. Reinitialises the caller's pagevec. 916 */ 917 void __pagevec_lru_add(struct pagevec *pvec) 918 { 919 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 920 } 921 EXPORT_SYMBOL(__pagevec_lru_add); 922 923 /** 924 * pagevec_lookup_entries - gang pagecache lookup 925 * @pvec: Where the resulting entries are placed 926 * @mapping: The address_space to search 927 * @start: The starting entry index 928 * @nr_entries: The maximum number of pages 929 * @indices: The cache indices corresponding to the entries in @pvec 930 * 931 * pagevec_lookup_entries() will search for and return a group of up 932 * to @nr_pages pages and shadow entries in the mapping. All 933 * entries are placed in @pvec. pagevec_lookup_entries() takes a 934 * reference against actual pages in @pvec. 935 * 936 * The search returns a group of mapping-contiguous entries with 937 * ascending indexes. There may be holes in the indices due to 938 * not-present entries. 939 * 940 * pagevec_lookup_entries() returns the number of entries which were 941 * found. 942 */ 943 unsigned pagevec_lookup_entries(struct pagevec *pvec, 944 struct address_space *mapping, 945 pgoff_t start, unsigned nr_entries, 946 pgoff_t *indices) 947 { 948 pvec->nr = find_get_entries(mapping, start, nr_entries, 949 pvec->pages, indices); 950 return pagevec_count(pvec); 951 } 952 953 /** 954 * pagevec_remove_exceptionals - pagevec exceptionals pruning 955 * @pvec: The pagevec to prune 956 * 957 * pagevec_lookup_entries() fills both pages and exceptional radix 958 * tree entries into the pagevec. This function prunes all 959 * exceptionals from @pvec without leaving holes, so that it can be 960 * passed on to page-only pagevec operations. 961 */ 962 void pagevec_remove_exceptionals(struct pagevec *pvec) 963 { 964 int i, j; 965 966 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 967 struct page *page = pvec->pages[i]; 968 if (!radix_tree_exceptional_entry(page)) 969 pvec->pages[j++] = page; 970 } 971 pvec->nr = j; 972 } 973 974 /** 975 * pagevec_lookup_range - gang pagecache lookup 976 * @pvec: Where the resulting pages are placed 977 * @mapping: The address_space to search 978 * @start: The starting page index 979 * @end: The final page index 980 * 981 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 982 * pages in the mapping starting from index @start and upto index @end 983 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 984 * reference against the pages in @pvec. 985 * 986 * The search returns a group of mapping-contiguous pages with ascending 987 * indexes. There may be holes in the indices due to not-present pages. We 988 * also update @start to index the next page for the traversal. 989 * 990 * pagevec_lookup_range() returns the number of pages which were found. If this 991 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 992 * reached. 993 */ 994 unsigned pagevec_lookup_range(struct pagevec *pvec, 995 struct address_space *mapping, pgoff_t *start, pgoff_t end) 996 { 997 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 998 pvec->pages); 999 return pagevec_count(pvec); 1000 } 1001 EXPORT_SYMBOL(pagevec_lookup_range); 1002 1003 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1004 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1005 int tag) 1006 { 1007 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1008 PAGEVEC_SIZE, pvec->pages); 1009 return pagevec_count(pvec); 1010 } 1011 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1012 1013 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, 1014 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1015 int tag, unsigned max_pages) 1016 { 1017 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1018 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages); 1019 return pagevec_count(pvec); 1020 } 1021 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag); 1022 /* 1023 * Perform any setup for the swap system 1024 */ 1025 void __init swap_setup(void) 1026 { 1027 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 1028 1029 /* Use a smaller cluster for small-memory machines */ 1030 if (megs < 16) 1031 page_cluster = 2; 1032 else 1033 page_cluster = 3; 1034 /* 1035 * Right now other parts of the system means that we 1036 * _really_ don't want to cluster much more 1037 */ 1038 } 1039