xref: /openbmc/linux/mm/swap.c (revision b92dd11725a7c57f55e148c7d3ce58a86f480575)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/swap.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   */
7  
8  /*
9   * This file contains the default values for the operation of the
10   * Linux VM subsystem. Fine-tuning documentation can be found in
11   * Documentation/admin-guide/sysctl/vm.rst.
12   * Started 18.12.91
13   * Swap aging added 23.2.95, Stephen Tweedie.
14   * Buffermem limits added 12.3.98, Rik van Riel.
15   */
16  
17  #include <linux/mm.h>
18  #include <linux/sched.h>
19  #include <linux/kernel_stat.h>
20  #include <linux/swap.h>
21  #include <linux/mman.h>
22  #include <linux/pagemap.h>
23  #include <linux/pagevec.h>
24  #include <linux/init.h>
25  #include <linux/export.h>
26  #include <linux/mm_inline.h>
27  #include <linux/percpu_counter.h>
28  #include <linux/memremap.h>
29  #include <linux/percpu.h>
30  #include <linux/cpu.h>
31  #include <linux/notifier.h>
32  #include <linux/backing-dev.h>
33  #include <linux/memcontrol.h>
34  #include <linux/gfp.h>
35  #include <linux/uio.h>
36  #include <linux/hugetlb.h>
37  #include <linux/page_idle.h>
38  #include <linux/local_lock.h>
39  #include <linux/buffer_head.h>
40  
41  #include "internal.h"
42  
43  #define CREATE_TRACE_POINTS
44  #include <trace/events/pagemap.h>
45  
46  /* How many pages do we try to swap or page in/out together? */
47  int page_cluster;
48  
49  /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
50  struct lru_rotate {
51  	local_lock_t lock;
52  	struct folio_batch fbatch;
53  };
54  static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55  	.lock = INIT_LOCAL_LOCK(lock),
56  };
57  
58  /*
59   * The following folio batches are grouped together because they are protected
60   * by disabling preemption (and interrupts remain enabled).
61   */
62  struct cpu_fbatches {
63  	local_lock_t lock;
64  	struct folio_batch lru_add;
65  	struct folio_batch lru_deactivate_file;
66  	struct folio_batch lru_deactivate;
67  	struct folio_batch lru_lazyfree;
68  #ifdef CONFIG_SMP
69  	struct folio_batch activate;
70  #endif
71  };
72  static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
73  	.lock = INIT_LOCAL_LOCK(lock),
74  };
75  
76  /*
77   * This path almost never happens for VM activity - pages are normally freed
78   * via pagevecs.  But it gets used by networking - and for compound pages.
79   */
80  static void __page_cache_release(struct folio *folio)
81  {
82  	if (folio_test_lru(folio)) {
83  		struct lruvec *lruvec;
84  		unsigned long flags;
85  
86  		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
87  		lruvec_del_folio(lruvec, folio);
88  		__folio_clear_lru_flags(folio);
89  		unlock_page_lruvec_irqrestore(lruvec, flags);
90  	}
91  	/* See comment on folio_test_mlocked in release_pages() */
92  	if (unlikely(folio_test_mlocked(folio))) {
93  		long nr_pages = folio_nr_pages(folio);
94  
95  		__folio_clear_mlocked(folio);
96  		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
97  		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
98  	}
99  }
100  
101  static void __folio_put_small(struct folio *folio)
102  {
103  	__page_cache_release(folio);
104  	mem_cgroup_uncharge(folio);
105  	free_unref_page(&folio->page, 0);
106  }
107  
108  static void __folio_put_large(struct folio *folio)
109  {
110  	/*
111  	 * __page_cache_release() is supposed to be called for thp, not for
112  	 * hugetlb. This is because hugetlb page does never have PageLRU set
113  	 * (it's never listed to any LRU lists) and no memcg routines should
114  	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
115  	 */
116  	if (!folio_test_hugetlb(folio))
117  		__page_cache_release(folio);
118  	destroy_large_folio(folio);
119  }
120  
121  void __folio_put(struct folio *folio)
122  {
123  	if (unlikely(folio_is_zone_device(folio)))
124  		free_zone_device_page(&folio->page);
125  	else if (unlikely(folio_test_large(folio)))
126  		__folio_put_large(folio);
127  	else
128  		__folio_put_small(folio);
129  }
130  EXPORT_SYMBOL(__folio_put);
131  
132  /**
133   * put_pages_list() - release a list of pages
134   * @pages: list of pages threaded on page->lru
135   *
136   * Release a list of pages which are strung together on page.lru.
137   */
138  void put_pages_list(struct list_head *pages)
139  {
140  	struct folio *folio, *next;
141  
142  	list_for_each_entry_safe(folio, next, pages, lru) {
143  		if (!folio_put_testzero(folio)) {
144  			list_del(&folio->lru);
145  			continue;
146  		}
147  		if (folio_test_large(folio)) {
148  			list_del(&folio->lru);
149  			__folio_put_large(folio);
150  			continue;
151  		}
152  		/* LRU flag must be clear because it's passed using the lru */
153  	}
154  
155  	free_unref_page_list(pages);
156  	INIT_LIST_HEAD(pages);
157  }
158  EXPORT_SYMBOL(put_pages_list);
159  
160  /*
161   * get_kernel_pages() - pin kernel pages in memory
162   * @kiov:	An array of struct kvec structures
163   * @nr_segs:	number of segments to pin
164   * @write:	pinning for read/write, currently ignored
165   * @pages:	array that receives pointers to the pages pinned.
166   *		Should be at least nr_segs long.
167   *
168   * Returns number of pages pinned. This may be fewer than the number requested.
169   * If nr_segs is 0 or negative, returns 0.  If no pages were pinned, returns 0.
170   * Each page returned must be released with a put_page() call when it is
171   * finished with.
172   */
173  int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
174  		struct page **pages)
175  {
176  	int seg;
177  
178  	for (seg = 0; seg < nr_segs; seg++) {
179  		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
180  			return seg;
181  
182  		pages[seg] = kmap_to_page(kiov[seg].iov_base);
183  		get_page(pages[seg]);
184  	}
185  
186  	return seg;
187  }
188  EXPORT_SYMBOL_GPL(get_kernel_pages);
189  
190  typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
191  
192  static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
193  {
194  	int was_unevictable = folio_test_clear_unevictable(folio);
195  	long nr_pages = folio_nr_pages(folio);
196  
197  	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
198  
199  	/*
200  	 * Is an smp_mb__after_atomic() still required here, before
201  	 * folio_evictable() tests the mlocked flag, to rule out the possibility
202  	 * of stranding an evictable folio on an unevictable LRU?  I think
203  	 * not, because __munlock_page() only clears the mlocked flag
204  	 * while the LRU lock is held.
205  	 *
206  	 * (That is not true of __page_cache_release(), and not necessarily
207  	 * true of release_pages(): but those only clear the mlocked flag after
208  	 * folio_put_testzero() has excluded any other users of the folio.)
209  	 */
210  	if (folio_evictable(folio)) {
211  		if (was_unevictable)
212  			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
213  	} else {
214  		folio_clear_active(folio);
215  		folio_set_unevictable(folio);
216  		/*
217  		 * folio->mlock_count = !!folio_test_mlocked(folio)?
218  		 * But that leaves __mlock_page() in doubt whether another
219  		 * actor has already counted the mlock or not.  Err on the
220  		 * safe side, underestimate, let page reclaim fix it, rather
221  		 * than leaving a page on the unevictable LRU indefinitely.
222  		 */
223  		folio->mlock_count = 0;
224  		if (!was_unevictable)
225  			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
226  	}
227  
228  	lruvec_add_folio(lruvec, folio);
229  	trace_mm_lru_insertion(folio);
230  }
231  
232  static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
233  {
234  	int i;
235  	struct lruvec *lruvec = NULL;
236  	unsigned long flags = 0;
237  
238  	for (i = 0; i < folio_batch_count(fbatch); i++) {
239  		struct folio *folio = fbatch->folios[i];
240  
241  		/* block memcg migration while the folio moves between lru */
242  		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
243  			continue;
244  
245  		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
246  		move_fn(lruvec, folio);
247  
248  		folio_set_lru(folio);
249  	}
250  
251  	if (lruvec)
252  		unlock_page_lruvec_irqrestore(lruvec, flags);
253  	folios_put(fbatch->folios, folio_batch_count(fbatch));
254  	folio_batch_init(fbatch);
255  }
256  
257  static void folio_batch_add_and_move(struct folio_batch *fbatch,
258  		struct folio *folio, move_fn_t move_fn)
259  {
260  	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
261  	    !lru_cache_disabled())
262  		return;
263  	folio_batch_move_lru(fbatch, move_fn);
264  }
265  
266  static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
267  {
268  	if (!folio_test_unevictable(folio)) {
269  		lruvec_del_folio(lruvec, folio);
270  		folio_clear_active(folio);
271  		lruvec_add_folio_tail(lruvec, folio);
272  		__count_vm_events(PGROTATED, folio_nr_pages(folio));
273  	}
274  }
275  
276  /*
277   * Writeback is about to end against a folio which has been marked for
278   * immediate reclaim.  If it still appears to be reclaimable, move it
279   * to the tail of the inactive list.
280   *
281   * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
282   */
283  void folio_rotate_reclaimable(struct folio *folio)
284  {
285  	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
286  	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
287  		struct folio_batch *fbatch;
288  		unsigned long flags;
289  
290  		folio_get(folio);
291  		local_lock_irqsave(&lru_rotate.lock, flags);
292  		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
293  		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
294  		local_unlock_irqrestore(&lru_rotate.lock, flags);
295  	}
296  }
297  
298  void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
299  {
300  	do {
301  		unsigned long lrusize;
302  
303  		/*
304  		 * Hold lruvec->lru_lock is safe here, since
305  		 * 1) The pinned lruvec in reclaim, or
306  		 * 2) From a pre-LRU page during refault (which also holds the
307  		 *    rcu lock, so would be safe even if the page was on the LRU
308  		 *    and could move simultaneously to a new lruvec).
309  		 */
310  		spin_lock_irq(&lruvec->lru_lock);
311  		/* Record cost event */
312  		if (file)
313  			lruvec->file_cost += nr_pages;
314  		else
315  			lruvec->anon_cost += nr_pages;
316  
317  		/*
318  		 * Decay previous events
319  		 *
320  		 * Because workloads change over time (and to avoid
321  		 * overflow) we keep these statistics as a floating
322  		 * average, which ends up weighing recent refaults
323  		 * more than old ones.
324  		 */
325  		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
326  			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
327  			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
328  			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
329  
330  		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
331  			lruvec->file_cost /= 2;
332  			lruvec->anon_cost /= 2;
333  		}
334  		spin_unlock_irq(&lruvec->lru_lock);
335  	} while ((lruvec = parent_lruvec(lruvec)));
336  }
337  
338  void lru_note_cost_folio(struct folio *folio)
339  {
340  	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
341  			folio_nr_pages(folio));
342  }
343  
344  static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
345  {
346  	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
347  		long nr_pages = folio_nr_pages(folio);
348  
349  		lruvec_del_folio(lruvec, folio);
350  		folio_set_active(folio);
351  		lruvec_add_folio(lruvec, folio);
352  		trace_mm_lru_activate(folio);
353  
354  		__count_vm_events(PGACTIVATE, nr_pages);
355  		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
356  				     nr_pages);
357  	}
358  }
359  
360  #ifdef CONFIG_SMP
361  static void folio_activate_drain(int cpu)
362  {
363  	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
364  
365  	if (folio_batch_count(fbatch))
366  		folio_batch_move_lru(fbatch, folio_activate_fn);
367  }
368  
369  void folio_activate(struct folio *folio)
370  {
371  	if (folio_test_lru(folio) && !folio_test_active(folio) &&
372  	    !folio_test_unevictable(folio)) {
373  		struct folio_batch *fbatch;
374  
375  		folio_get(folio);
376  		local_lock(&cpu_fbatches.lock);
377  		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
378  		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
379  		local_unlock(&cpu_fbatches.lock);
380  	}
381  }
382  
383  #else
384  static inline void folio_activate_drain(int cpu)
385  {
386  }
387  
388  void folio_activate(struct folio *folio)
389  {
390  	struct lruvec *lruvec;
391  
392  	if (folio_test_clear_lru(folio)) {
393  		lruvec = folio_lruvec_lock_irq(folio);
394  		folio_activate_fn(lruvec, folio);
395  		unlock_page_lruvec_irq(lruvec);
396  		folio_set_lru(folio);
397  	}
398  }
399  #endif
400  
401  static void __lru_cache_activate_folio(struct folio *folio)
402  {
403  	struct folio_batch *fbatch;
404  	int i;
405  
406  	local_lock(&cpu_fbatches.lock);
407  	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
408  
409  	/*
410  	 * Search backwards on the optimistic assumption that the folio being
411  	 * activated has just been added to this batch. Note that only
412  	 * the local batch is examined as a !LRU folio could be in the
413  	 * process of being released, reclaimed, migrated or on a remote
414  	 * batch that is currently being drained. Furthermore, marking
415  	 * a remote batch's folio active potentially hits a race where
416  	 * a folio is marked active just after it is added to the inactive
417  	 * list causing accounting errors and BUG_ON checks to trigger.
418  	 */
419  	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
420  		struct folio *batch_folio = fbatch->folios[i];
421  
422  		if (batch_folio == folio) {
423  			folio_set_active(folio);
424  			break;
425  		}
426  	}
427  
428  	local_unlock(&cpu_fbatches.lock);
429  }
430  
431  #ifdef CONFIG_LRU_GEN
432  static void folio_inc_refs(struct folio *folio)
433  {
434  	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
435  
436  	if (folio_test_unevictable(folio))
437  		return;
438  
439  	if (!folio_test_referenced(folio)) {
440  		folio_set_referenced(folio);
441  		return;
442  	}
443  
444  	if (!folio_test_workingset(folio)) {
445  		folio_set_workingset(folio);
446  		return;
447  	}
448  
449  	/* see the comment on MAX_NR_TIERS */
450  	do {
451  		new_flags = old_flags & LRU_REFS_MASK;
452  		if (new_flags == LRU_REFS_MASK)
453  			break;
454  
455  		new_flags += BIT(LRU_REFS_PGOFF);
456  		new_flags |= old_flags & ~LRU_REFS_MASK;
457  	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
458  }
459  #else
460  static void folio_inc_refs(struct folio *folio)
461  {
462  }
463  #endif /* CONFIG_LRU_GEN */
464  
465  /*
466   * Mark a page as having seen activity.
467   *
468   * inactive,unreferenced	->	inactive,referenced
469   * inactive,referenced		->	active,unreferenced
470   * active,unreferenced		->	active,referenced
471   *
472   * When a newly allocated page is not yet visible, so safe for non-atomic ops,
473   * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
474   */
475  void folio_mark_accessed(struct folio *folio)
476  {
477  	if (lru_gen_enabled()) {
478  		folio_inc_refs(folio);
479  		return;
480  	}
481  
482  	if (!folio_test_referenced(folio)) {
483  		folio_set_referenced(folio);
484  	} else if (folio_test_unevictable(folio)) {
485  		/*
486  		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
487  		 * this list is never rotated or maintained, so marking an
488  		 * unevictable page accessed has no effect.
489  		 */
490  	} else if (!folio_test_active(folio)) {
491  		/*
492  		 * If the folio is on the LRU, queue it for activation via
493  		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
494  		 * folio_batch, mark it active and it'll be moved to the active
495  		 * LRU on the next drain.
496  		 */
497  		if (folio_test_lru(folio))
498  			folio_activate(folio);
499  		else
500  			__lru_cache_activate_folio(folio);
501  		folio_clear_referenced(folio);
502  		workingset_activation(folio);
503  	}
504  	if (folio_test_idle(folio))
505  		folio_clear_idle(folio);
506  }
507  EXPORT_SYMBOL(folio_mark_accessed);
508  
509  /**
510   * folio_add_lru - Add a folio to an LRU list.
511   * @folio: The folio to be added to the LRU.
512   *
513   * Queue the folio for addition to the LRU. The decision on whether
514   * to add the page to the [in]active [file|anon] list is deferred until the
515   * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
516   * have the folio added to the active list using folio_mark_accessed().
517   */
518  void folio_add_lru(struct folio *folio)
519  {
520  	struct folio_batch *fbatch;
521  
522  	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
523  			folio_test_unevictable(folio), folio);
524  	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
525  
526  	/* see the comment in lru_gen_add_folio() */
527  	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
528  	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
529  		folio_set_active(folio);
530  
531  	folio_get(folio);
532  	local_lock(&cpu_fbatches.lock);
533  	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
534  	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
535  	local_unlock(&cpu_fbatches.lock);
536  }
537  EXPORT_SYMBOL(folio_add_lru);
538  
539  /**
540   * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
541   * @folio: The folio to be added to the LRU.
542   * @vma: VMA in which the folio is mapped.
543   *
544   * If the VMA is mlocked, @folio is added to the unevictable list.
545   * Otherwise, it is treated the same way as folio_add_lru().
546   */
547  void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
548  {
549  	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
550  
551  	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
552  		mlock_new_page(&folio->page);
553  	else
554  		folio_add_lru(folio);
555  }
556  
557  /*
558   * If the folio cannot be invalidated, it is moved to the
559   * inactive list to speed up its reclaim.  It is moved to the
560   * head of the list, rather than the tail, to give the flusher
561   * threads some time to write it out, as this is much more
562   * effective than the single-page writeout from reclaim.
563   *
564   * If the folio isn't mapped and dirty/writeback, the folio
565   * could be reclaimed asap using the reclaim flag.
566   *
567   * 1. active, mapped folio -> none
568   * 2. active, dirty/writeback folio -> inactive, head, reclaim
569   * 3. inactive, mapped folio -> none
570   * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
571   * 5. inactive, clean -> inactive, tail
572   * 6. Others -> none
573   *
574   * In 4, it moves to the head of the inactive list so the folio is
575   * written out by flusher threads as this is much more efficient
576   * than the single-page writeout from reclaim.
577   */
578  static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
579  {
580  	bool active = folio_test_active(folio);
581  	long nr_pages = folio_nr_pages(folio);
582  
583  	if (folio_test_unevictable(folio))
584  		return;
585  
586  	/* Some processes are using the folio */
587  	if (folio_mapped(folio))
588  		return;
589  
590  	lruvec_del_folio(lruvec, folio);
591  	folio_clear_active(folio);
592  	folio_clear_referenced(folio);
593  
594  	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
595  		/*
596  		 * Setting the reclaim flag could race with
597  		 * folio_end_writeback() and confuse readahead.  But the
598  		 * race window is _really_ small and  it's not a critical
599  		 * problem.
600  		 */
601  		lruvec_add_folio(lruvec, folio);
602  		folio_set_reclaim(folio);
603  	} else {
604  		/*
605  		 * The folio's writeback ended while it was in the batch.
606  		 * We move that folio to the tail of the inactive list.
607  		 */
608  		lruvec_add_folio_tail(lruvec, folio);
609  		__count_vm_events(PGROTATED, nr_pages);
610  	}
611  
612  	if (active) {
613  		__count_vm_events(PGDEACTIVATE, nr_pages);
614  		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
615  				     nr_pages);
616  	}
617  }
618  
619  static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
620  {
621  	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
622  		long nr_pages = folio_nr_pages(folio);
623  
624  		lruvec_del_folio(lruvec, folio);
625  		folio_clear_active(folio);
626  		folio_clear_referenced(folio);
627  		lruvec_add_folio(lruvec, folio);
628  
629  		__count_vm_events(PGDEACTIVATE, nr_pages);
630  		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
631  				     nr_pages);
632  	}
633  }
634  
635  static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
636  {
637  	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
638  	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
639  		long nr_pages = folio_nr_pages(folio);
640  
641  		lruvec_del_folio(lruvec, folio);
642  		folio_clear_active(folio);
643  		folio_clear_referenced(folio);
644  		/*
645  		 * Lazyfree folios are clean anonymous folios.  They have
646  		 * the swapbacked flag cleared, to distinguish them from normal
647  		 * anonymous folios
648  		 */
649  		folio_clear_swapbacked(folio);
650  		lruvec_add_folio(lruvec, folio);
651  
652  		__count_vm_events(PGLAZYFREE, nr_pages);
653  		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
654  				     nr_pages);
655  	}
656  }
657  
658  /*
659   * Drain pages out of the cpu's folio_batch.
660   * Either "cpu" is the current CPU, and preemption has already been
661   * disabled; or "cpu" is being hot-unplugged, and is already dead.
662   */
663  void lru_add_drain_cpu(int cpu)
664  {
665  	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
666  	struct folio_batch *fbatch = &fbatches->lru_add;
667  
668  	if (folio_batch_count(fbatch))
669  		folio_batch_move_lru(fbatch, lru_add_fn);
670  
671  	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
672  	/* Disabling interrupts below acts as a compiler barrier. */
673  	if (data_race(folio_batch_count(fbatch))) {
674  		unsigned long flags;
675  
676  		/* No harm done if a racing interrupt already did this */
677  		local_lock_irqsave(&lru_rotate.lock, flags);
678  		folio_batch_move_lru(fbatch, lru_move_tail_fn);
679  		local_unlock_irqrestore(&lru_rotate.lock, flags);
680  	}
681  
682  	fbatch = &fbatches->lru_deactivate_file;
683  	if (folio_batch_count(fbatch))
684  		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
685  
686  	fbatch = &fbatches->lru_deactivate;
687  	if (folio_batch_count(fbatch))
688  		folio_batch_move_lru(fbatch, lru_deactivate_fn);
689  
690  	fbatch = &fbatches->lru_lazyfree;
691  	if (folio_batch_count(fbatch))
692  		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
693  
694  	folio_activate_drain(cpu);
695  }
696  
697  /**
698   * deactivate_file_folio() - Deactivate a file folio.
699   * @folio: Folio to deactivate.
700   *
701   * This function hints to the VM that @folio is a good reclaim candidate,
702   * for example if its invalidation fails due to the folio being dirty
703   * or under writeback.
704   *
705   * Context: Caller holds a reference on the folio.
706   */
707  void deactivate_file_folio(struct folio *folio)
708  {
709  	struct folio_batch *fbatch;
710  
711  	/* Deactivating an unevictable folio will not accelerate reclaim */
712  	if (folio_test_unevictable(folio))
713  		return;
714  
715  	folio_get(folio);
716  	local_lock(&cpu_fbatches.lock);
717  	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
718  	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
719  	local_unlock(&cpu_fbatches.lock);
720  }
721  
722  /*
723   * deactivate_page - deactivate a page
724   * @page: page to deactivate
725   *
726   * deactivate_page() moves @page to the inactive list if @page was on the active
727   * list and was not an unevictable page.  This is done to accelerate the reclaim
728   * of @page.
729   */
730  void deactivate_page(struct page *page)
731  {
732  	struct folio *folio = page_folio(page);
733  
734  	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
735  	    (folio_test_active(folio) || lru_gen_enabled())) {
736  		struct folio_batch *fbatch;
737  
738  		folio_get(folio);
739  		local_lock(&cpu_fbatches.lock);
740  		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
741  		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
742  		local_unlock(&cpu_fbatches.lock);
743  	}
744  }
745  
746  /**
747   * mark_page_lazyfree - make an anon page lazyfree
748   * @page: page to deactivate
749   *
750   * mark_page_lazyfree() moves @page to the inactive file list.
751   * This is done to accelerate the reclaim of @page.
752   */
753  void mark_page_lazyfree(struct page *page)
754  {
755  	struct folio *folio = page_folio(page);
756  
757  	if (folio_test_lru(folio) && folio_test_anon(folio) &&
758  	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
759  	    !folio_test_unevictable(folio)) {
760  		struct folio_batch *fbatch;
761  
762  		folio_get(folio);
763  		local_lock(&cpu_fbatches.lock);
764  		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
765  		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
766  		local_unlock(&cpu_fbatches.lock);
767  	}
768  }
769  
770  void lru_add_drain(void)
771  {
772  	local_lock(&cpu_fbatches.lock);
773  	lru_add_drain_cpu(smp_processor_id());
774  	local_unlock(&cpu_fbatches.lock);
775  	mlock_page_drain_local();
776  }
777  
778  /*
779   * It's called from per-cpu workqueue context in SMP case so
780   * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
781   * the same cpu. It shouldn't be a problem in !SMP case since
782   * the core is only one and the locks will disable preemption.
783   */
784  static void lru_add_and_bh_lrus_drain(void)
785  {
786  	local_lock(&cpu_fbatches.lock);
787  	lru_add_drain_cpu(smp_processor_id());
788  	local_unlock(&cpu_fbatches.lock);
789  	invalidate_bh_lrus_cpu();
790  	mlock_page_drain_local();
791  }
792  
793  void lru_add_drain_cpu_zone(struct zone *zone)
794  {
795  	local_lock(&cpu_fbatches.lock);
796  	lru_add_drain_cpu(smp_processor_id());
797  	drain_local_pages(zone);
798  	local_unlock(&cpu_fbatches.lock);
799  	mlock_page_drain_local();
800  }
801  
802  #ifdef CONFIG_SMP
803  
804  static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
805  
806  static void lru_add_drain_per_cpu(struct work_struct *dummy)
807  {
808  	lru_add_and_bh_lrus_drain();
809  }
810  
811  static bool cpu_needs_drain(unsigned int cpu)
812  {
813  	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
814  
815  	/* Check these in order of likelihood that they're not zero */
816  	return folio_batch_count(&fbatches->lru_add) ||
817  		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
818  		folio_batch_count(&fbatches->lru_deactivate_file) ||
819  		folio_batch_count(&fbatches->lru_deactivate) ||
820  		folio_batch_count(&fbatches->lru_lazyfree) ||
821  		folio_batch_count(&fbatches->activate) ||
822  		need_mlock_page_drain(cpu) ||
823  		has_bh_in_lru(cpu, NULL);
824  }
825  
826  /*
827   * Doesn't need any cpu hotplug locking because we do rely on per-cpu
828   * kworkers being shut down before our page_alloc_cpu_dead callback is
829   * executed on the offlined cpu.
830   * Calling this function with cpu hotplug locks held can actually lead
831   * to obscure indirect dependencies via WQ context.
832   */
833  static inline void __lru_add_drain_all(bool force_all_cpus)
834  {
835  	/*
836  	 * lru_drain_gen - Global pages generation number
837  	 *
838  	 * (A) Definition: global lru_drain_gen = x implies that all generations
839  	 *     0 < n <= x are already *scheduled* for draining.
840  	 *
841  	 * This is an optimization for the highly-contended use case where a
842  	 * user space workload keeps constantly generating a flow of pages for
843  	 * each CPU.
844  	 */
845  	static unsigned int lru_drain_gen;
846  	static struct cpumask has_work;
847  	static DEFINE_MUTEX(lock);
848  	unsigned cpu, this_gen;
849  
850  	/*
851  	 * Make sure nobody triggers this path before mm_percpu_wq is fully
852  	 * initialized.
853  	 */
854  	if (WARN_ON(!mm_percpu_wq))
855  		return;
856  
857  	/*
858  	 * Guarantee folio_batch counter stores visible by this CPU
859  	 * are visible to other CPUs before loading the current drain
860  	 * generation.
861  	 */
862  	smp_mb();
863  
864  	/*
865  	 * (B) Locally cache global LRU draining generation number
866  	 *
867  	 * The read barrier ensures that the counter is loaded before the mutex
868  	 * is taken. It pairs with smp_mb() inside the mutex critical section
869  	 * at (D).
870  	 */
871  	this_gen = smp_load_acquire(&lru_drain_gen);
872  
873  	mutex_lock(&lock);
874  
875  	/*
876  	 * (C) Exit the draining operation if a newer generation, from another
877  	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
878  	 */
879  	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
880  		goto done;
881  
882  	/*
883  	 * (D) Increment global generation number
884  	 *
885  	 * Pairs with smp_load_acquire() at (B), outside of the critical
886  	 * section. Use a full memory barrier to guarantee that the
887  	 * new global drain generation number is stored before loading
888  	 * folio_batch counters.
889  	 *
890  	 * This pairing must be done here, before the for_each_online_cpu loop
891  	 * below which drains the page vectors.
892  	 *
893  	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
894  	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
895  	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
896  	 * along, adds some pages to its per-cpu vectors, then calls
897  	 * lru_add_drain_all().
898  	 *
899  	 * If the paired barrier is done at any later step, e.g. after the
900  	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
901  	 * added pages.
902  	 */
903  	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
904  	smp_mb();
905  
906  	cpumask_clear(&has_work);
907  	for_each_online_cpu(cpu) {
908  		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
909  
910  		if (cpu_needs_drain(cpu)) {
911  			INIT_WORK(work, lru_add_drain_per_cpu);
912  			queue_work_on(cpu, mm_percpu_wq, work);
913  			__cpumask_set_cpu(cpu, &has_work);
914  		}
915  	}
916  
917  	for_each_cpu(cpu, &has_work)
918  		flush_work(&per_cpu(lru_add_drain_work, cpu));
919  
920  done:
921  	mutex_unlock(&lock);
922  }
923  
924  void lru_add_drain_all(void)
925  {
926  	__lru_add_drain_all(false);
927  }
928  #else
929  void lru_add_drain_all(void)
930  {
931  	lru_add_drain();
932  }
933  #endif /* CONFIG_SMP */
934  
935  atomic_t lru_disable_count = ATOMIC_INIT(0);
936  
937  /*
938   * lru_cache_disable() needs to be called before we start compiling
939   * a list of pages to be migrated using isolate_lru_page().
940   * It drains pages on LRU cache and then disable on all cpus until
941   * lru_cache_enable is called.
942   *
943   * Must be paired with a call to lru_cache_enable().
944   */
945  void lru_cache_disable(void)
946  {
947  	atomic_inc(&lru_disable_count);
948  	/*
949  	 * Readers of lru_disable_count are protected by either disabling
950  	 * preemption or rcu_read_lock:
951  	 *
952  	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
953  	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
954  	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
955  	 *
956  	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
957  	 * preempt_disable() regions of code. So any CPU which sees
958  	 * lru_disable_count = 0 will have exited the critical
959  	 * section when synchronize_rcu() returns.
960  	 */
961  	synchronize_rcu_expedited();
962  #ifdef CONFIG_SMP
963  	__lru_add_drain_all(true);
964  #else
965  	lru_add_and_bh_lrus_drain();
966  #endif
967  }
968  
969  /**
970   * release_pages - batched put_page()
971   * @pages: array of pages to release
972   * @nr: number of pages
973   *
974   * Decrement the reference count on all the pages in @pages.  If it
975   * fell to zero, remove the page from the LRU and free it.
976   */
977  void release_pages(struct page **pages, int nr)
978  {
979  	int i;
980  	LIST_HEAD(pages_to_free);
981  	struct lruvec *lruvec = NULL;
982  	unsigned long flags = 0;
983  	unsigned int lock_batch;
984  
985  	for (i = 0; i < nr; i++) {
986  		struct folio *folio = page_folio(pages[i]);
987  
988  		/*
989  		 * Make sure the IRQ-safe lock-holding time does not get
990  		 * excessive with a continuous string of pages from the
991  		 * same lruvec. The lock is held only if lruvec != NULL.
992  		 */
993  		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
994  			unlock_page_lruvec_irqrestore(lruvec, flags);
995  			lruvec = NULL;
996  		}
997  
998  		if (is_huge_zero_page(&folio->page))
999  			continue;
1000  
1001  		if (folio_is_zone_device(folio)) {
1002  			if (lruvec) {
1003  				unlock_page_lruvec_irqrestore(lruvec, flags);
1004  				lruvec = NULL;
1005  			}
1006  			if (put_devmap_managed_page(&folio->page))
1007  				continue;
1008  			if (folio_put_testzero(folio))
1009  				free_zone_device_page(&folio->page);
1010  			continue;
1011  		}
1012  
1013  		if (!folio_put_testzero(folio))
1014  			continue;
1015  
1016  		if (folio_test_large(folio)) {
1017  			if (lruvec) {
1018  				unlock_page_lruvec_irqrestore(lruvec, flags);
1019  				lruvec = NULL;
1020  			}
1021  			__folio_put_large(folio);
1022  			continue;
1023  		}
1024  
1025  		if (folio_test_lru(folio)) {
1026  			struct lruvec *prev_lruvec = lruvec;
1027  
1028  			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1029  									&flags);
1030  			if (prev_lruvec != lruvec)
1031  				lock_batch = 0;
1032  
1033  			lruvec_del_folio(lruvec, folio);
1034  			__folio_clear_lru_flags(folio);
1035  		}
1036  
1037  		/*
1038  		 * In rare cases, when truncation or holepunching raced with
1039  		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1040  		 * found set here.  This does not indicate a problem, unless
1041  		 * "unevictable_pgs_cleared" appears worryingly large.
1042  		 */
1043  		if (unlikely(folio_test_mlocked(folio))) {
1044  			__folio_clear_mlocked(folio);
1045  			zone_stat_sub_folio(folio, NR_MLOCK);
1046  			count_vm_event(UNEVICTABLE_PGCLEARED);
1047  		}
1048  
1049  		list_add(&folio->lru, &pages_to_free);
1050  	}
1051  	if (lruvec)
1052  		unlock_page_lruvec_irqrestore(lruvec, flags);
1053  
1054  	mem_cgroup_uncharge_list(&pages_to_free);
1055  	free_unref_page_list(&pages_to_free);
1056  }
1057  EXPORT_SYMBOL(release_pages);
1058  
1059  /*
1060   * The pages which we're about to release may be in the deferred lru-addition
1061   * queues.  That would prevent them from really being freed right now.  That's
1062   * OK from a correctness point of view but is inefficient - those pages may be
1063   * cache-warm and we want to give them back to the page allocator ASAP.
1064   *
1065   * So __pagevec_release() will drain those queues here.
1066   * folio_batch_move_lru() calls folios_put() directly to avoid
1067   * mutual recursion.
1068   */
1069  void __pagevec_release(struct pagevec *pvec)
1070  {
1071  	if (!pvec->percpu_pvec_drained) {
1072  		lru_add_drain();
1073  		pvec->percpu_pvec_drained = true;
1074  	}
1075  	release_pages(pvec->pages, pagevec_count(pvec));
1076  	pagevec_reinit(pvec);
1077  }
1078  EXPORT_SYMBOL(__pagevec_release);
1079  
1080  /**
1081   * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1082   * @fbatch: The batch to prune
1083   *
1084   * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1085   * entries.  This function prunes all the non-folio entries from @fbatch
1086   * without leaving holes, so that it can be passed on to folio-only batch
1087   * operations.
1088   */
1089  void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1090  {
1091  	unsigned int i, j;
1092  
1093  	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1094  		struct folio *folio = fbatch->folios[i];
1095  		if (!xa_is_value(folio))
1096  			fbatch->folios[j++] = folio;
1097  	}
1098  	fbatch->nr = j;
1099  }
1100  
1101  unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1102  		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1103  		xa_mark_t tag)
1104  {
1105  	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1106  					PAGEVEC_SIZE, pvec->pages);
1107  	return pagevec_count(pvec);
1108  }
1109  EXPORT_SYMBOL(pagevec_lookup_range_tag);
1110  
1111  /*
1112   * Perform any setup for the swap system
1113   */
1114  void __init swap_setup(void)
1115  {
1116  	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1117  
1118  	/* Use a smaller cluster for small-memory machines */
1119  	if (megs < 16)
1120  		page_cluster = 2;
1121  	else
1122  		page_cluster = 3;
1123  	/*
1124  	 * Right now other parts of the system means that we
1125  	 * _really_ don't want to cluster much more
1126  	 */
1127  }
1128