1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/pagemap.h> 43 44 /* How many pages do we try to swap or page in/out together? */ 45 int page_cluster; 46 47 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); 48 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); 50 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 51 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs); 52 #ifdef CONFIG_SMP 53 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 54 #endif 55 56 /* 57 * This path almost never happens for VM activity - pages are normally 58 * freed via pagevecs. But it gets used by networking. 59 */ 60 static void __page_cache_release(struct page *page) 61 { 62 if (PageLRU(page)) { 63 pg_data_t *pgdat = page_pgdat(page); 64 struct lruvec *lruvec; 65 unsigned long flags; 66 67 spin_lock_irqsave(&pgdat->lru_lock, flags); 68 lruvec = mem_cgroup_page_lruvec(page, pgdat); 69 VM_BUG_ON_PAGE(!PageLRU(page), page); 70 __ClearPageLRU(page); 71 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 72 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 73 } 74 __ClearPageWaiters(page); 75 } 76 77 static void __put_single_page(struct page *page) 78 { 79 __page_cache_release(page); 80 mem_cgroup_uncharge(page); 81 free_unref_page(page); 82 } 83 84 static void __put_compound_page(struct page *page) 85 { 86 compound_page_dtor *dtor; 87 88 /* 89 * __page_cache_release() is supposed to be called for thp, not for 90 * hugetlb. This is because hugetlb page does never have PageLRU set 91 * (it's never listed to any LRU lists) and no memcg routines should 92 * be called for hugetlb (it has a separate hugetlb_cgroup.) 93 */ 94 if (!PageHuge(page)) 95 __page_cache_release(page); 96 dtor = get_compound_page_dtor(page); 97 (*dtor)(page); 98 } 99 100 void __put_page(struct page *page) 101 { 102 if (is_zone_device_page(page)) { 103 put_dev_pagemap(page->pgmap); 104 105 /* 106 * The page belongs to the device that created pgmap. Do 107 * not return it to page allocator. 108 */ 109 return; 110 } 111 112 if (unlikely(PageCompound(page))) 113 __put_compound_page(page); 114 else 115 __put_single_page(page); 116 } 117 EXPORT_SYMBOL(__put_page); 118 119 /** 120 * put_pages_list() - release a list of pages 121 * @pages: list of pages threaded on page->lru 122 * 123 * Release a list of pages which are strung together on page.lru. Currently 124 * used by read_cache_pages() and related error recovery code. 125 */ 126 void put_pages_list(struct list_head *pages) 127 { 128 while (!list_empty(pages)) { 129 struct page *victim; 130 131 victim = lru_to_page(pages); 132 list_del(&victim->lru); 133 put_page(victim); 134 } 135 } 136 EXPORT_SYMBOL(put_pages_list); 137 138 /* 139 * get_kernel_pages() - pin kernel pages in memory 140 * @kiov: An array of struct kvec structures 141 * @nr_segs: number of segments to pin 142 * @write: pinning for read/write, currently ignored 143 * @pages: array that receives pointers to the pages pinned. 144 * Should be at least nr_segs long. 145 * 146 * Returns number of pages pinned. This may be fewer than the number 147 * requested. If nr_pages is 0 or negative, returns 0. If no pages 148 * were pinned, returns -errno. Each page returned must be released 149 * with a put_page() call when it is finished with. 150 */ 151 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 152 struct page **pages) 153 { 154 int seg; 155 156 for (seg = 0; seg < nr_segs; seg++) { 157 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 158 return seg; 159 160 pages[seg] = kmap_to_page(kiov[seg].iov_base); 161 get_page(pages[seg]); 162 } 163 164 return seg; 165 } 166 EXPORT_SYMBOL_GPL(get_kernel_pages); 167 168 /* 169 * get_kernel_page() - pin a kernel page in memory 170 * @start: starting kernel address 171 * @write: pinning for read/write, currently ignored 172 * @pages: array that receives pointer to the page pinned. 173 * Must be at least nr_segs long. 174 * 175 * Returns 1 if page is pinned. If the page was not pinned, returns 176 * -errno. The page returned must be released with a put_page() call 177 * when it is finished with. 178 */ 179 int get_kernel_page(unsigned long start, int write, struct page **pages) 180 { 181 const struct kvec kiov = { 182 .iov_base = (void *)start, 183 .iov_len = PAGE_SIZE 184 }; 185 186 return get_kernel_pages(&kiov, 1, write, pages); 187 } 188 EXPORT_SYMBOL_GPL(get_kernel_page); 189 190 static void pagevec_lru_move_fn(struct pagevec *pvec, 191 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 192 void *arg) 193 { 194 int i; 195 struct pglist_data *pgdat = NULL; 196 struct lruvec *lruvec; 197 unsigned long flags = 0; 198 199 for (i = 0; i < pagevec_count(pvec); i++) { 200 struct page *page = pvec->pages[i]; 201 struct pglist_data *pagepgdat = page_pgdat(page); 202 203 if (pagepgdat != pgdat) { 204 if (pgdat) 205 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 206 pgdat = pagepgdat; 207 spin_lock_irqsave(&pgdat->lru_lock, flags); 208 } 209 210 lruvec = mem_cgroup_page_lruvec(page, pgdat); 211 (*move_fn)(page, lruvec, arg); 212 } 213 if (pgdat) 214 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 215 release_pages(pvec->pages, pvec->nr); 216 pagevec_reinit(pvec); 217 } 218 219 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 220 void *arg) 221 { 222 int *pgmoved = arg; 223 224 if (PageLRU(page) && !PageUnevictable(page)) { 225 del_page_from_lru_list(page, lruvec, page_lru(page)); 226 ClearPageActive(page); 227 add_page_to_lru_list_tail(page, lruvec, page_lru(page)); 228 (*pgmoved)++; 229 } 230 } 231 232 /* 233 * pagevec_move_tail() must be called with IRQ disabled. 234 * Otherwise this may cause nasty races. 235 */ 236 static void pagevec_move_tail(struct pagevec *pvec) 237 { 238 int pgmoved = 0; 239 240 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 241 __count_vm_events(PGROTATED, pgmoved); 242 } 243 244 /* 245 * Writeback is about to end against a page which has been marked for immediate 246 * reclaim. If it still appears to be reclaimable, move it to the tail of the 247 * inactive list. 248 */ 249 void rotate_reclaimable_page(struct page *page) 250 { 251 if (!PageLocked(page) && !PageDirty(page) && 252 !PageUnevictable(page) && PageLRU(page)) { 253 struct pagevec *pvec; 254 unsigned long flags; 255 256 get_page(page); 257 local_irq_save(flags); 258 pvec = this_cpu_ptr(&lru_rotate_pvecs); 259 if (!pagevec_add(pvec, page) || PageCompound(page)) 260 pagevec_move_tail(pvec); 261 local_irq_restore(flags); 262 } 263 } 264 265 static void update_page_reclaim_stat(struct lruvec *lruvec, 266 int file, int rotated) 267 { 268 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 269 270 reclaim_stat->recent_scanned[file]++; 271 if (rotated) 272 reclaim_stat->recent_rotated[file]++; 273 } 274 275 static void __activate_page(struct page *page, struct lruvec *lruvec, 276 void *arg) 277 { 278 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 279 int file = page_is_file_cache(page); 280 int lru = page_lru_base_type(page); 281 282 del_page_from_lru_list(page, lruvec, lru); 283 SetPageActive(page); 284 lru += LRU_ACTIVE; 285 add_page_to_lru_list(page, lruvec, lru); 286 trace_mm_lru_activate(page); 287 288 __count_vm_event(PGACTIVATE); 289 update_page_reclaim_stat(lruvec, file, 1); 290 } 291 } 292 293 #ifdef CONFIG_SMP 294 static void activate_page_drain(int cpu) 295 { 296 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 297 298 if (pagevec_count(pvec)) 299 pagevec_lru_move_fn(pvec, __activate_page, NULL); 300 } 301 302 static bool need_activate_page_drain(int cpu) 303 { 304 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; 305 } 306 307 void activate_page(struct page *page) 308 { 309 page = compound_head(page); 310 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 311 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 312 313 get_page(page); 314 if (!pagevec_add(pvec, page) || PageCompound(page)) 315 pagevec_lru_move_fn(pvec, __activate_page, NULL); 316 put_cpu_var(activate_page_pvecs); 317 } 318 } 319 320 #else 321 static inline void activate_page_drain(int cpu) 322 { 323 } 324 325 void activate_page(struct page *page) 326 { 327 pg_data_t *pgdat = page_pgdat(page); 328 329 page = compound_head(page); 330 spin_lock_irq(&pgdat->lru_lock); 331 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL); 332 spin_unlock_irq(&pgdat->lru_lock); 333 } 334 #endif 335 336 static void __lru_cache_activate_page(struct page *page) 337 { 338 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 339 int i; 340 341 /* 342 * Search backwards on the optimistic assumption that the page being 343 * activated has just been added to this pagevec. Note that only 344 * the local pagevec is examined as a !PageLRU page could be in the 345 * process of being released, reclaimed, migrated or on a remote 346 * pagevec that is currently being drained. Furthermore, marking 347 * a remote pagevec's page PageActive potentially hits a race where 348 * a page is marked PageActive just after it is added to the inactive 349 * list causing accounting errors and BUG_ON checks to trigger. 350 */ 351 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 352 struct page *pagevec_page = pvec->pages[i]; 353 354 if (pagevec_page == page) { 355 SetPageActive(page); 356 break; 357 } 358 } 359 360 put_cpu_var(lru_add_pvec); 361 } 362 363 /* 364 * Mark a page as having seen activity. 365 * 366 * inactive,unreferenced -> inactive,referenced 367 * inactive,referenced -> active,unreferenced 368 * active,unreferenced -> active,referenced 369 * 370 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 371 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 372 */ 373 void mark_page_accessed(struct page *page) 374 { 375 page = compound_head(page); 376 if (!PageActive(page) && !PageUnevictable(page) && 377 PageReferenced(page)) { 378 379 /* 380 * If the page is on the LRU, queue it for activation via 381 * activate_page_pvecs. Otherwise, assume the page is on a 382 * pagevec, mark it active and it'll be moved to the active 383 * LRU on the next drain. 384 */ 385 if (PageLRU(page)) 386 activate_page(page); 387 else 388 __lru_cache_activate_page(page); 389 ClearPageReferenced(page); 390 if (page_is_file_cache(page)) 391 workingset_activation(page); 392 } else if (!PageReferenced(page)) { 393 SetPageReferenced(page); 394 } 395 if (page_is_idle(page)) 396 clear_page_idle(page); 397 } 398 EXPORT_SYMBOL(mark_page_accessed); 399 400 static void __lru_cache_add(struct page *page) 401 { 402 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 403 404 get_page(page); 405 if (!pagevec_add(pvec, page) || PageCompound(page)) 406 __pagevec_lru_add(pvec); 407 put_cpu_var(lru_add_pvec); 408 } 409 410 /** 411 * lru_cache_add_anon - add a page to the page lists 412 * @page: the page to add 413 */ 414 void lru_cache_add_anon(struct page *page) 415 { 416 if (PageActive(page)) 417 ClearPageActive(page); 418 __lru_cache_add(page); 419 } 420 421 void lru_cache_add_file(struct page *page) 422 { 423 if (PageActive(page)) 424 ClearPageActive(page); 425 __lru_cache_add(page); 426 } 427 EXPORT_SYMBOL(lru_cache_add_file); 428 429 /** 430 * lru_cache_add - add a page to a page list 431 * @page: the page to be added to the LRU. 432 * 433 * Queue the page for addition to the LRU via pagevec. The decision on whether 434 * to add the page to the [in]active [file|anon] list is deferred until the 435 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 436 * have the page added to the active list using mark_page_accessed(). 437 */ 438 void lru_cache_add(struct page *page) 439 { 440 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 441 VM_BUG_ON_PAGE(PageLRU(page), page); 442 __lru_cache_add(page); 443 } 444 445 /** 446 * lru_cache_add_active_or_unevictable 447 * @page: the page to be added to LRU 448 * @vma: vma in which page is mapped for determining reclaimability 449 * 450 * Place @page on the active or unevictable LRU list, depending on its 451 * evictability. Note that if the page is not evictable, it goes 452 * directly back onto it's zone's unevictable list, it does NOT use a 453 * per cpu pagevec. 454 */ 455 void lru_cache_add_active_or_unevictable(struct page *page, 456 struct vm_area_struct *vma) 457 { 458 VM_BUG_ON_PAGE(PageLRU(page), page); 459 460 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) 461 SetPageActive(page); 462 else if (!TestSetPageMlocked(page)) { 463 /* 464 * We use the irq-unsafe __mod_zone_page_stat because this 465 * counter is not modified from interrupt context, and the pte 466 * lock is held(spinlock), which implies preemption disabled. 467 */ 468 __mod_zone_page_state(page_zone(page), NR_MLOCK, 469 hpage_nr_pages(page)); 470 count_vm_event(UNEVICTABLE_PGMLOCKED); 471 } 472 lru_cache_add(page); 473 } 474 475 /* 476 * If the page can not be invalidated, it is moved to the 477 * inactive list to speed up its reclaim. It is moved to the 478 * head of the list, rather than the tail, to give the flusher 479 * threads some time to write it out, as this is much more 480 * effective than the single-page writeout from reclaim. 481 * 482 * If the page isn't page_mapped and dirty/writeback, the page 483 * could reclaim asap using PG_reclaim. 484 * 485 * 1. active, mapped page -> none 486 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 487 * 3. inactive, mapped page -> none 488 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 489 * 5. inactive, clean -> inactive, tail 490 * 6. Others -> none 491 * 492 * In 4, why it moves inactive's head, the VM expects the page would 493 * be write it out by flusher threads as this is much more effective 494 * than the single-page writeout from reclaim. 495 */ 496 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 497 void *arg) 498 { 499 int lru, file; 500 bool active; 501 502 if (!PageLRU(page)) 503 return; 504 505 if (PageUnevictable(page)) 506 return; 507 508 /* Some processes are using the page */ 509 if (page_mapped(page)) 510 return; 511 512 active = PageActive(page); 513 file = page_is_file_cache(page); 514 lru = page_lru_base_type(page); 515 516 del_page_from_lru_list(page, lruvec, lru + active); 517 ClearPageActive(page); 518 ClearPageReferenced(page); 519 520 if (PageWriteback(page) || PageDirty(page)) { 521 /* 522 * PG_reclaim could be raced with end_page_writeback 523 * It can make readahead confusing. But race window 524 * is _really_ small and it's non-critical problem. 525 */ 526 add_page_to_lru_list(page, lruvec, lru); 527 SetPageReclaim(page); 528 } else { 529 /* 530 * The page's writeback ends up during pagevec 531 * We moves tha page into tail of inactive. 532 */ 533 add_page_to_lru_list_tail(page, lruvec, lru); 534 __count_vm_event(PGROTATED); 535 } 536 537 if (active) 538 __count_vm_event(PGDEACTIVATE); 539 update_page_reclaim_stat(lruvec, file, 0); 540 } 541 542 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 543 void *arg) 544 { 545 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 546 int file = page_is_file_cache(page); 547 int lru = page_lru_base_type(page); 548 549 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); 550 ClearPageActive(page); 551 ClearPageReferenced(page); 552 add_page_to_lru_list(page, lruvec, lru); 553 554 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page)); 555 update_page_reclaim_stat(lruvec, file, 0); 556 } 557 } 558 559 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec, 560 void *arg) 561 { 562 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 563 !PageSwapCache(page) && !PageUnevictable(page)) { 564 bool active = PageActive(page); 565 566 del_page_from_lru_list(page, lruvec, 567 LRU_INACTIVE_ANON + active); 568 ClearPageActive(page); 569 ClearPageReferenced(page); 570 /* 571 * lazyfree pages are clean anonymous pages. They have 572 * SwapBacked flag cleared to distinguish normal anonymous 573 * pages 574 */ 575 ClearPageSwapBacked(page); 576 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE); 577 578 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page)); 579 count_memcg_page_event(page, PGLAZYFREE); 580 update_page_reclaim_stat(lruvec, 1, 0); 581 } 582 } 583 584 /* 585 * Drain pages out of the cpu's pagevecs. 586 * Either "cpu" is the current CPU, and preemption has already been 587 * disabled; or "cpu" is being hot-unplugged, and is already dead. 588 */ 589 void lru_add_drain_cpu(int cpu) 590 { 591 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); 592 593 if (pagevec_count(pvec)) 594 __pagevec_lru_add(pvec); 595 596 pvec = &per_cpu(lru_rotate_pvecs, cpu); 597 if (pagevec_count(pvec)) { 598 unsigned long flags; 599 600 /* No harm done if a racing interrupt already did this */ 601 local_irq_save(flags); 602 pagevec_move_tail(pvec); 603 local_irq_restore(flags); 604 } 605 606 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); 607 if (pagevec_count(pvec)) 608 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 609 610 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 611 if (pagevec_count(pvec)) 612 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 613 614 pvec = &per_cpu(lru_lazyfree_pvecs, cpu); 615 if (pagevec_count(pvec)) 616 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 617 618 activate_page_drain(cpu); 619 } 620 621 /** 622 * deactivate_file_page - forcefully deactivate a file page 623 * @page: page to deactivate 624 * 625 * This function hints the VM that @page is a good reclaim candidate, 626 * for example if its invalidation fails due to the page being dirty 627 * or under writeback. 628 */ 629 void deactivate_file_page(struct page *page) 630 { 631 /* 632 * In a workload with many unevictable page such as mprotect, 633 * unevictable page deactivation for accelerating reclaim is pointless. 634 */ 635 if (PageUnevictable(page)) 636 return; 637 638 if (likely(get_page_unless_zero(page))) { 639 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); 640 641 if (!pagevec_add(pvec, page) || PageCompound(page)) 642 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 643 put_cpu_var(lru_deactivate_file_pvecs); 644 } 645 } 646 647 /* 648 * deactivate_page - deactivate a page 649 * @page: page to deactivate 650 * 651 * deactivate_page() moves @page to the inactive list if @page was on the active 652 * list and was not an unevictable page. This is done to accelerate the reclaim 653 * of @page. 654 */ 655 void deactivate_page(struct page *page) 656 { 657 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 658 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 659 660 get_page(page); 661 if (!pagevec_add(pvec, page) || PageCompound(page)) 662 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 663 put_cpu_var(lru_deactivate_pvecs); 664 } 665 } 666 667 /** 668 * mark_page_lazyfree - make an anon page lazyfree 669 * @page: page to deactivate 670 * 671 * mark_page_lazyfree() moves @page to the inactive file list. 672 * This is done to accelerate the reclaim of @page. 673 */ 674 void mark_page_lazyfree(struct page *page) 675 { 676 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 677 !PageSwapCache(page) && !PageUnevictable(page)) { 678 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs); 679 680 get_page(page); 681 if (!pagevec_add(pvec, page) || PageCompound(page)) 682 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 683 put_cpu_var(lru_lazyfree_pvecs); 684 } 685 } 686 687 void lru_add_drain(void) 688 { 689 lru_add_drain_cpu(get_cpu()); 690 put_cpu(); 691 } 692 693 #ifdef CONFIG_SMP 694 695 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 696 697 static void lru_add_drain_per_cpu(struct work_struct *dummy) 698 { 699 lru_add_drain(); 700 } 701 702 /* 703 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 704 * kworkers being shut down before our page_alloc_cpu_dead callback is 705 * executed on the offlined cpu. 706 * Calling this function with cpu hotplug locks held can actually lead 707 * to obscure indirect dependencies via WQ context. 708 */ 709 void lru_add_drain_all(void) 710 { 711 static DEFINE_MUTEX(lock); 712 static struct cpumask has_work; 713 int cpu; 714 715 /* 716 * Make sure nobody triggers this path before mm_percpu_wq is fully 717 * initialized. 718 */ 719 if (WARN_ON(!mm_percpu_wq)) 720 return; 721 722 mutex_lock(&lock); 723 cpumask_clear(&has_work); 724 725 for_each_online_cpu(cpu) { 726 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 727 728 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || 729 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || 730 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || 731 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) || 732 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) || 733 need_activate_page_drain(cpu)) { 734 INIT_WORK(work, lru_add_drain_per_cpu); 735 queue_work_on(cpu, mm_percpu_wq, work); 736 cpumask_set_cpu(cpu, &has_work); 737 } 738 } 739 740 for_each_cpu(cpu, &has_work) 741 flush_work(&per_cpu(lru_add_drain_work, cpu)); 742 743 mutex_unlock(&lock); 744 } 745 #else 746 void lru_add_drain_all(void) 747 { 748 lru_add_drain(); 749 } 750 #endif 751 752 /** 753 * release_pages - batched put_page() 754 * @pages: array of pages to release 755 * @nr: number of pages 756 * 757 * Decrement the reference count on all the pages in @pages. If it 758 * fell to zero, remove the page from the LRU and free it. 759 */ 760 void release_pages(struct page **pages, int nr) 761 { 762 int i; 763 LIST_HEAD(pages_to_free); 764 struct pglist_data *locked_pgdat = NULL; 765 struct lruvec *lruvec; 766 unsigned long uninitialized_var(flags); 767 unsigned int uninitialized_var(lock_batch); 768 769 for (i = 0; i < nr; i++) { 770 struct page *page = pages[i]; 771 772 /* 773 * Make sure the IRQ-safe lock-holding time does not get 774 * excessive with a continuous string of pages from the 775 * same pgdat. The lock is held only if pgdat != NULL. 776 */ 777 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) { 778 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 779 locked_pgdat = NULL; 780 } 781 782 if (is_huge_zero_page(page)) 783 continue; 784 785 if (is_zone_device_page(page)) { 786 if (locked_pgdat) { 787 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 788 flags); 789 locked_pgdat = NULL; 790 } 791 /* 792 * ZONE_DEVICE pages that return 'false' from 793 * put_devmap_managed_page() do not require special 794 * processing, and instead, expect a call to 795 * put_page_testzero(). 796 */ 797 if (put_devmap_managed_page(page)) 798 continue; 799 } 800 801 page = compound_head(page); 802 if (!put_page_testzero(page)) 803 continue; 804 805 if (PageCompound(page)) { 806 if (locked_pgdat) { 807 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 808 locked_pgdat = NULL; 809 } 810 __put_compound_page(page); 811 continue; 812 } 813 814 if (PageLRU(page)) { 815 struct pglist_data *pgdat = page_pgdat(page); 816 817 if (pgdat != locked_pgdat) { 818 if (locked_pgdat) 819 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 820 flags); 821 lock_batch = 0; 822 locked_pgdat = pgdat; 823 spin_lock_irqsave(&locked_pgdat->lru_lock, flags); 824 } 825 826 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat); 827 VM_BUG_ON_PAGE(!PageLRU(page), page); 828 __ClearPageLRU(page); 829 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 830 } 831 832 /* Clear Active bit in case of parallel mark_page_accessed */ 833 __ClearPageActive(page); 834 __ClearPageWaiters(page); 835 836 list_add(&page->lru, &pages_to_free); 837 } 838 if (locked_pgdat) 839 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 840 841 mem_cgroup_uncharge_list(&pages_to_free); 842 free_unref_page_list(&pages_to_free); 843 } 844 EXPORT_SYMBOL(release_pages); 845 846 /* 847 * The pages which we're about to release may be in the deferred lru-addition 848 * queues. That would prevent them from really being freed right now. That's 849 * OK from a correctness point of view but is inefficient - those pages may be 850 * cache-warm and we want to give them back to the page allocator ASAP. 851 * 852 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 853 * and __pagevec_lru_add_active() call release_pages() directly to avoid 854 * mutual recursion. 855 */ 856 void __pagevec_release(struct pagevec *pvec) 857 { 858 if (!pvec->percpu_pvec_drained) { 859 lru_add_drain(); 860 pvec->percpu_pvec_drained = true; 861 } 862 release_pages(pvec->pages, pagevec_count(pvec)); 863 pagevec_reinit(pvec); 864 } 865 EXPORT_SYMBOL(__pagevec_release); 866 867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 868 /* used by __split_huge_page_refcount() */ 869 void lru_add_page_tail(struct page *page, struct page *page_tail, 870 struct lruvec *lruvec, struct list_head *list) 871 { 872 const int file = 0; 873 874 VM_BUG_ON_PAGE(!PageHead(page), page); 875 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 876 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 877 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock); 878 879 if (!list) 880 SetPageLRU(page_tail); 881 882 if (likely(PageLRU(page))) 883 list_add_tail(&page_tail->lru, &page->lru); 884 else if (list) { 885 /* page reclaim is reclaiming a huge page */ 886 get_page(page_tail); 887 list_add_tail(&page_tail->lru, list); 888 } else { 889 /* 890 * Head page has not yet been counted, as an hpage, 891 * so we must account for each subpage individually. 892 * 893 * Put page_tail on the list at the correct position 894 * so they all end up in order. 895 */ 896 add_page_to_lru_list_tail(page_tail, lruvec, 897 page_lru(page_tail)); 898 } 899 900 if (!PageUnevictable(page)) 901 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 902 } 903 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 904 905 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 906 void *arg) 907 { 908 enum lru_list lru; 909 int was_unevictable = TestClearPageUnevictable(page); 910 911 VM_BUG_ON_PAGE(PageLRU(page), page); 912 913 SetPageLRU(page); 914 /* 915 * Page becomes evictable in two ways: 916 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 917 * 2) Before acquiring LRU lock to put the page to correct LRU and then 918 * a) do PageLRU check with lock [check_move_unevictable_pages] 919 * b) do PageLRU check before lock [clear_page_mlock] 920 * 921 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 922 * following strict ordering: 923 * 924 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 925 * 926 * SetPageLRU() TestClearPageMlocked() 927 * smp_mb() // explicit ordering // above provides strict 928 * // ordering 929 * PageMlocked() PageLRU() 930 * 931 * 932 * if '#1' does not observe setting of PG_lru by '#0' and fails 933 * isolation, the explicit barrier will make sure that page_evictable 934 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 935 * can be reordered after PageMlocked check and can make '#1' to fail 936 * the isolation of the page whose Mlocked bit is cleared (#0 is also 937 * looking at the same page) and the evictable page will be stranded 938 * in an unevictable LRU. 939 */ 940 smp_mb(); 941 942 if (page_evictable(page)) { 943 lru = page_lru(page); 944 update_page_reclaim_stat(lruvec, page_is_file_cache(page), 945 PageActive(page)); 946 if (was_unevictable) 947 count_vm_event(UNEVICTABLE_PGRESCUED); 948 } else { 949 lru = LRU_UNEVICTABLE; 950 ClearPageActive(page); 951 SetPageUnevictable(page); 952 if (!was_unevictable) 953 count_vm_event(UNEVICTABLE_PGCULLED); 954 } 955 956 add_page_to_lru_list(page, lruvec, lru); 957 trace_mm_lru_insertion(page, lru); 958 } 959 960 /* 961 * Add the passed pages to the LRU, then drop the caller's refcount 962 * on them. Reinitialises the caller's pagevec. 963 */ 964 void __pagevec_lru_add(struct pagevec *pvec) 965 { 966 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 967 } 968 EXPORT_SYMBOL(__pagevec_lru_add); 969 970 /** 971 * pagevec_lookup_entries - gang pagecache lookup 972 * @pvec: Where the resulting entries are placed 973 * @mapping: The address_space to search 974 * @start: The starting entry index 975 * @nr_entries: The maximum number of pages 976 * @indices: The cache indices corresponding to the entries in @pvec 977 * 978 * pagevec_lookup_entries() will search for and return a group of up 979 * to @nr_pages pages and shadow entries in the mapping. All 980 * entries are placed in @pvec. pagevec_lookup_entries() takes a 981 * reference against actual pages in @pvec. 982 * 983 * The search returns a group of mapping-contiguous entries with 984 * ascending indexes. There may be holes in the indices due to 985 * not-present entries. 986 * 987 * pagevec_lookup_entries() returns the number of entries which were 988 * found. 989 */ 990 unsigned pagevec_lookup_entries(struct pagevec *pvec, 991 struct address_space *mapping, 992 pgoff_t start, unsigned nr_entries, 993 pgoff_t *indices) 994 { 995 pvec->nr = find_get_entries(mapping, start, nr_entries, 996 pvec->pages, indices); 997 return pagevec_count(pvec); 998 } 999 1000 /** 1001 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1002 * @pvec: The pagevec to prune 1003 * 1004 * pagevec_lookup_entries() fills both pages and exceptional radix 1005 * tree entries into the pagevec. This function prunes all 1006 * exceptionals from @pvec without leaving holes, so that it can be 1007 * passed on to page-only pagevec operations. 1008 */ 1009 void pagevec_remove_exceptionals(struct pagevec *pvec) 1010 { 1011 int i, j; 1012 1013 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1014 struct page *page = pvec->pages[i]; 1015 if (!xa_is_value(page)) 1016 pvec->pages[j++] = page; 1017 } 1018 pvec->nr = j; 1019 } 1020 1021 /** 1022 * pagevec_lookup_range - gang pagecache lookup 1023 * @pvec: Where the resulting pages are placed 1024 * @mapping: The address_space to search 1025 * @start: The starting page index 1026 * @end: The final page index 1027 * 1028 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1029 * pages in the mapping starting from index @start and upto index @end 1030 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1031 * reference against the pages in @pvec. 1032 * 1033 * The search returns a group of mapping-contiguous pages with ascending 1034 * indexes. There may be holes in the indices due to not-present pages. We 1035 * also update @start to index the next page for the traversal. 1036 * 1037 * pagevec_lookup_range() returns the number of pages which were found. If this 1038 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1039 * reached. 1040 */ 1041 unsigned pagevec_lookup_range(struct pagevec *pvec, 1042 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1043 { 1044 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1045 pvec->pages); 1046 return pagevec_count(pvec); 1047 } 1048 EXPORT_SYMBOL(pagevec_lookup_range); 1049 1050 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1051 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1052 xa_mark_t tag) 1053 { 1054 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1055 PAGEVEC_SIZE, pvec->pages); 1056 return pagevec_count(pvec); 1057 } 1058 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1059 1060 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, 1061 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1062 xa_mark_t tag, unsigned max_pages) 1063 { 1064 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1065 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages); 1066 return pagevec_count(pvec); 1067 } 1068 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag); 1069 /* 1070 * Perform any setup for the swap system 1071 */ 1072 void __init swap_setup(void) 1073 { 1074 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1075 1076 /* Use a smaller cluster for small-memory machines */ 1077 if (megs < 16) 1078 page_cluster = 2; 1079 else 1080 page_cluster = 3; 1081 /* 1082 * Right now other parts of the system means that we 1083 * _really_ don't want to cluster much more 1084 */ 1085 } 1086