1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/mm_inline.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page() */ 27 #include <linux/percpu_counter.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 34 /* How many pages do we try to swap or page in/out together? */ 35 int page_cluster; 36 37 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, }; 38 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, }; 39 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs) = { 0, }; 40 41 /* 42 * This path almost never happens for VM activity - pages are normally 43 * freed via pagevecs. But it gets used by networking. 44 */ 45 static void __page_cache_release(struct page *page) 46 { 47 if (PageLRU(page)) { 48 unsigned long flags; 49 struct zone *zone = page_zone(page); 50 51 spin_lock_irqsave(&zone->lru_lock, flags); 52 VM_BUG_ON(!PageLRU(page)); 53 __ClearPageLRU(page); 54 del_page_from_lru(zone, page); 55 spin_unlock_irqrestore(&zone->lru_lock, flags); 56 } 57 free_hot_page(page); 58 } 59 60 static void put_compound_page(struct page *page) 61 { 62 page = compound_head(page); 63 if (put_page_testzero(page)) { 64 compound_page_dtor *dtor; 65 66 dtor = get_compound_page_dtor(page); 67 (*dtor)(page); 68 } 69 } 70 71 void put_page(struct page *page) 72 { 73 if (unlikely(PageCompound(page))) 74 put_compound_page(page); 75 else if (put_page_testzero(page)) 76 __page_cache_release(page); 77 } 78 EXPORT_SYMBOL(put_page); 79 80 /** 81 * put_pages_list() - release a list of pages 82 * @pages: list of pages threaded on page->lru 83 * 84 * Release a list of pages which are strung together on page.lru. Currently 85 * used by read_cache_pages() and related error recovery code. 86 */ 87 void put_pages_list(struct list_head *pages) 88 { 89 while (!list_empty(pages)) { 90 struct page *victim; 91 92 victim = list_entry(pages->prev, struct page, lru); 93 list_del(&victim->lru); 94 page_cache_release(victim); 95 } 96 } 97 EXPORT_SYMBOL(put_pages_list); 98 99 /* 100 * pagevec_move_tail() must be called with IRQ disabled. 101 * Otherwise this may cause nasty races. 102 */ 103 static void pagevec_move_tail(struct pagevec *pvec) 104 { 105 int i; 106 int pgmoved = 0; 107 struct zone *zone = NULL; 108 109 for (i = 0; i < pagevec_count(pvec); i++) { 110 struct page *page = pvec->pages[i]; 111 struct zone *pagezone = page_zone(page); 112 113 if (pagezone != zone) { 114 if (zone) 115 spin_unlock(&zone->lru_lock); 116 zone = pagezone; 117 spin_lock(&zone->lru_lock); 118 } 119 if (PageLRU(page) && !PageActive(page)) { 120 list_move_tail(&page->lru, &zone->inactive_list); 121 pgmoved++; 122 } 123 } 124 if (zone) 125 spin_unlock(&zone->lru_lock); 126 __count_vm_events(PGROTATED, pgmoved); 127 release_pages(pvec->pages, pvec->nr, pvec->cold); 128 pagevec_reinit(pvec); 129 } 130 131 /* 132 * Writeback is about to end against a page which has been marked for immediate 133 * reclaim. If it still appears to be reclaimable, move it to the tail of the 134 * inactive list. 135 * 136 * Returns zero if it cleared PG_writeback. 137 */ 138 int rotate_reclaimable_page(struct page *page) 139 { 140 struct pagevec *pvec; 141 unsigned long flags; 142 143 if (PageLocked(page)) 144 return 1; 145 if (PageDirty(page)) 146 return 1; 147 if (PageActive(page)) 148 return 1; 149 if (!PageLRU(page)) 150 return 1; 151 152 page_cache_get(page); 153 local_irq_save(flags); 154 pvec = &__get_cpu_var(lru_rotate_pvecs); 155 if (!pagevec_add(pvec, page)) 156 pagevec_move_tail(pvec); 157 local_irq_restore(flags); 158 159 if (!test_clear_page_writeback(page)) 160 BUG(); 161 162 return 0; 163 } 164 165 /* 166 * FIXME: speed this up? 167 */ 168 void activate_page(struct page *page) 169 { 170 struct zone *zone = page_zone(page); 171 172 spin_lock_irq(&zone->lru_lock); 173 if (PageLRU(page) && !PageActive(page)) { 174 del_page_from_inactive_list(zone, page); 175 SetPageActive(page); 176 add_page_to_active_list(zone, page); 177 __count_vm_event(PGACTIVATE); 178 mem_cgroup_move_lists(page, true); 179 } 180 spin_unlock_irq(&zone->lru_lock); 181 } 182 183 /* 184 * Mark a page as having seen activity. 185 * 186 * inactive,unreferenced -> inactive,referenced 187 * inactive,referenced -> active,unreferenced 188 * active,unreferenced -> active,referenced 189 */ 190 void mark_page_accessed(struct page *page) 191 { 192 if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) { 193 activate_page(page); 194 ClearPageReferenced(page); 195 } else if (!PageReferenced(page)) { 196 SetPageReferenced(page); 197 } 198 } 199 200 EXPORT_SYMBOL(mark_page_accessed); 201 202 /** 203 * lru_cache_add: add a page to the page lists 204 * @page: the page to add 205 */ 206 void lru_cache_add(struct page *page) 207 { 208 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs); 209 210 page_cache_get(page); 211 if (!pagevec_add(pvec, page)) 212 __pagevec_lru_add(pvec); 213 put_cpu_var(lru_add_pvecs); 214 } 215 216 void lru_cache_add_active(struct page *page) 217 { 218 struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs); 219 220 page_cache_get(page); 221 if (!pagevec_add(pvec, page)) 222 __pagevec_lru_add_active(pvec); 223 put_cpu_var(lru_add_active_pvecs); 224 } 225 226 /* 227 * Drain pages out of the cpu's pagevecs. 228 * Either "cpu" is the current CPU, and preemption has already been 229 * disabled; or "cpu" is being hot-unplugged, and is already dead. 230 */ 231 static void drain_cpu_pagevecs(int cpu) 232 { 233 struct pagevec *pvec; 234 235 pvec = &per_cpu(lru_add_pvecs, cpu); 236 if (pagevec_count(pvec)) 237 __pagevec_lru_add(pvec); 238 239 pvec = &per_cpu(lru_add_active_pvecs, cpu); 240 if (pagevec_count(pvec)) 241 __pagevec_lru_add_active(pvec); 242 243 pvec = &per_cpu(lru_rotate_pvecs, cpu); 244 if (pagevec_count(pvec)) { 245 unsigned long flags; 246 247 /* No harm done if a racing interrupt already did this */ 248 local_irq_save(flags); 249 pagevec_move_tail(pvec); 250 local_irq_restore(flags); 251 } 252 } 253 254 void lru_add_drain(void) 255 { 256 drain_cpu_pagevecs(get_cpu()); 257 put_cpu(); 258 } 259 260 #ifdef CONFIG_NUMA 261 static void lru_add_drain_per_cpu(struct work_struct *dummy) 262 { 263 lru_add_drain(); 264 } 265 266 /* 267 * Returns 0 for success 268 */ 269 int lru_add_drain_all(void) 270 { 271 return schedule_on_each_cpu(lru_add_drain_per_cpu); 272 } 273 274 #else 275 276 /* 277 * Returns 0 for success 278 */ 279 int lru_add_drain_all(void) 280 { 281 lru_add_drain(); 282 return 0; 283 } 284 #endif 285 286 /* 287 * Batched page_cache_release(). Decrement the reference count on all the 288 * passed pages. If it fell to zero then remove the page from the LRU and 289 * free it. 290 * 291 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 292 * for the remainder of the operation. 293 * 294 * The locking in this function is against shrink_cache(): we recheck the 295 * page count inside the lock to see whether shrink_cache grabbed the page 296 * via the LRU. If it did, give up: shrink_cache will free it. 297 */ 298 void release_pages(struct page **pages, int nr, int cold) 299 { 300 int i; 301 struct pagevec pages_to_free; 302 struct zone *zone = NULL; 303 unsigned long uninitialized_var(flags); 304 305 pagevec_init(&pages_to_free, cold); 306 for (i = 0; i < nr; i++) { 307 struct page *page = pages[i]; 308 309 if (unlikely(PageCompound(page))) { 310 if (zone) { 311 spin_unlock_irqrestore(&zone->lru_lock, flags); 312 zone = NULL; 313 } 314 put_compound_page(page); 315 continue; 316 } 317 318 if (!put_page_testzero(page)) 319 continue; 320 321 if (PageLRU(page)) { 322 struct zone *pagezone = page_zone(page); 323 if (pagezone != zone) { 324 if (zone) 325 spin_unlock_irqrestore(&zone->lru_lock, 326 flags); 327 zone = pagezone; 328 spin_lock_irqsave(&zone->lru_lock, flags); 329 } 330 VM_BUG_ON(!PageLRU(page)); 331 __ClearPageLRU(page); 332 del_page_from_lru(zone, page); 333 } 334 335 if (!pagevec_add(&pages_to_free, page)) { 336 if (zone) { 337 spin_unlock_irqrestore(&zone->lru_lock, flags); 338 zone = NULL; 339 } 340 __pagevec_free(&pages_to_free); 341 pagevec_reinit(&pages_to_free); 342 } 343 } 344 if (zone) 345 spin_unlock_irqrestore(&zone->lru_lock, flags); 346 347 pagevec_free(&pages_to_free); 348 } 349 350 /* 351 * The pages which we're about to release may be in the deferred lru-addition 352 * queues. That would prevent them from really being freed right now. That's 353 * OK from a correctness point of view but is inefficient - those pages may be 354 * cache-warm and we want to give them back to the page allocator ASAP. 355 * 356 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 357 * and __pagevec_lru_add_active() call release_pages() directly to avoid 358 * mutual recursion. 359 */ 360 void __pagevec_release(struct pagevec *pvec) 361 { 362 lru_add_drain(); 363 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 364 pagevec_reinit(pvec); 365 } 366 367 EXPORT_SYMBOL(__pagevec_release); 368 369 /* 370 * pagevec_release() for pages which are known to not be on the LRU 371 * 372 * This function reinitialises the caller's pagevec. 373 */ 374 void __pagevec_release_nonlru(struct pagevec *pvec) 375 { 376 int i; 377 struct pagevec pages_to_free; 378 379 pagevec_init(&pages_to_free, pvec->cold); 380 for (i = 0; i < pagevec_count(pvec); i++) { 381 struct page *page = pvec->pages[i]; 382 383 VM_BUG_ON(PageLRU(page)); 384 if (put_page_testzero(page)) 385 pagevec_add(&pages_to_free, page); 386 } 387 pagevec_free(&pages_to_free); 388 pagevec_reinit(pvec); 389 } 390 391 /* 392 * Add the passed pages to the LRU, then drop the caller's refcount 393 * on them. Reinitialises the caller's pagevec. 394 */ 395 void __pagevec_lru_add(struct pagevec *pvec) 396 { 397 int i; 398 struct zone *zone = NULL; 399 400 for (i = 0; i < pagevec_count(pvec); i++) { 401 struct page *page = pvec->pages[i]; 402 struct zone *pagezone = page_zone(page); 403 404 if (pagezone != zone) { 405 if (zone) 406 spin_unlock_irq(&zone->lru_lock); 407 zone = pagezone; 408 spin_lock_irq(&zone->lru_lock); 409 } 410 VM_BUG_ON(PageLRU(page)); 411 SetPageLRU(page); 412 add_page_to_inactive_list(zone, page); 413 } 414 if (zone) 415 spin_unlock_irq(&zone->lru_lock); 416 release_pages(pvec->pages, pvec->nr, pvec->cold); 417 pagevec_reinit(pvec); 418 } 419 420 EXPORT_SYMBOL(__pagevec_lru_add); 421 422 void __pagevec_lru_add_active(struct pagevec *pvec) 423 { 424 int i; 425 struct zone *zone = NULL; 426 427 for (i = 0; i < pagevec_count(pvec); i++) { 428 struct page *page = pvec->pages[i]; 429 struct zone *pagezone = page_zone(page); 430 431 if (pagezone != zone) { 432 if (zone) 433 spin_unlock_irq(&zone->lru_lock); 434 zone = pagezone; 435 spin_lock_irq(&zone->lru_lock); 436 } 437 VM_BUG_ON(PageLRU(page)); 438 SetPageLRU(page); 439 VM_BUG_ON(PageActive(page)); 440 SetPageActive(page); 441 add_page_to_active_list(zone, page); 442 } 443 if (zone) 444 spin_unlock_irq(&zone->lru_lock); 445 release_pages(pvec->pages, pvec->nr, pvec->cold); 446 pagevec_reinit(pvec); 447 } 448 449 /* 450 * Try to drop buffers from the pages in a pagevec 451 */ 452 void pagevec_strip(struct pagevec *pvec) 453 { 454 int i; 455 456 for (i = 0; i < pagevec_count(pvec); i++) { 457 struct page *page = pvec->pages[i]; 458 459 if (PagePrivate(page) && !TestSetPageLocked(page)) { 460 if (PagePrivate(page)) 461 try_to_release_page(page, 0); 462 unlock_page(page); 463 } 464 } 465 } 466 467 /** 468 * pagevec_lookup - gang pagecache lookup 469 * @pvec: Where the resulting pages are placed 470 * @mapping: The address_space to search 471 * @start: The starting page index 472 * @nr_pages: The maximum number of pages 473 * 474 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 475 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 476 * reference against the pages in @pvec. 477 * 478 * The search returns a group of mapping-contiguous pages with ascending 479 * indexes. There may be holes in the indices due to not-present pages. 480 * 481 * pagevec_lookup() returns the number of pages which were found. 482 */ 483 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 484 pgoff_t start, unsigned nr_pages) 485 { 486 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 487 return pagevec_count(pvec); 488 } 489 490 EXPORT_SYMBOL(pagevec_lookup); 491 492 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 493 pgoff_t *index, int tag, unsigned nr_pages) 494 { 495 pvec->nr = find_get_pages_tag(mapping, index, tag, 496 nr_pages, pvec->pages); 497 return pagevec_count(pvec); 498 } 499 500 EXPORT_SYMBOL(pagevec_lookup_tag); 501 502 #ifdef CONFIG_SMP 503 /* 504 * We tolerate a little inaccuracy to avoid ping-ponging the counter between 505 * CPUs 506 */ 507 #define ACCT_THRESHOLD max(16, NR_CPUS * 2) 508 509 static DEFINE_PER_CPU(long, committed_space) = 0; 510 511 void vm_acct_memory(long pages) 512 { 513 long *local; 514 515 preempt_disable(); 516 local = &__get_cpu_var(committed_space); 517 *local += pages; 518 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) { 519 atomic_add(*local, &vm_committed_space); 520 *local = 0; 521 } 522 preempt_enable(); 523 } 524 525 #ifdef CONFIG_HOTPLUG_CPU 526 527 /* Drop the CPU's cached committed space back into the central pool. */ 528 static int cpu_swap_callback(struct notifier_block *nfb, 529 unsigned long action, 530 void *hcpu) 531 { 532 long *committed; 533 534 committed = &per_cpu(committed_space, (long)hcpu); 535 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 536 atomic_add(*committed, &vm_committed_space); 537 *committed = 0; 538 drain_cpu_pagevecs((long)hcpu); 539 } 540 return NOTIFY_OK; 541 } 542 #endif /* CONFIG_HOTPLUG_CPU */ 543 #endif /* CONFIG_SMP */ 544 545 /* 546 * Perform any setup for the swap system 547 */ 548 void __init swap_setup(void) 549 { 550 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT); 551 552 #ifdef CONFIG_SWAP 553 bdi_init(swapper_space.backing_dev_info); 554 #endif 555 556 /* Use a smaller cluster for small-memory machines */ 557 if (megs < 16) 558 page_cluster = 2; 559 else 560 page_cluster = 3; 561 /* 562 * Right now other parts of the system means that we 563 * _really_ don't want to cluster much more 564 */ 565 #ifdef CONFIG_HOTPLUG_CPU 566 hotcpu_notifier(cpu_swap_callback, 0); 567 #endif 568 } 569